Frequently Asked Questions

AD719x Instrumentation Converters

General FAQs

What are the advantages and disadvantages of Σ-Δ ADCs?

The penalty paid for the high resolution achievable with Σ-Δ technology has always been speed. The hardware has to operate at the oversampled rate, much larger than the maximum signal bandwidth, thus demanding great complexity of the digital circuitry. Because of this limitation, Σ-Δ converters have traditionally been relegated to high resolution, very low frequency applications and more recently speech, audio, and medium speeds (100 kHz to 1 MHz).

The digital filtering stage results in long latency between the start of the sampling cycle and the first valid digital output; similarly, there is a significant lag thereafter between digital outputs and their corresponding sampling instants. These characteristics reduce the throughput time in multiplexed systems as it takes many clock cycles for the digital filter to settle after switching from one channel to the next.

Most of the circuitry in Σ-Δ converters is digital, allowing these converters to be fabricated on a wide range of IC processes. This implies that performance will not drift significantly with time and temperature. They are inherently monotonic (that is, a change in the digital output always has the same slope as the analog input). This is of particular importance in closed-loop control systems, where misinterpretation of the direction of change of a measured variable may cause the system to become unstable. They are inherently linear, and present little differential nonlinearity. External sample-and-hold circuits are not required due to the high input sampling rate and low precision of the analog-to-digital conversion in the modulator (the devices are inherently self-sampling and tracking). Requirements for analog anti-aliasing filters are minimum—in most cases, a simple single pole RC filter suffices as the bandwidth of interest is considerably lower than the first image that occurs about the modulator frequency. In contrast, the filters required for medium to high resolution applications using other (nonoversampling) technologies are very sophisticated, difficult to design, large, and expensive.

What is the traditional approach to analog front-end solutions, and how do Σ-Δ solutions overcome their shortcomings?

Traditional approaches to the problem of measuring signals from transducers have been to use a high resolution analog-to-digital converter (ADC) as the core element in the process. These were generally integrating ADCs or voltage-to-frequency converters (VFC) that provided high resolution for low input bandwidth signals. This ADC had to be surrounded by a considerable amount of analog signal conditioning circuitry to boost the transducer output signal so that the full dynamic range of these converters could be used to achieve the required performance. The performance of this signal conditioning circuitry, rather than the high resolution converter, often determined the system success in measuring low level signals. In designing gain stages, a number of factors have to be taken into account; the first and most critical is noise, both in the measurement environment and in the components that constitute the high gain stage. Common sources of noise in the circuit design environment are mains frequency noise and power supply noise. Other causes for concern include common-mode rejection of the gain stage as the transducer output may sit on a large dc signal, therefore necessitating conversion from a differential input signal to a single-ended output. Offset in the amplifiers along with drift performance play havoc with circuit performance, leading to the use of expensive chopper stabilized amplifiers. Programmability was difficult to design into these systems and calibration was performed mainly with the use of the system microcontroller. This leads to the requirement for external memory to store calibration coefficients.

Advances in design have enabled highly accurate and integrated solutions to be developed. The advantages that an integrated solution offers the system designer include signal conditioning necessary for direct transducer interface integrated on chip that greatly reduces analog circuit design and layout complexity. Integrated solutions also offer better control of specifications and error budgets than those of discrete solutions. Σ-Δ converters provide enough dynamic range to allow direct transducer interface, thus removing the need for a high gain signal conditioning stage in front of the ADC.

What are the main applications?

These devices provide a complete analog front end for low frequency measurement applications. These applications include instrumentation, process control, weigh scale, and transducer-based applications, as well as temperature and pressure measurement systems. In pressure and temperature measurement systems, for example, the system designer is faced with the task of measuring small signals that are generated from pressure sensors, RTDs (resistance temperature detectors), or thermocouples and resolving these to resolutions of 16 bits or higher. The major design tasks include signal conditioning of the output signal from the transducer and processing the signal to achieve the required resolution and accuracy. This family of Σ-Δ converters are fully integrated solutions that incorporate the required signal conditioning, filtering, and analog-to-digital converter on a single chip, allowing direct transducer interface without the need for front-end signal conditioning.

The data sheet mentions that large external capacitors between the input and ground can affect measurement accuracy in unbuffered mode. Can you explain why this is the case? Does it only affect ac input signals, or are dc input signals affected, too?

If you use the ADC in unbuffered mode, large RC constants on the input can interact with the internal sampling capacitor and effectively starve the sampling cap of charging current. This will cause gain errors in the ADC. The solution is either to use buffered mode or ensure that you respect the maximum RC values given in the data sheet.

The reference inputs are also unbuffered so, as with using the analog inputs in unbuffered mode, the RC loading on the reference inputs must be sufficiently low to avoid introducing errors into the conversion process.
The AD719x can use an external clock. What is the frequency range of the external clock?

Although the on-chip 4.9152 MHz clock is used by most customers, the AD719x have the capability of being driven from an external clock. The parts can use an external clock from 2.4576 MHz to 5.12 MHz and still meet the data sheet specifications. While the part continues to function with clock frequencies outside this range, performance is not guaranteed.

What is the output data update rate when the AD719x is used with a master clock other than 4.9152 MHz?

The devices have numerous output data rates with a range from 4.7 Hz to 4.8 kHz. These values are determined by the internal clock. When the master clock frequency is changed, the output data rate will scale with the applied clock. For example, the default output data rate equals 50 Hz when the master clock is 4.9152 MHz. If the master clock is reduced to 2.5 MHz, then the output data rate is reduced to \(\frac{50}{2.5/4.9152} \times 50 = 25.43 \text{ Hz} \).

Changing the output data rate will also affect the filter notches. When the output data rate equals 50 Hz, a notch is placed at 50 Hz. If the master clock frequency is reduced to 2.5 MHz, the 50 Hz notch is moved to 25.43 Hz.

The ADC is seeing overvoltages in my application. How can I protect the ADC against these overvoltages?

The analog input pins can tolerate a voltage between GND – 0.3 V and AVDD + 0.3 V. There are ESD diodes connected from each analog input to AVDD and from each analog input to GND. If an overvoltage is seen on the analog input (a voltage that is in excess of 500 mV outside the power supply rails), these diodes will turn on. These ESD diodes provide a low resistance path so the overvoltage is directed away from the ADC’s modulator. However, the ESD diodes can only tolerate a continuous current less than 10 mA. So, to prevent damage of the ADC, some external resistance is required so that the current is limited to less than 10 mA.

Using external limiting resistors prevents the ADC from getting damaged. However, the external overvoltage may cause the on-chip registers to be corrupted.

To prevent the internal registers from being corrupted, the overvoltage needs to be directed away from the ADC. Connecting Schottky diodes from each analog input to AVDD and from each analog input to GND is one method that can be used. The Schottky diode must have a turn-on voltage of 300 mV. This ensures that the external diode turns on before the ADC’s internal diodes so that the overvoltage is directed away from the ADC. Since the ADC does not experience any overvoltage, the on-chip registers will remain intact.

Are there any suggested protection schemes against ESD that should be considered with these products?

These converters are manufactured on a standard CMOS process; therefore, all standard practices and protection schemes apply to these devices as with all other CMOS devices. There are ESD protection diodes on all the inputs that protect the device from possible ESD hits due to handling and production. These ESD protection diodes will act to clamp the voltage at any pin to within 0.5 V of the supplies. They can carry quite high currents but only for a short period of time. So, they can protect the IC from large pulses of short duration (the total energy is still quite low). The latchup current is typically 100 mA on all pins.

The maximum dc current that these protection diodes can withstand is 10 mA. Therefore, the maximum current that can be applied to any input is 10 mA. If it is possible for a current in excess of 10 mA to be applied to a pin due to an overvoltage, external protection is required. Protection schemes that can be applied include transzorbs on the power supply lines, series resistors on digital input lines, and resistors and diodes on analog inputs. For example, the external protection could be a resistor in series with the input pin to limit the current into the pin to less than 10 mA. For example, if the maximum overvoltage applied to a pin will be 5 V, a 1 kΩ series resistor in each line will limit the current to 5 mA.

There are a number of application notes and seminar material available on this topic. These are available on www.analog.com:

What about susceptibility to conducted and radiated electromagnetic emissions?

Any Σ-∆ ADC will be susceptible to conducted RF into either the inputs, the power supply pins, or into the reference. The reason is that spurious RF signals and their harmonics can be averaged by the Σ-∆ modulator and show up as a dc offset or an increase in the noise floor. Radiated RF is a little more difficult to discuss, but similar problems can occur and there are situations where it is necessary to shield the Σ-∆ ADC in a system from large RF fields generated locally within the system.

The amount of protection required will depend on the strength of the local field. There are no hard and fast rules when designing for EMC compatibility as every system will be different, but there are general guidelines that can be followed. Consider the inputs, reference, and power supply pins and ensure that each of these lines are properly filtered up to the required maximum frequency. Decoupling capacitors on the power supply, mounted locally to the IC, possibly a small inductor between the analog and digital supplies, filtering on the reference and the inputs is also critical. A solid low impedance ground plane and separation of the analog and digital grounds—all the usual good practices with the ground plane running under the whole of the IC. The evaluation board provides a good starting point.

Occasionally, it is necessary to provide a Faraday shield for an ADC if the part is operating in the presence of high EM fields such as next to a power supply or relay or RF transmitter, however, this is an exceptional case.

As a component manufacturer, Analog Devices does not perform EMC testing as a general rule since EMC is a system level specification rather than a component specification. It is the responsibility of the PCB designer to ensure that sensitive parts of the circuitry are protected from spurious signals. We don’t have guaranteed bulletproof EMC design that we can give to customers but if you use the evaluation board and follow standard practices for layout, grounding, and decoupling, it is possible to design a system which meets the CE mark and beyond without expending too much design effort. The final chapter in all our seminar books is dedicated to hardware design techniques and deals with such issues as grounding, decoupling, parasitic thermocouples, and good PCB design. www.analog.com/hardware_designtech_sec10.
Analog Performance FAQs

How is the programmable gain function implemented?
The AD719x use an instrumentation amplifier to implement the gain stage.

The data sheet mentions that the analog input of the ADC can accept bipolar inputs of ±50 mV centered around 0 V when the buffer is not used. Can a 3 V/5 V single supply part really do this?
Yes! Each analog input has ESD diodes from the pin to AVDD and to GND. The input stage is truly differential so, in theory, it can tolerate negative input voltages. However, leakage through the ESD protection diodes limits the ability to handle negative voltages. The diodes will turn on when the voltage across them is 300 mV approximately. This turn-on voltage is temperature dependent. The effect of leakage through these diodes is to increase the noise at the input and hence reduce the overall resolution.

Analog Devices guarantees full data sheet performance for analog inputs of ±50 mV over the full specified temperature range (buffer disabled).

What voltage is available on the analog input pins?
The analog input pins can tolerate a voltage from GND – 50 mV to AVDD + 50 mV when the buffer is disabled.

When the buffer is enabled, the buffer itself will require some headroom. The absolute voltage on the analog input pins must be between GND + 250 mV and AVDD – 250 mV. The buffer will be nonlinear outside this range; therefore, the device will be unable to meet the data sheet specifications.

When the in-amp is enabled (gains greater than 1), the in-amp itself requires some headroom. The absolute voltage on the analog input pins is the same as listed above. However, the maximum analog input signal that can be processed by the in-amp is ±(AVDD – 1.25 V)/Gain. The analog input is naturally within this range if a 2.5 V reference is used. This specification is important if a reference equal to AVDD is used. If the analog input is outside this range, the ADC will function; but the part will not meet the data sheet specifications as the in-amp is nonlinear near the power supply rails.

The ADC is seeing overvoltages in my application. How can I protect the ADC against these overvoltages?
The analog input pins can tolerate a voltage between GND – 0.3 V and AVDD + 0.3 V. There are ESD diodes connected from each analog input to AVDD and from each analog input to GND. If an overvoltage is seen on the analog input (a voltage within in excess of 500 mV outside the power supply rails), these diodes will turn on. These ESD diodes provide a low resistance path so the overvoltage is directed away from the ADC’s modulator. However, the ESD diodes can only tolerate a continuous current of less than 10 mA. So, to prevent damage of the ADC, some external resistance is required so that the current is limited to less than 10 mA.

Using external limiting resistors prevents the ADC from getting damaged. However, the external overvoltage may cause the on-chip registers to be corrupted.

To prevent the internal registers from being corrupted, the overvoltage needs to be directed away from the ADC. Connecting Schottky diodes from each analog input to AVDD and GND is one method that can be used. The Schottky diode must have a turn-on voltage of 300 mV. This ensures that the external diode turns on before the ADC’s internal diodes so that the overvoltage is directed away from the ADC. Since the ADC does not experience any overvoltage, the on-chip registers will remain intact.

When the ADC is operated with the inputs shorted, different output codes are obtained depending on whether the part is operated in buffered or unbuffered mode. Is this normal?
If an internal offset and gain calibration is performed when the buffer is selected or deselected, the same code should be obtained from the ADC in both buffered and unbuffered mode within the noise limit of the part. If a calibration is not performed, it is quite possible to see a different output code in buffered and unbuffered mode for the same input voltage. The buffer is similar to an operational amplifier, therefore, it will have an offset voltage. When the user switches between buffered and unbuffered mode, a calibration is essential to remove this offset.

It is important to remember that a calibration must be performed whenever the gain or the mode of the buffer is changed. The data sheet includes noise tables that list the expected noise and code spread for the various operating conditions.

I’m measuring the input leakage current in unbuffered mode. It is significantly higher than the value specified in the data sheet. Why is this?
Static leakage current is specified in the data sheet. The dynamic leakage current (the leakage current when the ADC is converting) is not specified.

If you put the ADC into unbuffered mode and measure the input current, you will observe a combination of leakage current and the dynamic current charging and discharging the sampling capacitor. If the dynamic charging current is likely to be a problem in your application, for example, if you have a high source impedance, you can use the on-chip buffer to isolate the input from these dynamic charging currents. However, this will result in reduced input common-mode voltage. With the buffer enabled, the absolute voltage on the analog input pins is from GND + 250 mV to AVDD – 250 mV. With the buffer disabled, the absolute voltage on the analog input pins is from GND – 50 mV to AVDD + 50 mV.

The data sheet mentions that large external capacitors between the input and ground can affect measurement accuracy in unbuffered mode. Can you explain why this is the case? Does it only affect ac input signals, or are dc input signals affected too?
If you use the ADC in unbuffered mode, large RC constants on the input can interact with the internal sampling capacitor and effectively starve the sampling cap of charging current. This will cause gain errors in the ADC. The solution is either to use buffered mode or ensure that you respect the maximum RC values given in the data sheet.

The reference inputs are also unbuffered so, as with using the analog inputs in unbuffered mode, the RC loading on the reference inputs must be sufficiently low to avoid introducing errors into the conversion process.

How does switching between channels affect throughput?
The output data rate, which is listed in the data sheet, is the rate at which valid conversions are available when continuous conversions are being performed on a single channel. When the user switches to another channel, additional time is required for the ΔΣ modulator and digital filter to settle. The settling time associated with these converters is the time it takes the output data to reflect the input voltage following a channel change. To accurately reflect the analog input following a channel change, the digital filter must be flushed of all data pertaining to the previous analog input.
The AD719x has several filter options. The filter option selected determines the range of output data rates that are available. The filter also determines the settling time, which is the time required to generate a fully settled conversion following a channel change. For example, if the sinc⁴ filter is selected and chop is disabled, it takes four times the programmed output data rate (conversion time) to clear the filter. Therefore, if the output data rate is 50 Hz, for example, the time required to generate a valid conversion after switching channels is (1/(4 × 50 Hz)) = 80 ms. Application note AN-1084 discusses the different filter options available on the AD719x family. It also lists the available output data rates, the settling time, and the maximum number of channels that can be converted per second for each filter type (throughput).

When a channel change occurs, the digital filter and modulator are automatically reset. RDY goes high and will remain high until a valid conversion is available from the new analog input channel. Therefore, following a channel change, RDY will remain high until the digital filter has calculated a valid conversion.

When a step change occurs (on the analog input channel being converted), the ADC is not reset. The ADC continues to output conversions and RDY continues to pulse when a conversion is valid. However, the conversions will not be valid as the digital filter will require the complete settling time to generate a digital word relevant to the altered analog input. Again using the sinc⁴ filter/chop disabled example, the ADC will output a valid word four conversion cycles later if the step change occurs at the beginning of a conversion cycle. However, if the step change occurs asynchronously so that it occurs in the middle of a conversion, the ADC needs to complete the present conversion and then perform four more conversions to generate an output valid to the new analog input. Therefore, it may take five conversion cycles from the instant at which the step change occurs to the instant at which a valid conversion is available.

In summary, the channel switching speed is dependent on the settling time, which is dependent on the filter type selected.

What is the ESD rating for the AD719x?

AD7190, AD7195: HBM Model Pass Level: 1.0 kV, FICDM Model Pass Level: 250 V.
AD7191: HBM Model Pass Level: 2.0 kV, FICDM Model Pass Level: 750 V.
AD7192, AD7193, AD7194: HBM Model Pass Level: 2.0 kV, FICDM Model Pass Level: 500 V (all pins), 750 V (corner pins).

Are there any suggested protection schemes against ESD that should be considered with these products?

These converters are manufactured on a standard CMOS process; therefore, all standard practices and protection schemes apply to these devices as with all other CMOS devices. There are ESD protection diodes on all the inputs that protect the device from possible ESD hits due to handling and production. These ESD protection diodes will act to clamp the voltage at any pin to within 0.5 V of the supplies. They can carry quite high currents but only for a short period of time so they can protect the IC from large pulses of short duration (the total energy is still quite low). The latchup current is typically 100 mA on all pins.

The maximum dc current that these protection diodes can withstand is 10 mA. Therefore, the maximum current that can be applied to any input is 10 mA. If it is possible for a current in excess of 10 mA to be applied to a pin due to an overvoltage, external protection is required. Protection schemes that can be applied include transzorbs on the power supply lines, series resistors on digital input lines, and resistors and diodes on analog inputs. For example, the external protection could be a resistor in series with the input pin to limit the current into the pin to less than 10 mA. For example, if the maximum overvoltage applied to a pin will be 5 V, a 1 kΩ series resistor in each line will limit the current to 5 mA.

There are a number of application notes and seminar materials available on this topic. These are available on www.analog.com:

What about susceptibility to conducted and radiated electromagnetic emissions?

Any Σ-Δ ADC will be susceptible to conducted RF into either the inputs, the power supply pins, or into the reference. The reason is that spurious RF signals and their harmonics can be averaged by the Σ-Δ modulator and show up as a dc offset or an increase in the noise floor. Radiated RF is a little more difficult to discuss, but similar problems can occur and there are situations where it is necessary to shield the Σ-Δ ADC in a system from large RF fields generated locally within the system.

The amount of protection required will depend on the strength of the local field. There are no hard and fast rules when designing for EMC compatibility as every system will be different, but there are general guidelines that can be followed. Consider the inputs, reference, and power supply pins and ensure that each of these lines are properly filtered up to the required maximum frequency. Decoupling capacitors on the power supply, mounted locally to the IC, possibly a small inductor between the analog and digital supplies, filtering on the reference and the inputs is also critical. A solid low impedance ground plane and separation of the analog and digital grounds—all the usual good practices with the ground plane running under the whole of the IC. The evaluation board provides a good starting point.

Occasionally it is necessary to provide a Faraday shield for an ADC if the part is operating in the presence of high EM fields such as next to a power supply or relay or RF transmitter, but this is an exceptional case.

As a component manufacturer, Analog Devices does not perform EMC testing as a general rule since EMC is a system level specification rather than a component specification. It is the responsibility of the PCB designer to ensure that sensitive parts of the circuitry are protected from spurious signals. We don’t have guaranteed bulletproof EMC design that we can give to customers but if you use the evaluation board and follow standard practices for layout, grounding, and decoupling, it is possible to design a system which meets the CE mark and beyond without expending too much design effort. The final chapter in all our seminar books is dedicated to hardware design techniques and deals with such issues as grounding, decoupling, parasitic thermocouples, and good PCB design.

Explain the converter noise with respect to the noise tables in the data sheet and the sources of this noise.

The noise tables in the data sheet show the output rms noise for the selectable output data rates of the part. The numbers given are for the bipolar input ranges with a specified reference and AVDD supply used. These noise numbers are typical and are generated at an analog input voltage of 0 V based on 1000 conversion results at the specified output data rate. The rms noise numbers are also converted to effective resolution in bits. These numbers can be represented as effective resolution in bits rms or bits peak-to-peak (also known as noise-free resolution). Effective resolution in bits rms is defined as the magnitude of the output rms noise with respect to the input full scale (2 × \(\frac{V_{REF}}{Gain} \)). It is important to note that the peak-to-peak numbers represent the resolution for which there will be no code flicker. They are not calculated based on rms noise but on peak-to-peak noise.

\[
\text{Peak-to-peak noise} = 6.6 \times \text{rms noise}
\]

\[
\text{Bits (peak-to-peak)} = \text{Effective Bits (rms)} - 2.5
\]

The numbers given are for bipolar input ranges. For the unipolar ranges, the rms noise numbers will be the same as the bipolar range but the peak-to-peak resolution is now based on half the signal range, which effectively means losing one bit of resolution.

The output noise comes from two sources. The first is the electrical noise in the semiconductor devices (device noise) used in the implementation of the modulator. Secondly, when the analog input is converted into the digital domain, quantization noise is added. The device noise is at a low level and is independent of frequency. The quantization noise starts at an even lower level but rises rapidly with increasing frequency to become the dominant noise source.

For example, consider the AD7190 operating with a 4.7 Hz output data rate, (5 V power supply, 5 V reference, sinc4 filter, chop disabled). With a gain of 128, the rms noise equals 8.5 nV as given in the data sheet.

When operated in bipolar mode, the full-scale analog input is 10 V/128 = 78 mV. The peak-to-peak noise is 6.6 × 8.5 nV = 56.1 nV peak-to-peak. Therefore, the ratio of full-scale input to peak-to-peak noise is 78 mV/56.1 nV = 1,390,374 which is the resolution in counts. Converting this to bits peak-to-peak, log(1,390,374)/log 2 = 20.5 bits peak-to-peak rounded to the nearest 0.5 bit.

What is the peak-to-peak resolution if the ADC is interfaced to a transducer that generates an analog output of 0 mV to 15 mV?

If the AD7190 is operated with a 5 V power supply, a 5 V reference, sinc4 filter, chop disabled, and an output data rate of 4.7 Hz, the rms noise is 8.5 nV when the gain equals 128 (full-scale range = 0 mV to 39 mV in unipolar mode). Since the transducer has an analog output range of 0 mV to 15 mV, the peak-to-peak resolution in the application is 15 mV/6.6 × 8.5 nV = 267,379 counts, which equates to 18 bits peak-to-peak. Therefore, there will be no code flicker at the ADC’s digital output to the 18-bit level.

What is the bandwidth of the AD719x?

The –3 dB bandwidth depends on the filter option used.

- Sinc4 filter chop disabled: 0.23 × \(f_{OC} \)
- Sinc3 filter, chop disabled: 0.272 × \(f_{OC} \)
- Sinc4 filter, chop enabled: 0.24 × \(f_{OC} \)
- Sinc3 filter, chop enabled: 0.24 × \(f_{OC} \)

where \(f_{OC} \) is the selected output data rate.

The filter response Excel models available on the Web automatically calculate the –3 dB point for the different filter options and different output data rates. This tool gives the –3 dB point for the fast settling filter also (AD7193/AD7194) whose –3 dB point is not listed above. These are omitted above since the –3 dB point depends on the amount of averaging used in conjunction with the filter order, chopping enabled/disabled, etc.

Are there benefits to postfiltering the data from a converter?

Improvements in noise performance can be obtained using postfiltering. The on-chip modulator of these converters provides samples at 4.9152 MHz to the digital filter when \(f_{\text{CLKIN}} \) is 4.9152 MHz. The on-chip digital filter decimates these samples to provide data at an output data rate that corresponds to the programmed output data rate of the filter. Since the output data rate is higher than the Nyquist criterion (which states that the output data rate must be at least twice the bandwidth), the output data rate for a given bandwidth will satisfy most application requirements. However, there may be some applications that require a higher output data rate for a given bandwidth and noise performance. Applications that need this higher output data rate will require some postfiltering following the digital filter.

For example, if the required bandwidth is 7.86 Hz but the required output data rate is 50 Hz (sinc3 filter, chop disabled), the data can be taken from the converter at the 50 Hz rate giving a –3 dB bandwidth of 11.5 Hz (the –3 dB bandwidth = 0.23 × output data rate when the sinc3 filter is selected and chop is disabled). Postfiltering can then be applied to reduce the bandwidth and output noise to the 7.86 Hz bandwidth level, while maintaining an output rate of 50 Hz.

Postfiltering can also be used to reduce the output noise from the device for bandwidths below 1 Hz. At a gain of 128 and a bandwidth of 1 Hz, the output rms noise is 8.5 nV. This is essentially device noise or white noise that has primarily a flat frequency response. By reducing the bandwidth below 1 Hz, the noise in the resultant pass band can be reduced. A reduction in bandwidth by a factor of 2 results in a reduction of approximately \(\sqrt{2} \) in the output rms noise. This additional filtering will reduce the system throughput.

What output coding is used in unipolar and bipolar mode?

The output coding is straight binary in unipolar mode and offset binary in bipolar mode.

Unipolar mode (binary coding): With an analog input voltage of 0 V, the output code is 0x000000. With analog input voltage of \(V_{REF}/Gain \), the output code is 0xFFFFFFFF. The output code for any analog input voltage can be represented as follows:

\[
\text{Code} = (A_\text{in} \times \text{gain} \times 2^n)/V_{\text{eff}} \]

where \(A_\text{in} \) is the analog input voltage.

Bipolar mode (offset binary coding): With an analog input voltage of \((-V_{\text{eff}}/Gain)\), the output code is 0x000000. With an analog input voltage of 0 V, the output code is 0x800000. With an analog input voltage of \((+V_{\text{eff}}/Gain)\), the output code is 0xFFFFFFFF. Note that the analog inputs are pseudo bipolar inputs, and the absolute analog input voltage must remain within the common-mode input range at all times. The output code for any analog input voltage can be represented as follows:

\[
\text{Code} = 2^n \times [(A_\text{in} \times V_{\text{eff}} + \text{Gain}) + 1] \]

where \(A_\text{in} \) is the analog input voltage.

What is the recommended common-mode input range for the reference inputs?

The common-mode range for the reference input is from GND to AVDD. The reference input is unbuffered; therefore, the common-mode input range includes the supplies.
How is the input range set?
The input range is dependent on the reference voltage, unipolar/bipolar mode selection, and the gain setting chosen.

In unipolar mode, the input range is given as \([V_{\text{REF}}(+) - V_{\text{REF}}(-)]/\text{Gain}\).

In bipolar mode, the input range is given as \([+V_{\text{REF}}(+) - V_{\text{REF}}(-)]/\text{Gain}\).

The gain setting for the PGA is set using bits G2, G1, and G0 in the configuration register. The reference is nominally equal to AVDD, but the AD719x can be operated with a reference from 1 V to AVDD.

When the device is used in fully differential mode, the common-mode voltage can be varied but the user must ensure that the absolute voltages on the positive and negative analog input terminals are within the specified ranges.

Can an analog input range other than those specified in the data sheet be used?
Yes, the analog input range can be altered. There are two methods to do this:

- A system calibration can be performed during which the user applies the user-specified zero-scale and full-scale voltages to the ADC during the calibration process. The user must ensure that the full-scale value used is within 0.8 \(V_{\text{REF}}/\text{Gain}\) and 1.05 \(V_{\text{REF}}/\text{Gain}\) for specified operation. The ADC will then continue to meet the noise values listed in the data sheet for the original voltage range. For example, the AD7190 has an rms noise specification of 900 nV when operated with an output data rate of 50 Hz (sinc⁴ filter, chop disabled), an external 2.5 V reference, and a gain of 1, which results in a signal range of 0 V to 2.5 V in unipolar mode. If the new full-scale value is within 0.8 \(\times\) 2.5 V and 1.05 \(\times\) 2.5 V, the rms noise will continue to be 900 nV.

- The reference voltage can be altered. For example, if an analog input range of 0 V to 1.5 V is required, using a reference voltage of 1.5 V will result in an analog input of 0 V giving an output code of 0x000000 and an analog input of 1.5 V, giving a code of 0xFFFFF. Following a self-calibration with the 1.5 V reference supplying the ADC, the rms noise will be the same as that for a 2.5 V reference that is given in the data sheet. Using the example above, the AD7190 has an rms noise of 900 nV when operated with a 50 Hz output data rate (sinc⁴ filter, chop disabled), a 2.5 V reference, and a gain of 1. If the reference voltage is changed to 1.5 V and a self-calibration is performed, the rms noise will continue to be 900 nV assuming the output data rate, gain, etc. remain unchanged. The peak-to-peak resolution equals 19.5 bits when operated with a 2.5 V reference and bipolar mode selected. With a 1.5 V reference, the peak-to-peak resolution equals \((2 \times 1.5 V)/(6.6 \times 900 \text{nV})\)/\log 2 \approx 18.9. The reduction in peak-to-peak resolution is due to the reduced input signal span.

What crystals does ADI recommend using with the \(\Sigma-\Delta\) ADCs, and which parameters are important?
A low drift, high accuracy crystal should be used with the AD719x. With any \(\Sigma-\Delta\) ADC, the output data rate and –3 dB point are directly related to the master clock frequency. The initial accuracy determines the output data rate and, hence, the notch locations as the filter notches are dependent on the output data rate. Low drift ensures that the output data rate and, hence, the filter notch locations do not move considerably from the desired locations. For example, with a 50 Hz output data rate, the AD719x has a notch at 50 Hz (sinc⁴ filter, chop disabled) that allows the device to reject mains-injected noise if the interference occurs around 50 Hz. If the crystal frequency changes, these notches will move, and the rejection at 50 Hz may degrade. A company such as CMAC manufactures low drift crystals with high initial accuracy.

I am using the AD719x in my system. When I look at the output of the ADC, I don’t get the full resolution; a few of the LSBs are flickering. Why is this happening?
While the AD719x have a resolution of 24 bits, the accuracy of the parts varies with output data rate and gain. The data sheet lists the rms noise and achievable accuracy for different output data rates and gains. For example, the AD7190 has a peak-to-peak resolution of 20.5 bits when the gain is 1 (analog input range of \(\pm\ V_{\text{REF}}\)), the output data rate is 50 Hz, the sinc⁴ filter is selected, chop is disabled, and bipolar mode is selected. If the output data rate is changed to 4800 Hz, the peak-to-peak resolution is reduced to 16.5 bits. If the gain is now changed to 128 (\(\pm\ 39 \text{ mV input range}\)), the peak-to-peak resolution is reduced to 15.5 bits.

The accuracy of an ADC is specified as effective resolution or peak-to-peak resolution. The effective resolution is calculated using the rms noise that is given in the data sheet. The effective resolution equals log (input span/rms noise)/\log 2. The peak-to-peak resolution is the number of bits that do not flicker and is calculated using the peak-to-peak noise, which equals 6.6 \(\times\) rms noise. Therefore, the peak-to-peak noise equals log (input span/(6.6 \(\times\) rms noise))/\log 2.

The data sheet rms noise values are measured with the chosen analog input channel shorted to some voltage such as AVDD/2 (both terminals of the analog input channel are connected to AVDD/2). Therefore, the user should short the analog input on their system board using a similar method to ensure that the best performance is being obtained from the part. After performing a calibration, commence conversions. Using several thousand samples, the rms noise can be calculated and, from these, the peak-to-peak resolution can be determined. The obtained value should be compared with the values given in the data sheet. If the accuracy specified in the data sheet is not obtained, this is due to noise on the circuit board, for example, ensure that ground loops do not exist and ensure that the power supply is adequately decoupled using a 10 \(\mu\)F tantalum capacitor in parallel with a 0.1 \(\mu\)F ceramic capacitor from each power supply to its respective ground. The capacitors should be placed as close as possible to the ADC’s pins.

With a constant dc input, the output of the ADC drifts with temperature. Why?
The performance of any ADC varies with temperature. When a calibration is performed at a temperature, the offset error and gain error are minimized at the temperature at which the calibration is performed. However, the offset error and gain error vary with temperature. For example, if you short the analog inputs to some voltage such as the reference voltage and perform a calibration, the peak-to-peak resolution given in the data sheet for the specific output data rate and gain should be met. If the temperature varies, the ADC output will vary as the offset error and gain error have drifted with temperature. These drifts are specified in the data sheet.

There will also be drift in the remainder of the signal chain. For example, the reference voltage will vary with temperature also. This variation is specified in the voltage reference data sheet. Resistance values also will vary with temperature. Therefore, it is important to use an accurate reference that has low drift along with resistors with tight tolerances.

Solder joints on a circuit board will also have thermal qualities. Each solder joint connects two dissimilar metals, which generates a small thermocouple. Therefore, signal paths for analog signals such as the analog inputs should be kept identical. This will ensure that effects outside the ADC on the analog input lines due to temperature variation are matched and will be removed as a common-mode effect.
Should chopping always be used if minimum offset and offset drift is required?

With chopping disabled, the offset equals $\pm 0.75 \mu V/Gain$ typical. With chopping enabled, the offset equals $\pm 0.5 \mu V$ typical. Therefore, chopping gives an improvement in offset for gains of 1 to 64.

The offset drift is better when chopping is enabled for gains of 1 to 16. The drift is $\pm 100/Gain \, nV/\circ C$ typically when chopping is disabled compared with $5 \, nV/\circ C$ when chopping is enabled. For gains of 32 to 128, the ADC itself has very good offset drift. Therefore, chopping does not give any extra improvement in the offset drift. For gains of 32 to 128, the offset drift is $5 \, nV/\circ C$ when chopping is enabled or disabled.

Therefore, for gains of 1 to 16, chopping does optimize the offset and offset drift. For higher gains, the offset drift is the same irrespective of whether chopping is enabled or disabled. The offset error itself is higher. However, rather than use chopping, an offset calibration could be used to minimize this error.

The integral nonlinearity is expressed as % of full scale. For what gain setting is this valid?

The INL specification is valid for all gain settings.

What is the link between random conversion noise, peak-to-peak, and rms noise given in the data sheet?

Assume that the noise is truly random and is described by a normal distribution (white noise):

$V_{\text{Noise}} \, (\text{peak-to-peak}) = V_{\text{Noise}} \, (\text{rms}) \times 6.6 \text{ (for 99.9\% of the time)}$

Refer to the AN-615 Application Note, Peak-to-Peak Resolution vs. Effective Resolution, at www.analog.com/AN-615 for more detailed information.

Do I need an antialias filter for my Σ-Δ converter?

Yes, an antialias filter is required. However, because a Σ-Δ converter oversamples the analog input, the design of the antialias filter is greatly simplified compared to an ADC that samples at the Nyquist rate (maximum signal bandwidth $\times 2$).

The AD719x use a digital filter. As the filter is digital, the frequency response is reflected around the sampling frequency (4.9152 MHz). This means that the filter will provide 0 dB of attenuation at frequencies that are integer multiples of the sampling frequency. Therefore, an antialias filter in the analog domain is required to adequately attenuate these frequencies; usually a single pole (possibly a 2-pole) RC filter is all that is required. A 1 kΩ resistor in series with each analog input, a 0.1 µF capacitor from AIN(+) to AIN(–), and a 0.01 µF capacitor from each analog input pin to GND are recommended when the analog input channel is buffered.

When the Σ-Δ converter is operated in unbuffered mode, the inputs look directly into the sampling capacitor of the modulator. The modulator is continually charging and discharging the sampling capacitor. If the time constant of the antialiasing filter is too large, the modulator may be unable to fully charge the sampling capacitor and gain errors will result. To prevent the R-C combination from introducing errors, the data sheet for each ADC specifies the maximum allowable R and C values that can be used for the different gain settings in unbuffered mode.

Which reference should be used with the AD719x?

A low noise reference source is required to achieve the best performance from the ADC. Suitable external references include the ADR421 and ADR431. It is recommended to decouple the output of these references to further reduce the noise level.

In applications such as pressure measurement systems or weigh scales, the excitation voltage for the bridge can be used to derive the reference voltage for the ADC also. If the excitation voltage is equal to or less than AVDD, it can be connected directly to the reference pins of the AD719x device as the AD719x can accept reference voltages up to AVDD. In these applications, the effect of the noise in the excitation voltage will be removed as the application is ratiometric.

How does the internal temperature sensor work?

When the temperature sensor is selected and bipolar mode is selected, the device should return a code of 0x800000 when the temperature is 0 K. A one-point calibration is needed to get the optimum performance from the sensor. Therefore, a conversion at 25°C should be recorded and the sensitivity calculated. The sensitivity is approximately 2815 codes/°C.

The equation for the temperature sensor will be:

\[\text{Temp (K)} = \left(\frac{\text{Conversion} - 0x800000}{2815} \right) \]

How do I decide whether to use the sinc3 filter or the sinc4 filter?

The range of output data rates is identical for the sinc3 and sinc4 filters. The filter order affects the settling time, the rms noise, the 50 Hz/60 Hz rejection, and the stopband attenuation. Application note AN-0979 compares the two filters and highlights the advantages and disadvantages of each.

Serial Interface FAQs

How does the serial interface operate?

The serial interface on this family of converters is implemented as a state machine. The interface works by counting clocks on each data transfer. Therefore, if you are performing a write operation to one of the ADC’s 16-bit registers, 16 SCLK cycles must be applied to the ADC, and the converter will transfer in the 16 bits of data on the DIN line on each of the 16 SCLK cycles. When this operation is complete, the part returns to a state in which it expects the next operation to be a write operation to the communications register. This happens regardless of which register has been accessed and whether a read or write operation has taken place. The ADC knows how many clock cycles should be in a transfer to/from a particular register and in this way knows when the transfer is complete.

The first bit of the communications register is a gating bit that must be set to 0 to access the communications register. If there is a 1 on the DIN line when the part is expecting a write to this bit, the part effectively wraps itself around to monitoring that bit. If there is a 0 on the DIN line when the part is expecting a write to this bit, the part continues to load the next seven bits of the communications register on the next seven SCLK cycles.

The serial interface on these converters consists of four signals: CS, SCLK, DIN, DOUT/RDY. The DIN line is used for transferring data into the on-chip registers while the DOUT/RDY line is used for accessing data from the on-chip registers. SCLK is the serial clock input for the device, and all data transfers (either on DIN or DOUT/RDY) occur with respect to this SCLK signal. The DOUT/RDY pin operates as a data ready signal also, the line going low when a new conversion is available in the data register. It is reset high when a read operation from the data register is complete. It also goes high prior to the updating of the data register to indicate when not to read from the device. This is to ensure that a data read is not attempted while the register is being updated. CS is used to select the device. It can be used to decode the individual converters in systems where a number of parts are connected to the serial bus.

The serial interface can operate in 3-wire mode by tying the CS input low. In this case, the SCLK, DIN, and DOUT/RDY lines are used to communicate...
with the converter. This scheme is suitable for interfacing to microcontrollers. If CS is required as a decoding signal, it can be generated from a port bit. For microcontroller interfaces, it is recommended that the SCLK idle high between data transfers.

What is the recommended initialization sequence for the AD719x?

On power-up, it is advisable to perform a reset by writing 40 1s to the AD719x. This will reset the serial interface, and it will also reset the on-chip registers to their default conditions. The device does have a power-on reset function. However, any glitches during power-up can cause corruption of the registers so a reset in the initialization routine is advisable.

After the reset, the device can be configured for the application. Each channel to be used in the application should be selected in turn, the operating conditions for that channel selected, and the channel calibrated.

A write to the mode register is required to set the update rate and the clock source, configure the power switch, and set the operating mode. A write to the configuration register is required to select the channel and the reference source and set the gain. Calibrations can then be initiated.

Are there any precautions that should be taken to make the interface more robust?

The interface implementation on these converters is basically a state machine that counts clock pulses and defaults to waiting for a write to the communications register when an operation is complete. When the communications register is written to, specifying a write to the mode register, for example, the ADC knows that 16 clocks are required to clock in the data. Spurious clocks on the interface cause the interface to lose synchronization, leading to wrong registers being addressed and thereby corrupting the interface. Tying DIN high between write operations prevents invalid data being written to the ADC.

The first bit in the write operation to the communications register is a gating bit that must be “0” to allow the remaining seven bits to be clocked into the register to specify the next operation. To avoid the possibility of interface issues due to spurious clocks, it is advised to take the DIN line of the converter to a logic high as soon as each write to the converter is complete. Since these converters default to waiting for a write to the communications register, taking DIN high when it has completed a sequence prevents invalid data being written to the communications register if spurious clocks occur. At this time, the ADC is waiting for a zero on DIN before it enables further data into the register. If the part is set up for a write to the communications register with the DIN high, it is effectively immune to spurious serial clocks. This will not prevent spurious clocks received during a write operation from corrupting the interface.

If the interface does get corrupt, what are the options to regain control of the ADC?

Writing 40 1s to the interface will reset the serial interface into a known state where the ADC is waiting for a write to the communications register. This resets the interface and all of its internal registers to their power-on reset values.

How do I interface to multiple ADCs over the same serial interface?

A single microcontroller can be used to communicate with several AD719x devices. The CS input of the ADC can be used to enable or disable the serial interface of the ADC. By controlling the CS inputs to the ADCs using a decoder, the microcontroller can communicate with each ADC individually or simultaneously. Figure 1 shows the interface between a microprocessor and several ADCs. The CS input of each ADC is connected to the decoder. Using the decoder, the microprocessor can select the ADC with which it wants to transfer data/instructions. When CS is high, the serial interface of the ADC is disabled and it ignores any activity on the data bus. To communicate with the ADC, its CS line can be taken low. The ADC will then have access to the data bus between itself and the microprocessor. The data sheet should be consulted for timing specifications.

![Figure 1. Interfacing several ADCs to a single microcontroller.](image_url)

When reading from the AD719x, only the first read after power-up is successful. All subsequent read operations give invalid results. What could be happening?

It is probable that the digital interface is entering an unexpected state following the read operation. When using the digital interface of the AD719x, it is critical that the correct number of clock cycles is provided when reading from or writing to the control registers. If one extra clock cycle is provided and a write operation is then attempted, the part will enter an unexpected state. Similarly, if less than 16 clocks are provided when reading from a 16-bit register, the interface will lose synchronization.

Another probable cause is spurious clocks on the SCLK line. The first bit of any write to the communications register is a zero. The ADC will ignore bus activity until it receives a zero. If DIN is left low after performing a read, any spurious clocks on the SCLK line will clock a bit into the communications register. The next time that eight bits are written to the communications register, only the first seven bits will be loaded and the eighth bit will be interpreted as the first bit of a subsequent write. This problem can be avoided by pulling DIN high after each write.

If the CS line is being used as a frame synchronization signal, ensure that this line is brought high at the correct time. Also ensure that the correct number of clock pulses have occurred before CS is brought high.

If the interface does lose synchronization, writing 40 1s into the device will reset the interface and the on-chip registers to their power-on values.

What is the sequence of events when switching between channels for the AD719x when the sequencer is disabled and continuous conversion mode is selected?

Every sequence of events with this converter commences with a write to the communications register to specify the next operation. The sequence of events for a channel switching operation using the AD7190/AD7192, for example, is as follows (Channels AIN1–AIN2 and AIN3–AIN4 being used). The operating conditions for both channels are 50 Hz output data rate, internal master clock, gain = 1, buffer on, bipolar mode; external reference applied between REFIN1(+) and REFIN1(−) is reference source for the ADC. The AD719x are 24-bit parts. Every sequence of events with this converter commences with a write to the communications register to specify the next operation to be performed. When the specified operation is complete, the interface defaults to waiting for the next instruction.
Write 0x000310 to configuration register: This configures the AD719x for the above gain, polarity, and reference source and selects Channels AIN1–AIN2 and AIN3–AIN4.

Write 0x00 to communications register: This specifies that the next operation is a write to the data register.

Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 24 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

Write 0x10 to communications register: This specifies that the next operation is a write to the configuration register.

Write 0x000110 to configuration register: This configures the AD719x for the above gain, polarity, and reference source and selects Channels AIN1–AIN2.

Write 0x08 to communications register: This specifies that the next operation is a write of the data register. Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 24 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

Continually running through this loop will allow data to be read from each of the channels continuously.

What is the sequence of events when converting on several channels for the AD719x when the sequencer is enabled and continuous read mode is selected?

When the sequencer is enabled, the ADC automatically sequences through the enabled channels. When several channels are enabled, the bit DAT_STA in the mode register should be set to 1. When DAT_STA equals 1, the contents of the status register are output with each conversion. The LSBS of the status register indicate the channel to which the conversion corresponds.

The sequence of events using the AD7190/AD7192, for example, is as follows (Channels AIN1–AIN2 and AIN3–AIN4 being used). The operating conditions for both channels are 50 Hz output data rate, internal master clock, gain = 1, buffer on, bipolar mode; external reference applied between REFIN1(+) and REFIN1(–) is reference source for the ADC.

Write 0x08 to communications register: This specifies that the next operation is a write to the data register. Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 24 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

Continually running the following loop allows conversions to be read back from the two channels continuously.

Write 0x00 to communications register: This specifies that the next operation is a write to the data register.

Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 32 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

What is the throughput when switching between channels for the AD719x when the sequencer is enabled and continuous read mode is selected?

When the sequencer is enabled, the ADC automatically sequences through the enabled channels. When several channels are enabled, the bit DAT_STA in the mode register should be set to 1. When DAT_STA equals 1, the contents of the status register are output with each conversion. The LSBS of the status register indicate the channel to which the conversion corresponds.

The sequence of events using the AD7190/AD7192, for example, is as follows (Channels AIN1–AIN2 and AIN3–AIN4 being used). The operating conditions for both channels are 50 Hz output data rate, internal master clock, gain = 1, buffer on, bipolar mode; external reference applied between REFIN1(+) and REFIN1(–) is reference source for the ADC.

Write 0x08 to communications register: This specifies that the next operation is a write to the data register. Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 32 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

Continuously running the following loop allows conversions to be read back from the two channels continuously.

Write 0x00 to communications register: This specifies that the next operation is a write to the data register.

Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 32 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

To disable continuous read mode, the command 0x58 is written to the communications register for each read of the data register is not required.

What is the sequence of events when switching between channels for the AD719x when the sequencer is enabled and continuous read mode is selected?

When the sequencer is enabled, the ADC automatically sequences through the enabled channels. When several channels are enabled, the bit DAT_STA in the mode register should be set to 1. When DAT_STA equals 1, the contents of the status register are output with each conversion. The LSBS of the status register indicate the channel to which the conversion corresponds.

The sequence of events using the AD7190/AD7192, for example, is as follows (Channels AIN1–AIN2 and AIN3–AIN4 being used). The operating conditions for both channels are 50 Hz output data rate, internal master clock, gain = 1, buffer on, bipolar mode; external reference applied between REFIN1(+) and REFIN1(–) is reference source for the ADC.

Write 0x08 to communications register: This specifies that the next operation is a write to the data register. Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 32 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

Continuously running the following loop allows conversions to be read back from the two channels continuously.

Write 0x00 to communications register: This specifies that the next operation is a write to the data register.

Poll DOUT/RDY: Poll the DOUT/RDY pin to determine if valid data is available in the data register. When DOUT/RDY goes low, apply 32 serial clocks to clock the data from the ADC. A read should not be initiated when DOUT/RDY is high.

What is the throughput when switching between channels?

The throughput (number of channels which can be converted per second) depends on the filter option being used (sinc3/sinc4, chop enabled/disabled, fast filter, etc.). Consult application note AN-1084, which details the throughput for the different configurations.
If a conversion is not read and the next conversion is complete, for how long does DOUT/RDY go high?
The DOUT/RDY pin goes high for approximately 100 µs when the master clock is 4.9 MHz. During this time, the data register is updated with the new conversion data so the user should not attempt to read the data register.

When single conversion mode is used, can CS be taken high after the single conversion is initiated?
The serial interface is independent of the sampling process. So, once the single conversion is initiated, the AD719x will power up and perform the single conversion irrespective of the CS polarity. So, the user can take CS low, initiate the single conversion and then take CS high again. When the conversion is complete, CS can be taken low to read the conversion and another single conversion can be started if required.

When CS is taken high, the DOUT/RDY pin is tristated. Therefore, the DOUT/RDY pin will not indicate the end of the conversion. The user can determine the end of the conversion by reading the status register. Alternatively, the conversion time could be timed out by the microcontroller clock.

Is the serial interface reset when CS is taken high?
No. CS does not reset the serial interface. To reset the serial interface, 40 1s must be written to the ADC. This will reset the on-chip registers to their default values also.

This architecture was used as it allows the user to read or write to the AD719x in “batches.” For example, when reading the configuration register, the contents can be read as a continuous 24-bit word or the data can be split into three 8-bit bytes. When writing to the configuration register, the information can be sent as a continuous 24-bit word; alternatively, the data can be sent as three 8-bit bytes. CS can be held low when the information is being transferred. Alternatively, CS can be used to frame each of the 8-bit bytes without affecting the data transfer process.

When information (conversion data or information from the on-chip registers) is read from the ADC, the LSB readback is always 1. Why?
The DOUT and RDY functions share a pin on the AD719x. So, the DOUT/ RDY pin functions are a ready pin when CS is low. Every time a conversion is completed, the pin goes low, indicating to the microprocessor that a valid conversion is available. When the user requests a read of the data register, the DOUT/ RDY pin functions are a DOUT pin. When pulses are applied to the SCLK pin, the data is placed on the DOUT pin. The data is output from the AD719x following the SCLK falling edge and is valid on the SCLK rising edge. When the LSB of the data is placed on the DOUT/ RDY pin, the DOUT/ RDY pin changes its functionality so that it operates as a RDY pin. The change from the DOUT to RDY function occurs a few nanoseconds after the SCLK rising edge. The microprocessor is latching the bits on the SCLK rising edge. So, if the microprocessor is slow, then the DOUT/ RDY pin is functioning as a RDY pin when the LSB is latched into the microprocessor. So, the microprocessor reads the value of the RDY pin rather than the LSB, causing the LSB to be a t. To prevent this, a faster microprocessor must be used. Alternatively, general-purpose input/output pins of the microprocessor can be used to represent a serial interface. By bit-banging, the user has more control over the read instant. By reading the values on the DOUT pin when SCLK is low rather than latching in the data on the SCLK rising edge, all bits of the data read will be valid.

Calibration FAQs
How is internal calibration implemented on the AD719x?
For calibration to occur regardless of which calibration mode is used on the selected channel, the ADC’s on-chip microcontroller must record the modulator output for two different analog input conditions. These are the zero-scale and full-scale points. With these conversions, the microcontroller can calculate the gain slope for the input to output transfer function of the converter.

In internal-calibration mode, the ADC determines the calibration points internal to the ADC. The zero-scale point used to determine the calibration coefficients is with both inputs shorted (that is, AIN(+) = AIN(–) = AVDD/Gain) internally within the ADC. Signals connected to the analog input pins of the device will not affect the calibration procedure as long as they are within the common range of the input. The full-scale coefficient is determined by applying a voltage of AVDD/Gain to the modulator inputs.

The internal zero-scale and full-scale calibration modes are invoked in the AD719x by writing to the mode bits (MD2, MD1 and MD0 bits) in the mode register.

In internal-zero-scale calibration mode, the shorted inputs node is switched in to the modulator and a conversion is performed. When internal full-scale calibration is selected, the AVDD/Gain node is switched in and a conversion is performed.

RDY can be used to determine when the calibration is complete. RDY goes high on the initiation of the calibration and returns low when the calibration is complete.

What is system calibration and how is it implemented?
System calibration allows the converter to compensate for external system gain and offset errors, as well as its own internal errors. Calibration is basically a conversion process on two specific input voltages (zero-scale or offset calibration, and full-scale calibration) from which the offset error coefficient and full-scale error coefficient are determined. With system calibration, the zero scale voltage and full-scale voltage must be applied to the ADC by the user.

System calibration is a two-step process. The zero-scale point must be presented to the converter first. This voltage is applied to the analog input of the converter before the zero-scale system calibration step is initiated and must remain stable until the step is complete. System calibration is initiated by writing the appropriate values to the MD2, MD1, and MD0 bits of the mode register. The RDY output from each device indicates when the step is complete by going low, or the mode bits can be monitored via software—these return to idle mode when calibration is complete.

After the zero-scale point is calibrated, the full-scale point is applied and the full-scale system calibration process is initiated by again writing the appropriate code to the MD bits. The full-scale voltage must be set up before the calibration is initiated and it must remain stable throughout the duration of the calibration. RDY goes low at the end of this second step to indicate that the system calibration is complete.

The calibration procedure is dependent on whether unipolar mode or bipolar mode is used. In the unipolar mode, the system calibration is performed between the two endpoints of the transfer function while in the bipolar mode, it is performed between midscale and positive full-scale.

When performing a system calibration, the zero-scale voltage and full-scale voltage must be switched into the analog input channel of the ADC. This can be performed by using a low Rm SPDT (single-pole double-throw) CMOS switch. One of the switch inputs can be connected to the analog input, which represents the full-scale value, while the other input can be connected to the zero-scale voltage. Using this switch ensures that the signal chains on both analog inputs for the zero-scale calibration and full-scale calibration are identical. By so doing, the system zero-scale calibration will compensate for the insertion loss of the switch. The ADG736 is a dual SPDT switch with a Rm of <4 Ω and matching of better than 0.4 Ω.
When should a calibration be performed on the AD719x family of \(\Sigma-\Delta\) ADCs?

A calibration must be performed when there is a change in gain, polarity, and temperature when switching between channels that share coefficients registers but have different operating conditions.

With any gain change, there will be a matching error between gain ranges, and this error needs to be calibrated out.

Drift errors are due to changes in temperature. Calibration can be used effectively to remove any errors associated with temperature drift. Internal calibration (also known as self-calibration) will remove the effects of temperature drift within the ADC itself. System calibration can be used to remove the drift errors in the ADC itself and also the drift errors associated with the front-end signal conditioning circuitry. Chopping continuously removes offset and offset drift so, with chopping enabled, internal zero-scale calibrations are not required. If chopping is disabled, then zero-scale calibrations are required.

Therefore, it is important that a calibration be performed when switching between these channels if the operating conditions (gain, polarity) between the two differ. If the two channels are configured identically and self-calibration is used, there is no need to perform a calibration when switching channels. However, if system calibration is being used, a calibration should be performed when switching between channels as the applied analog input levels may be different.

How often should a calibration be implemented in a system?

To determine the frequency of calibrations within a system, consider

- What accuracy is required from the converter?
- How does drift performance of the ADC limit performance?
- Over what temperature range does the system operate?

Taking these three questions into account will give some indication as to how often a calibration is required. Other system parameters should also be considered when determining how often to calibrate. These are all related to circuit sensitivities to temperature change as follows:

- Parasitic thermocouple effects.
- Gain drift due to the reference temperature coefficient.
- Drift sources external to the converter.

In general, the higher the accuracy requirement, the more often a calibration will be required in order to maintain system accuracy. After a calibration has been performed, high resolution converters like the AD719x will have some offset and gain drift associated with them.

In accessing the complete effects on accuracy due to temperature, the temperature effects due to parasitic thermocouples and drift sources external to the converter also need to be factored into the equation.

What is the relationship between analog input and the calibration coefficients?

The equations for the output digital word vs. the applied analog input voltage follow:

In unipolar mode, the relationship is

\[
\text{Data} = \left\lfloor \left(0.75 \times \frac{V_n \times \text{Gain}_{\text{ref}}}{V_{\text{ref}}} \times 2^{23} \right) - \text{Offset}_{\text{Reg}} - 0x800000 \right\rfloor \times \text{Full}_{\text{Scale}}_{\text{Reg}} / 0x400000
\]

In bipolar mode, the relationship is

\[
\text{Data} = \left\lfloor \left(0.75 \times \frac{V_n \times \text{PGA}_{\text{Gain}} / V_{\text{ref}}}{V_{\text{ref}}} \times 2^{23} \right) - \text{Offset}_{\text{Reg}} - 0x800000 \right\rfloor \times \text{Full}_{\text{Scale}}_{\text{Reg}} / 0x400000 + 0x800000
\]

Where

- \(V_n\) = applied analog input voltage
- \(\text{Gain}\) = PGA gain setting
- \(V_{\text{ref}}\) = reference voltage
- \(\text{Offset}_{\text{Reg}}\) = value contained in the offset register
- \(\text{Full}_{\text{Scale}}_{\text{Reg}}\) = value contained in the full-scale register

The nominal values of \(\text{Offset}_{\text{Reg}}\) is 0x800000 and of \(\text{Full}_{\text{Scale}}_{\text{Reg}}\) is 0x555555.

The 0.75 number will vary slightly from part to part because of manufacturing tolerances.

What is the value or weight of an LSB in the offset and gain register?

1 LSB of the offset register is equivalent to approximately 1.3 LSB of the data register, assuming the nominal full-scale coefficients are present. The exact value varies slightly from part to part, and the ratio changes if the full-scale register coefficients are modified.

The exact value can be determined by dividing the value in the full-scale register by 0x400000. This gives a value close to 1.33 with the nominal full-scale coefficient of 0x555555. However, if the full-scale register is modified by the user, the ratio changes. This occurs since the offset removal is performed before the gain scaling when the ADC is adjusting the converter output.

The full-scale register can be interpreted as a multiplication factor, whose value equals (full-scale coefficient/0x400000.) Since the scaling is done after the offset register is removed, the relative weight of an offset register LSB is different to a data register LSB.

The nominal value of 1.3 for the gain scaling is because the input signal is attenuated by ¾ as part of the ADC conversion. A ¼ scaling is then required to digitally compensate for this. (This is normally transparent to the user; it’s only when manipulating calibration values that this can become apparent.)

The signal flow can be viewed as

\[
\text{[Input Signal]} \rightarrow \text{[PGA]} \rightarrow \text{[Attenuation by 0.75]} \rightarrow \text{[ADC Conversion]} \rightarrow \text{[Subtract Offset]} \rightarrow \text{[Scale by FS/0x400000]} \rightarrow \text{[Data Register]}
\]

If the system offset calibration is done using the ADC’s system zero-scale calibration mode with the system’s zero-scale point applied as input voltage, then this scaling factor does not need to be accounted for, since the ADC calibration routine will write the correct value into the offset register. It’s only if calibrations are done using regular conversions (that is, a result is written into the data register) that a scaling factor is required before writing into the offset register.

For the full-scale coefficient or full-scale calibrations, it is a simple scaling coefficient. So, to increase the gain of the ADC by 10%, the full-scale coefficient needs to be increased by 10%.