

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

General Description

The MAX22216V is an AEC-Q100 qualified driver. It integrates four programmable 36V half-bridges. It is primarily intended to drive inductive loads such as on-off solenoid valves, DC motors, proportional valves, bistable valves, and relays. The MAX22216V is capable of up to $3.2 A_{\mbox{FS}}$ per half-bridge and operates from -40°C to +125°C ambient temperature.

The MAX22216V half-bridges support two different use cases. In the first case, configuration settings can be entered through a serial peripheral interface (SPI) and can be changed at any time. Alternatively, settings can be stored in one-time programmable (OTP) registers, which are loaded at power-up. This enables standalone operations. Registers are user-programmable. The OTP writing procedure must be executed in a factory under well-controlled temperature and voltage conditions.

High-side/low-side single-ended drive operations and bridge-tied load (BTL) configurations are supported. Channel parallelization is also supported.

Voltage control, current control, and mixed schemes are supported.

In voltage drive regulation mode (VDR mode), the half-bridge output voltage is controlled. Supply variations are internally compensated.

In current drive regulation mode (CDR mode), the half-bridge output current is controlled. The current is internally sensed and fed back to the controller for accurate closed-loop regulation. Proportional and integral gains can be configured to optimize steady-state errors and dynamic performance.

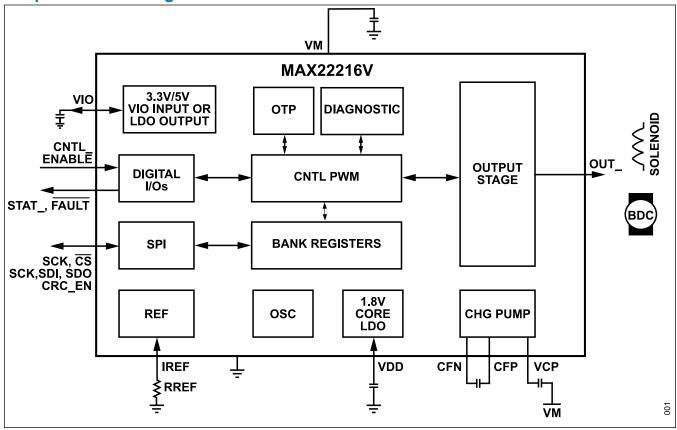
The MAX22216V integrates functions aimed to optimize solenoid and DC motor drive control. These include a 2-level sequencer for power saving, drive signal ramp control (RAMP) for noise reduction, a dither function (DITH) to counteract the effects of static friction and hysteresis, a fast demagnetization feature (DC_H2L) to shorten on-off cycles, and a DC-motor current limiter for limiting inrush and stall currents.

Advanced diagnostic functions are available to improve system reliability and enable predictive maintenance. These include the detection of plunger movement (DPM), inductance measurement, travel time measurement, open-load detection (OL), and real-time current monitoring through a serial Interface.

The MAX22216V features a full set of protection circuits, including overcurrent protection (OCP), overtemperature

protection (OVT), and undervoltage lockout (UVM). A fault indicator pin is asserted whenever faults are detected.

The MAX22216V is offered in 32-TQFN, 5mm x 5mm packages.


Applications

- ECU/VCU
- Suspension Control
- Door Module
- HVAC Control
- HV Contactors
- Solenoid On-Off Valves and Relay
- Switching Driver with Real-Time Current Measurement

Benefits and Features

- · Four Serial Controlled 36V Half Bridges
 - 1.7A DC (T_A = 25°C) and 3.2A Full-Scale Current Capability
- AEC-Q100 Grade 1 Qualified
- Low RON for High Efficiency
- High Flexibility:
 - · Independent Channel Setting
 - High-Side/Low-Side/Bridge-Tied Load Configuration/Parallel Mode Supported
- Advanced Control Methods
 - · Voltage/Current Drive Regulation
 - · 2-Levels Sequencer for Power Saving
 - DC-Motor Drive with Current Limiter
 - Dithering Function
 - Ramp up/down Control
 - Demagnetization Voltage Control
 - Integrated Current Sense
- Diagnostic Functions:
 - · Reaction and Travel Time Measurement
 - · Detection of Plunger Movements
 - Open-Load Detection
 - Inductance Measurement
 - · Digital Current Sense Monitor
- Full Set of Protections
 - Overcurrent Protection
 - Thermal Protections
 - · Undervoltage Lockout

Simplified Block Diagram

TABLE OF CONTENTS

General Description	. 1
Applications	. 1
Benefits and Features	1
Simplified Block Diagram	2
Absolute Maximum Ratings	8
Package Information	8
32-TQFN - 5mm x 5mm	8
Electrical Characteristics	9
Pin Configuration	. 13
MAX22216V	. 13
Pin Description	. 14
Functional Diagrams	. 16
Functional Diagram	. 16
Detailed Description	. 17
OPERATING MODES OVERVIEW	. 18
Single-Ended Operation	. 18
Bridge-Tied Load Operation (Full Bridge)	. 20
DC Motor Drive	. 22
FUNCTIONAL DESCRIPTION	23
MAX22216V SPI or OTP Configuration	23
Enable Logic Input (ENABLE)	. 23
Nap Mode and ACTIVE Bit	23
V _{IO} Pin Description (V _{IO})	23
CNTL Pin and CNTL Bits	. 24
Hardware Configuration	. 24
HS or LS Single-Ended Configuration	. 26
Chopping Frequency and Timebase Configuration	26
Slew Rate and Blanking Configuration (SRC)	26
SEQUENCER SETTINGS	. 27
Setting the Sequencer Control Mode	. 27
SEQUENCER LEVEL SETTINGS	. 28
Voltage Drive Regulation (VDR)	. 28
CURRENT DRIVE REGULATION (CDR)	. 28
Current Drive Regulation (CDR)	. 28
PI Controller	. 29
Minimum TON Limitations	. 30
Current Reference	. 31
Setting the Excitation Time (TIME_L2H)	. 31
Setting the Ramp Slopes	. 32

TABLE OF CONTENTS (CONTINUED)

Brake Current Limiter Function	32
Enabling the Sine Wave Generator for Dithering or Inductance Measurement	33
Setting the Sine Wave Generator	34
DIAGNOSTIC FUNCTIONS AND STATUS MONITOR	34
Digital Current Monitor Function	34
PWM Duty Cycle Monitor Function	35
Digital V _M Supply Voltage Monitor	35
Inductance Measurement Overview	35
Setting the Inductance Measurement	36
Detection of Plunger Movement (DPM) - Overview	37
Setting the Detection of Plunger Movement	38
Resistance Measurement	39
Setting the Status Monitor	39
STAT Monitor - Single-Ended Diagrams	42
STAT Monitor - Differential Diagrams	43
PROTECTIONS AND FAULT INDICATOR	43
Protections and Fault Indicator Pin (FAULT)	43
Undervoltage Lockout (UVM)	44
Overcurrent Protection (OCP)	45
Open-Load Detection During Channel OFF (OL)	45
Overtemperature Protection (OVT)	46
"HIT Current not Reached" Flag (HHF)	46
HOW TO CONFIGURE THE MAX22216V	46
SPI Description	46
SPI Data	47
CRC Error Detection on the Serial Interface	47
One-Time Programmable (OTP)	50
OTP Programming	50
Wake-Up Time for OTP Download at Power-Up	51
Register Map	52
FUNCTIONAL REGISTERS	52
Register Details	57
OTP_CONTROLLER	75
Register Details	76
Applications Information	78
Examples of Use	78
V _M Switching Standalone	80
Typical Application Circuits	82
Typical Application Circuit	82

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

TABLE OF CONTENTS (CONTINUED)					
Ordering Information	82				
Revision History	83				

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

LIST OF FIGURES

Figure 1. Single-Ended Configuration	18
Figure 2. Bridge-Tied Load Configuration	20
Figure 3. DC Motor	22
Figure 4. Block Diagram of Current Control Loop	30
Figure 5. HS Configuration Maximal Voltage Graph	30
Figure 6. LS Configuration Minimal Voltage Graph	31
Figure 7. Detection of Plunger Movement	37
Figure 8. STATUS Output Monitor Pin - Single Ended	42
Figure 9. STATUS Output Monitor Pin - Differential	43
Figure 10. Fault Output Schematic	45
Figure 11. SPI Datagram without CRC	46
Figure 12. SPI Datagram with CRC	46
Figure 13. CRC Byte	48
Figure 14. Examples of Use	79
Figure 15. Standalone - V _M Switching	81

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

LIST OF TABLES

Fable 1. Hardware Configuration 2	24
Fable 2. Control Table 2	25
Fable 3. Full-Bridge Control 2	25
Table 4. PWM Controller Frequency Setting	26
Table 5. Individual PWM Frequency	26
Fable 6. Slew-Rate Control 2	27
Table 7. Blanking Time	27
Fable 8. Control Mode Setting	27
Table 9. Full Scale and Sense Scale	29
Table 10. Dither and Inductance Measurement Table 3	33
Fable 11. Sine Wave Generator Amplitude Setting	34
Table 12. I_MONITOR ADC Max Value - Dec	35
Fable 13. Inductance Measurement Fault Detection	36
Table 14. STATUS Monitor Based on Inductance Measurement 3	37
Fable 15. STAT Logic Output Pin Selection	41
Table 16. Multifunction Status Pin	41
Table 17. Mask Bits	44
Fable 18. Stretch Enable 4	44
Fable 19. SS - Status Data	47

Absolute Maximum Ratings

V _M to GND	0.3V to +42V	SCK to GND0.3V to min (6V, V _{IO} + 0.3V)
	V _M - 0.3V to min (+42V, V _M + 6V)	SDO to GND0.3V to min (6V, V _{IO} + 0.3V)
C _{FP} to GND	V _M - 0.3V to V _{CP} + 0.3V	V_{DD} to GND0.3V to min (+2.2, V_{M} + 0.3V)
C _{FN} to GND	0.3V to min (+42V, V _M + 0.3V)	V _{IO} to GND0.3V to +6V
CNTL_ to GND	0.3V to min (6V, V _{IO} + 0.3V)	FAULT to GND0.3V to +6V
OUT_ to GND	0.3V to V _M + 0.3V	I _{REF} to GND0.3V to min (+2.2, V _{DD} + 0.3V)
	0.3V to +0.3V	Continuous Power Dissipation (2s2p Board) (T _A = +70°C, derate
CRC_EN to GND	0.3V to min (6V, V _{IO} + 0.3V)	34.5mW/°C above +70°C)2758.6mW
STAT_ to GND	0.3V to V _{IO} + 0.3V	Operating Temperature Range40°C to +125°C
ENABLE to GND	0.3V to V _M + 0.3V	Junction Temperature+150°C
	0.3V to min (6V, V _{IO} + 0.3V)	Storage Temperature Range65°C to 150°C
SDI to GND	0.3V to min (6V, V _{IO} + 0.3V)	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

32-TQFN - 5mm x 5mm

Package Code	T3255Y+4C			
Outline Number	<u>21-100214</u>			
Land Pattern Number	90-100082			
Thermal Resistance, Single-Layer Board:				
Junction to Ambient (θ _{JA})	-			
Junction to Case (θ_{JC})	-			
Thermal Resistance, 4-Layer Board:				
Junction to Ambient (θ _{JA})	29°C/W			
Junction to Case (θ _{JC})	1.7°C/W			

For the latest package outline information and land patterns (footprints), go to <u>Package Index</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to <u>Thermal Characterization of IC</u> Packages.

Electrical Characteristics

 $(V_M$ = 4.5V to 36V, V_{IO} = 2.2V to 5.25V, R_{REF} = 12k Ω , ENABLE = logic high, Typical values assume T_A = 25°C and V_M = 24V, Limits are 100% tested at T_A = +25°C, T_A = +125°C and T_A = -40°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
POWER SUPPLY								
Supply Voltage Range	V _M		4.5		36	V		
Logic Input Supply Voltage	V _{IO}		2.2		5.25	V		
Sleep Mode Current consumption	I _{SLEEP}	Enable logic low		4	18	μΑ		
Nap Mode Current Consumption	I _{NAP}	Enable logic high, Active = 0		210	450	μΑ		
Quiescent Current Consumption	I _{VM}	Enable logic high, Active = 1		7	9	mA		
LOGIC LEVEL INPUTS-0	DUTPUTS		•					
Input Voltage Level - High	V _{IH}		0.7 x V _{IO}			V		
Input Voltage Level - Low	V _{IL}				0.3 x V _{IO}	V		
Input Hysteresis	V _{HYS}			0.15 x V _{IO}		mV		
Logic Input Pin Pull- Down Resistance	R _{PD}	To GND, Pins CNTL_, SCK, SDI, and CRC_EN	70	100	130	kΩ		
CS Pin Pull-Up Resistance	R _{PU}	To V _{IO}	70	100	130	kΩ		
Logic-Low Output Voltage	V _{OL}	I _{LOAD} = 5mA, STAT_ and FAULT pin			0.4	V		
Logic-High Output Voltage	V _{OH}	I _{LOAD} = -5mA	V _{IO} - 0.4			V		
Enable Voltage Level High	V _{IH(EN)}		0.9			V		
Enable Voltage Level Low	V _{IL(EN)}				0.6	V		
Enable Pull-Down Input Resistance	R _{PD(EN)}		0.8	1.5		МΩ		
OUTPUT SPECIFICATIO	NS							
Output On-Resistance High Side	R _{ON(HS)}			0.17	0.33	Ω		
Output On Pasiatana		SNSF[1:0] = "00"		0.17	0.330			
Output On-Resistance Low Side	R _{ON(LS)}	SNSF[1:0] = "01"		0.23	0.45			
		SNSF[1:0] = "10"		0.43	0.83			
Output Leakage	I _{LEAK}	Driver OFF	-5		5	μΑ		
Dead Time	t _{DEAD}			0.1		μs		

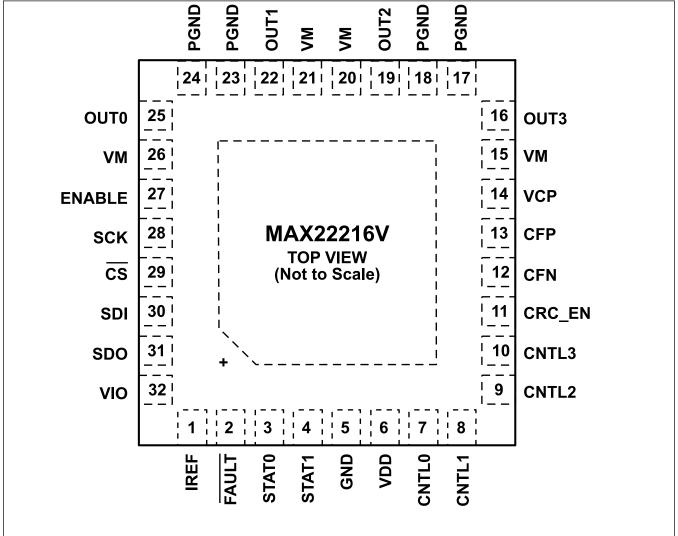
Electrical Characteristics (continued)

 $(V_M$ = 4.5V to 36V, V_{IO} = 2.2V to 5.25V, R_{REF} = 12k Ω , ENABLE = logic high, Typical values assume T_A = 25°C and V_M = 24V, Limits are 100% tested at T_A = +25°C, T_A = +125°C and T_A = -40°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS	
		SRC[1:0] = "00"			800			
0	0.00	SRC[1:0] = "01"			400		1 ,,,	
Slew-Rate Control	SRC	SRC[1:0] = "10"			200		V/µs	
		SRC[1:0] = "11"			100			
PROTECTION CIRCUITS								
	OCP	SNSF[1:0] = "00"		4				
Overcurrent Protection	tocp	SNSF[1:0] = "01"		2.5			Α	
Threshold	OCP	SNSF[1:0] ="10"		1.2				
Overcurrent Protection Blanking Time	TOCP			1.45	2.1	2.85	μs	
LIVI O Threehold on V	10/10	Rising		3.75	4	4.25	.,	
UVLO Threshold on V _M	UVLO	Falling			3.88	4.12	- V	
Thermal Protection Threshold Temperature	T _{SD}				165		°C	
Thermal Protection Temperature Hysteresis	T _{SD_HYST}				20		°C	
Open-Load Detection Current	I _{OL_LS}	OL_EN_ = 1	HSnLS = 0, Pull- down current		75	135	μΑ	
	l _{OL_HS}	OL_EN_ = 1	HSnLS = 1, Pull-up current	-50	-22			
Ones Leed Detection	V _{OL_LS}	OI FN = 1	HSnLS = 0		1.7	2.4	V	
Open-Load Detection Voltage	V _{OL_HS}		HSnLS = 1	V _M - 2.4	V _M - 1.75			
Open-Load Detect Deglitch Time	t _{OL}			189	200	211	μs	
LINEAR REGULATORS	V _{DD} REGULATO	OR						
V _{DD} Regulator Output Voltage	V _{VDD}	I _{LOAD} = 20mA			1.868		V	
V _{DD} Current Limit	IVDD _{LIM}			20			mA	
LINEAR REGULATORS	V _{IO} REGULAT	OR - (for Standalone	USE CASE)				-	
V _{IO} Regulator Output	V/- :	EN_LDO = 1,	V5nV3 = 1	4.8	5	5.2	V	
Voltage	V _{VIO}	I _{LOAD} = 10mA	V5nV3 = 0	3.15	3.3	3.4		
V _{IO} Current Limit	IVIO _{LIM}	Total current, internal loads account for maximum 10mA		10			mA	
CONTROL								
Internal Oscillator Frequency	FCLK			23.7	25	26.3	MHz	
000 M : 5 "		GAIN[1:0] = "00" -	SNSF[1:0] = "00"		3.2			
CDR Maximum Full Scale - LS or FB	IFSMAX LS or FB config		SNSF[1:0] = "01"		2.1		A	
Godie - Lo of 1 D	(\(\Delta\)	(<u>Note 1</u>)	SNSF[1:0] = "10"		1			

Electrical Characteristics (continued)

 $(V_M$ = 4.5V to 36V, V_{IO} = 2.2V to 5.25V, R_{REF} = 12k Ω , ENABLE = logic high, Typical values assume T_A = 25°C and V_M = 24V, Limits are 100% tested at T_A = +25°C, T_A = +125°C and T_A = -40°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)


PARAMETER	SYMBOL	COND	OITIONS	MIN	TYP	MAX	UNITS	
			SNSF[1:0] = "00"		1.5			
CDR Maximum Full Scale - HS	IFSMAX	GAIN[1:0] = "00" - HS config (<u>Note 1</u>)	SNSF[1:0] = "01"		1		Α	
Scale - 113		113 coming (<u>Note 1</u>)	SNSF[1:0] = "10"		0.5			
CDR Constant	K _{CDR}				1.017		mA	
VDR Constant	K _{VDR}				30.518		μV	
Resistance Measurement Constant	K _R				8.437		mΩ	
REF Pin Resistor Range	R _{REF}	(<u>Note 2</u>)			12kΩ ± 5%		kΩ	
Supply Voltage (V _M) Monitoring Constant	K _{VM}				9.73		mV	
CONTROL / ACCURACY	(<u>Note 3</u>)							
			I _{OUT} ≥ 250mA, SNSF[1:0] = "00"	-5		5		
Current Control and Monitor - Accuracy	DCDR	GAIN[1:0] = "00"	I _{OUT} ≥ 140mA, SNSF[1:0] = "01"	-5		5	%	
			I _{OUT} ≥ 70mA, SNSF = "10"	-5		5		
FUNCTIONAL TIMINGS								
Disable Time	t _{DIS}	Enable falling edge	to OUT_ tristated			20	μs	
Enable Time	t _{EN}	From enable logic-h operation (<i>Note 4</i>)	igh to normal			0.8	ms	
Fixed Wake-Up Time	t _{FWU}	From active = 1 to normal operation (excluding user OTP download) - (Note 5)				1.1	ms	
Variable Wake-Up Time	t _{VWU}	Time required to download one user-configurable OTP register (2 bytes) (Note 5)			2.56		μs	
SPI SPECIFICATIONS							1	
SCK Clock Period	4	V _{IO} > 3V		100			200	
SCK Clock Period	tCLK	V _{IO} < 3V		140			ns	
SCK High Time	t _{CH}			20			ns	
SCK Low Time	t_{CL}			20			ns	
CS SCK Valid before or after change of CS	t _{CC}			20			ns	
CS Pulse-Width High	tcsH	See also (Note 6)		20			ns	
SDI Setup Time before SCK Rising Edge	t _{DS}			10			ns	
SDI Hold Time after SCK Rising Edge	t _{DH}			10			ns	
SDO Propagation Delay	1	C = 15nE	V _{IO} > 3V			40		
SDO FIOPAGATION DEIAY	t _{DO}	C _{LOAD} = 15pF	VIO < 3V			75	ns	

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

- Note 1: Recommended CDR Max full scale specifies the maximum current at which the device has been characterized and tested. The device can possibly deliver currents higher than IFSMAX, provided that the overcurrent protection and thermal limitations are not exceeded.
- Note 2: Current control and monitor accuracy is directly proportional to the accuracy of the resistor connected to the I_{REF} pin. Use ±1% tolerance or better resistors whenever accuracy is required. Accuracy data in this data sheet assumes an ideal R_{REF} = 12kΩ resistor.
- **Note 3:** Guaranteed by bench characterization. Not production tested. $R_{REF} = 12k\Omega$.
- Note 4: The enable command must be held logic high for longer than 0.8ms to ensure the MAX22216V complete its power-up sequence. Commands shorter than 0.8ms can cause the device to enter in unpredictable status.
- Note 5: The total wake-up time (t_{WU}) is given by the sum of a fixed (T_{SWU}) and a variable contribute N x T_{VWU} in which N is the total number of user-programmable OTP registers (2 bytes each) written into the OTP bank (for more details, see the <u>Wake-Up Time for OTP Download at Power-Up</u> section).
- Note 6: A longer T_{CSH} is required whenever a fault condition needs to be cleared. A longer than 1µs T_{CSH} is recommended whenever a fault condition needs to be cleared.

Pin Configuration

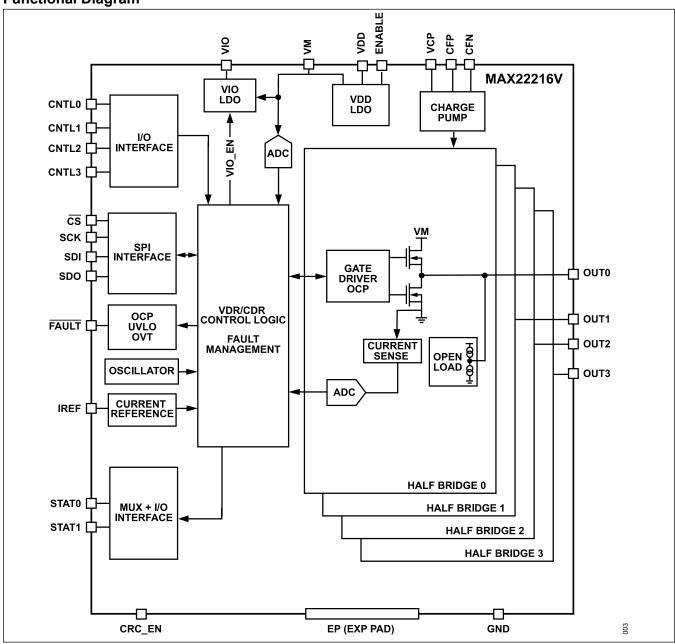
MAX22216V

NOTES

1. EXPOSED PAD. THE EXPOSED PAD (THERMAL PAD) MUST BE ELECTRICALLY CONNECTED TO THE BOARD GND. FOR GOOD THERMAL DISSIPATION, USE LARGE GROUND PLANES ON MULTIPLE LAYERS AND MULTIPLE VIAS CONNECTING THOSE PLANES.

002

Pin Description


PIN	NAME	FUNCTION	REF SUPPLY	TYPE
15, 20, 21, 26	V _M	Supply Voltage Input. All V_M pins must be shorted on the board. Bypass V_M to GND with 0.1µF local ceramic capacitors close to Pin 21, Pin 20 and Pin 26, Pin 15. Add electrolytic reservoir tank capacitors as required by the application (typically values >10µF).		Power
32	V _{IO}	I/O Supply Input Voltage Pin if the Internal Linear Regulator is Disabled (EN_LDO = 0 default condition). For SPI-based applications, connect V _{IO} to the external MCU supply voltage for proper communication between the controller and the MAX22216V. Bypass V _{IO} to GND with a 100nF or greater capacitor. Voltage regulator output if the internal linear regulator is enabled (EN_LDO = 1). This configuration is used for standalone OTP-based applications. The linear regulator output can be configured either at 3.3V or 5V. Connect at least a 0.47µF bypass capacitor		
		to GND to ensure the regulator stability. The maximum external load is 10mA.		
6	V_{DD}	1.8V LDO Regulator Output. Bypass GND with a 2.2µF ceramic capacitor.		Power
12	C_{FN}	Charge Pump Capacitor–N Side. Connect a 22nF, V _M -rated ceramic capacitor from C _{FN} to C _{FP} .		Power
13	C_{FP}	Charge Pump Capacitor–P Side. Connect a 22nF, V _M -rated ceramic capacitor from C _{FN} to C _{FP} .		Power
14	V_{CP}	Charge Pump Output. Connect a 1 μ F, 5V, or greater ceramic capacitor to V_M .		Power
17, 18, 23, 24	PGND	Power Ground. All PGND pins must be shorted on the board.		GND
5	GND	Signal Ground.		GND
25	OUT0	Driver Output Channel 0.		Output
22	OUT1	Driver Output Channel 1.		Output
19	OUT2	Driver Output Channel 2.		Output
16	OUT3	Driver Output Channel 3.		Output
1	I _{REF}	Current Regulation Reference. Connect a 1% accurate $12k\Omega$ resistor from I _{REF} to GND to set the full-scale current for all the channels in CDR Mode.		Analog Input
29	CS	SPI Chip Select–Active Low. Internal pull-up current.	V _{IO}	Logic Input
28	SCK	SPI Clock Input. Rising edge clocks data into the part for write operations. Falling edge clocks data out of part for read operations. Internal pull-down to GND.	V _{IO}	Logic Input
30	SDI	SPI Data In from Controller. Internal pull-down to GND.	V _{IO}	Logic Input
31	SDO	SPI Data Output.	V _{IO}	Logic Output
7	CNTL0	Control Logic Input. Internal pull-down to GND. To avoid spurious triggering by large noise, it is recommended to connect the pin to GND if not used.	V _{IO}	Logic Input
8	CNTL1	Control Logic Input. Internal pull-down to GND. To avoid spurious triggering by large noise, it is recommended to connect the pin to GND if not used.	V _{IO}	Logic Input

Pin Description (continued)

PIN	NAME	FUNCTION	REF SUPPLY	TYPE
9	CNTL2	Control Logic Input. Internal pull-down to GND. To avoid spurious triggering by large noise, it is recommended to connect the pin to GND if not used.	V_{IO}	Logic Input
10	CNTL3	Control Logic Input. Internal pull-down to GND. To avoid spurious triggering by large noise, it is recommended to connect the pin to GND if not used.	V _{IO}	Logic Input
3	STAT0	Status Logic Output.	V _{IO}	Logic Output
4	STAT1	Status Logic Output.	V_{IO}	Logic Output
11	CRC_EN	Logic Input. Drive CRC_EN logic high to enable cyclic redundancy check on SPI communication. Internal pull-down to GND.	V _{IO}	Logic Input
2	FAULT	Pulled Logic Low with a Fault Condition. Open-drain output requires an external pull-up resistor.		Open Drain Output
27	ENABLE	Enable Pin. HV logic input pin compatible up to V _M . Drive ENABLE logic high to enable device; drive ENABLE logic low to enter low-power sleep mode; Internal pull-down resistor.		Logic Input
_	EP	Exposed Pad. The exposed pad (thermal pad) must be electrically connected to the board GND. For good thermal dissipation, use large ground planes on multiple layers and multiple vias connecting those planes.		GND

Functional Diagrams

Functional Diagram

Detailed Description

The MAX22216V is an AEC-Q100 qualified driver. It integrates four programmable 36V half-bridges. It is primarily intended to drive inductive loads such as on-off solenoid valves, DC motors, proportional valves, bistable valves, and relays. The MAX22216V is capable of up to 3.2AFS per half-bridge and operates from -40°C to +125°C ambient temperature.

The MAX22216V half-bridges support two different use cases. In the first case, configuration settings can be entered through a serial peripheral interface (SPI) and can be changed any time. Alternatively, settings can be stored into one-time programmable (OTP) registers, which are loaded at power-up. This enables standalone operations. Registers are user-programmable. The OTP writing procedure must be executed in a factory under well-controlled temperature and voltage conditions.

Both high-side and low-side single-ended drive operations are supported to accommodate multiple load requirements.

Pairs of half-bridges can also be configured to drive loads in a bridge-tied load (BTL) configuration. Typical examples are proportional solenoid valves, bistable valves, or DC motors.

Since settings are completely independent, different types of loads can be driven simultaneously from the same MAX22216V devices. For instance, two single-ended controlled valves and one bistable valve in full-bridge configuration can be driven from the same MAX22216V.

Channel parallelization is also supported to increase the current capability. For maximum flexibility, two, three, or all four half-bridges can be connected in parallel, resulting in 2X, 3X, and 4X current capability.

Both voltage and current control schemes are supported together with mixed modes.

In voltage mode, two regulation methods are supported and can be configured independently for each drive channel:

- In VDR_DUTY, the user sets the target duty cycle. In this mode, the actual voltage applied to the load directly depends
 on the V_M voltage supply.
- In VDR Mode (VDRnVDRDUTY), the user sets the target voltage to the load. An internal circuitry senses the supply voltage and compensates the output duty cycle to get the required voltage.

In current mode (CDR mode), the output current is controlled. The current is internally sensed and fed back to the controller for accurate closed-loop regulation. Proportional and Integral gains can be configured to optimize steady-state error and dynamic performances. The reference current in CDR mode is determined by the resistor connected to the I_{REF} pin. For this reason, an accurate 12k Ω resistor must be connected between pin I_{REF} and GND.

The MAX22216V integrates functions aimed at optimizing solenoid and DC motor drive control, such as:

- Multilevel drive control method (excitation and hold drive with programmable excitation time), resulting in power savings and optimal drive of solenoid valves.
- Programmable voltage/current ramps (RAMP) smooth the activation/deactivation of the valves and hence reduce acoustic noise.
- Programmable dither (DITH) to counteract the effects of stiction and hysteresis by superimposing a small ripple over the DC level.
- A DC motor controller in which the motor is driven in voltage drive mode, the inrush and stall current being limited by an internal limiter circuit.
- A programmable demagnetization voltage (DC_H2L) to ensure accurate and safe control of the demagnetization current (BTL configuration only).

Advanced diagnostic functions are also available to improve system reliability and enable predictive maintenance. In particular, the device features:

- Detection of plunger movement (DPM) aims to detect the movement of the plunger during the excitation phase and report a fault if the plunger gets stuck.
- An inductance measurement circuitry that can be used to detect the status of ON/OFF solenoid valves.
- Reaction time and travel time measurements for diagnostic and predictive maintenance.
- Open-load detection (OL).
- Real-time current monitoring through serial interface (SPI).

Finally, the MAX22216V features a full set of protections, including overcurrent protection (OCP), overtemperature

protection (OVT), and undervoltage lockout (UVM). Whenever the fault is detected and if it is not masked, the fault indicator pin is asserted, and fault information is logged into a dedicated register.

OPERATING MODES OVERVIEW

Single-Ended Operation

In this configuration, the load is driven in single-ended mode, with the other terminal connected to the positive rail (low-side drive configuration) or to GND (high-side configuration).

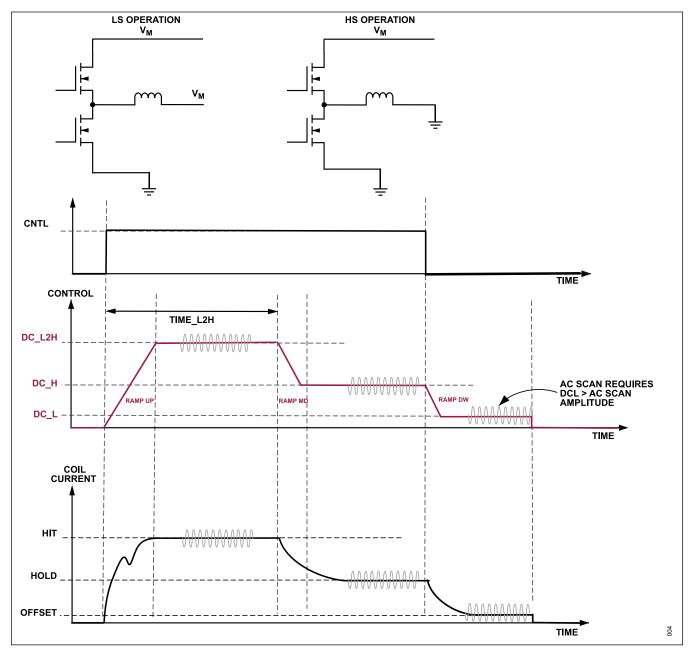


Figure 1. Single-Ended Configuration

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

<u>Figure 1</u> shows a typical multilevel drive sequence in single-ended mode. The CNTL signal (namely either the logic input or the corresponding bit in the control register) activates/deactivates the solenoid, as shown in <u>Figure 1</u>.

The following parameters are user configurable either with SPI (SPI-based use case) or with OTPs (a standalone use case) (see the Register Map section).

Low-Side/High-Side Drive Settings

- Excitation High Level: DC_L2H[15:0]
- Hold Level: DC_H[15:0]
- Low Level: DC_L[15:0] Low-level voltage setting is mainly intended for inductance measurement (AC scan)
- Excitation Time: TIME_L2H[15:0]
- Energizing/de-energizing Ramp slope: RAMP[7:0]
- AC Scan/Dither Amplitude and Frequency (U_AC_SCAN[14:0] and F_AC_SCAN[11:0] global for all the channels)

DC levels settings may refer to voltages, duty cycles, or currents, depending on the required control strategy. Mixed modes (for instance, DC_L2H in voltage mode and DC_H in current mode) are supported too.

Bridge-Tied Load Operation (Full Bridge)

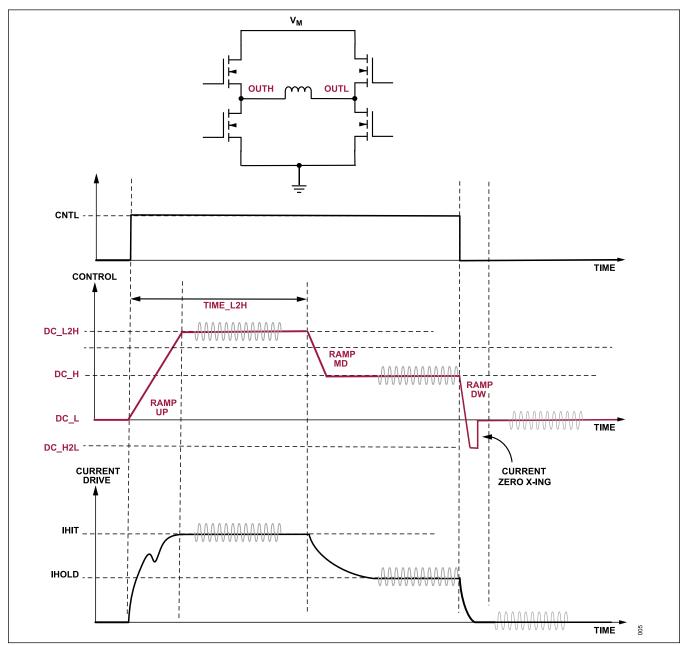


Figure 2. Bridge-Tied Load Configuration

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

<u>Figure 2</u> shows a typical multilevel drive sequence for a bridge-tied load solenoid (Bistable valves and proportional valves). The CNTL signal (namely the logic input or the corresponding bit in the control register) activates/deactivates the solenoid, as shown in <u>Figure 2</u>.

The following parameters are user configurable either with SPI (a SPI-based use case) or with OTPs (a standalone use case) (see the Register Map section).

Bridge-Tied Load Drive Settings

- Excitation High Level: DC_L2H[15:0]
- Hold Level: DC H[15:0]
- Demagnetization Voltage: DC_H2L[15:0]. It allows to demagnetize the coil by reverting the drive voltage. To avoid
 inverting the current, DC_H2L is automatically de-asserted once the coil current approaches zero. DC_H2L is global
 for all the channels
- Low Level: **DC_L[15:0]** Low-level voltage (normally set to zero)
- Excitation Time: TIME_L2H[15:0]
- Energizing/de-energizing Ramp Slope: RAMP[7:0]
- AC Scan/Dither Amplitude and Frequency: (U_AC_SCAN[14:0] and F_AC_SCAN[11:0]) global for all the channels

With the exception of the demagnetization level (DC_H2L)I, which is programmable in voltage mode only, all the DC level settings may refer to voltages, duty cycles, or currents depending on the required control strategy. Mixed modes (for instance, DC_L2H in voltage mode and DC_H in current mode) are supported too.

DC Motor Drive

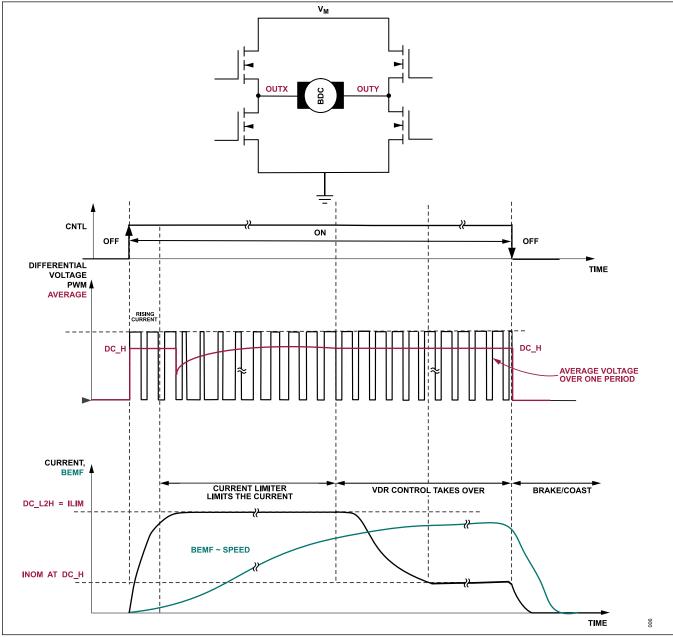


Figure 3. DC Motor

<u>Figure 3</u> shows the MAX22216V drive signals with reference to a bidirectional DC motor use case (similar drive methods can be implemented for a unidirectional DC motor drive). When the CNTL signal is applied (either from the logic input or via SPI), the controller applies the nominal voltage levels (DC_H) first. If the inrush current during start-up exceeds the programmable current limiter threshold (DC_L2H), the current limiter takes over by reducing the PWM output voltage and effectively limiting the inrush current to a safe level. At the nominal speed of the motor, the BEMF limits the current so that the nominal voltage (DC_H) is automatically applied.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

Note that the current limiter is always enabled. In particular, whenever a stall occurs, the limiter limits the stall current to a safe value for the motor and the driver. Once the current exceeds the current limit defined by the DC_L2H register, the loop reduces the voltage applied to the motor, effectively limiting the current to the required safe value.

The following parameters are user configurable:

Brushed DC Motor Settings

DC Motor Drive Mode: CTRL_MODE[1:0] = 10

Current Limiter Threshold: DC_L2H[15:0]

• Drive Voltage Level: DC_H[15:0]

• Brake Current Level: TIME_L2H[15:0]

The MAX22216V feature a current limiter for the motor brake current. This function enables the fastest deceleration of the motor given the overcurrent protection limitations of the device. For more details, see the <u>Brake Current Limiter Function</u> section. Due to the way the output PWM is created, the actual output frequency is double the set F_PWM. Also, the sine wave generator affects this operating mode only by adding noise at the HiZ state.

DC motor drive can also be used in single-ended mode, but the output is affected by the CDRs MIN_T_ON (LS have a minimum voltage and HS have a maximum voltage), and the BRAKE is not functional.

FUNCTIONAL DESCRIPTION

MAX22216V SPI or OTP Configuration

As shown in the <u>OPERATING MODES OVERVIEW</u> section, the MAX22216V is a highly configurable device that supports different applications and use cases.

The configuration settings can be input into the MAX22216V in two different ways: through SPI-configuration (Mode 0 or Mode 3) or through OTP-configuration.

In SPI-configuration, volatile registers must be written through a serial peripheral interface (SPI) after power up.

In OTP-configuration, the user writes one-time programmable (OTP) registers whose content is used as the default configuration setting at power-up. OTP writing must be done in a controlled test setup in the factory. When OTP-configuration is used, the MAX22216V can operate in standalone mode with minimal control signals from outside.

Further details are available in the HOW TO CONFIGURE THE MAX22216V section.

Enable Logic Input (ENABLE)

The enable pin is a V_M-rated logic input pin.

Drive the ENABLE logic low to disable the device. This corresponds status to the lowest power consumption for the device.

Drive the ENABLE logic high to enable the device. When enabled, the ENABLE pin must be held high for at least TEN to complete the power-up sequence and prevent the MAX22216V from entering unpredictable statuses.

A pull-down resistor ensures the MAX22216V is disabled if the Enable pin is not actively driven.

In standalone operating mode, the ENABLE pin can possibly be externally connected to the positive rail (V_M). This way, the solenoid valve can be activated/deactivated by simply powering up/down the device (see the V_M Switching Standalone section).

Nap Mode and ACTIVE Bit

The ACTIVE bit in the GLOBAL_CFG register activates/deactivates the MAX22216V. When ACTIVE = "0" and ENABLE is logic high, the device is in Nap Mode. Power consumption is minimized (see the *Electrical Characteristics* table), the sequencer is disabled, and driver outputs are tri-stated. In SPI-based applications, this corresponds to the default condition at power-up. To enter in normal operation, the ACTIVE bit must be set after the device configuration.

In an OTP-based application, this bit must be programmed high to enable standalone operations.

V_{IO} Pin Description (V_{IO})

The V_{IO} voltage is the reference for logic Inputs and output signals. The V_{IO} pin can be configured by writing two bits in

the STATUS_CFG[15:0] register.

EN LDO is the enable bit of the internal regulator.

If EN_LDO = "0" (default), the V_{IO} must be provided from the outside, and V_{IO} is a supply voltage input pin.

If EN_LDO = "1", then an internal linear regulator is turned on and the V_{IO} pin becomes an output (settable at 3.3V or 5V).

In SPI-based applications, the V_{IO} pin is normally configured as an input and connected to the voltage supply of the external controller to enable communication between the MAX22216V and the controller.

In OTP-based applications (standalone mode) in which the SPI is not used and wiring must be minimized, the internal linear regulator can be enabled to supply the internal I/O circuitry. The regulator output voltage can be set either at 3.3V or 5V, depending on the selection of the V5_nV3 bit. The regulator can only be activated via the OTP programming functionality and is available after a reboot of the part.

CNTL Pin and CNTL Bits

As shown in <u>OPERATING MODES OVERVIEW</u>, a change of the status of the CNTL pin or of the CNTL bit in the STATUS register initiates and ends the sequence (with the exception of the V_M switching standalone control, in which the supply voltage itself is used as a command signal (see the \underline{V}_M Switching Standalone section).

The polarity of the CNTL pin can be changed with the CNTL_POL bit in the GLOBAL_CFG configuration register, this does not affect the polarity of the CNTL bits. Set CNTL_POL = "0" for positive polarity (CNTL is active high). Set CNT_POL = "1" for negative polarity (CNTL is active low). In the special case of using CNT_POL = "1" together with a full-bridge configuration, the CNTL pins do not change polarity, but they change the control channel. For example, the CNTL0 pin controls CH1 output, and the CNTL1 pin controls CH0. The same applies for CH2 and CH3 pairs. As this setting affects only the CNTL pins, all the other settings are the same.

CNTL bit in the STATUS register and CNTL pins are in or-ing configuration. If either the bit or the input signal is active, then the sequencer is enabled. This also means that once the channel is active using one method, it cannot be turned off using the other control method. If the MAX22216V are controlled via SPI, then the CNTL pins must be set as inactive (it is recommended to connect CNTL logic pins to GND to prevent spurious triggering by noise).

Vice versa, if the MAX22216V are controlled only via logic inputs CNTL, then the CNTL bits must be set as inactive (default state).

Hardware Configuration

The MAX22216V provides flexibility. The channel hardware configuration bits CHS[3:0] in the GLOBAL_CFG register must be set to match the hardware configuration of the half bridge of the MAX22216V.

Maximum current can be increased by using a parallel half- or full-bridge configuration. As there is no connection between the channels inside the IC, it has to be done on the PCB. A pair of channels can also be configured in full-bridge mode to drive the load differentially (bridge-tied load). <u>Table 1</u> summarizes all possible hardware configurations (HB = Half Bridge, FB = Full Bridge).

Table 1. Hardware Configuration

CHS	SUPPORTED CONFIGURATIONS	HARDWARE SETTINGS
0x0	4x Independent half-bridges (HB)	OUT0, OUT1, OUT2, OUT3
0x1	3x Parallel HBs + 1x Independent HB	OUT0 = OUT1 = OUT2, OUT3
0x2	2x Parallel HBs + 2x Independent HBs	OUT0 = OUT1, OUT2, OUT3
0x3	2x Parallel HBs + 2x Parallel HBs	OUT0 = OUT1, OUT2 = OUT3
0x4	4x Parallel HBs	OUT0 = OUT1 = OUT2 = OUT3
0x5	2x Independent Full Bridges (FB)	OUT0 vs. OUT1, OUT2 vs. OUT3
0x6	1x Independent FB + 2x Independent HBs	OUT0 vs. OUT1, OUT2, OUT3
0x7	1x Independent FB + 2x Parallel HB	OUT0 vs. OUT1, OUT2 = OUT3
0x8	1x Parallel FB	OUT0 = OUT1 vs. OUT2 = OUT3

When channels are parallelized, the MAX22216V uses the configuration settings of the channel with a lower channel index. For instance, for the configuration 0x3 in <u>Table 1</u>, the configuration settings of channel "0" and channel "2" control the parallelized half bridges, whereas the configuration settings of channel "1" and channel "3" are ignored.

<u>Table 2</u> and <u>Table 3</u> summarize the active control registers (CFG_) and the active command signal (CNTL_) for each Hardware Configuration. The configuration registers store all the parameters that are used by the sequencer (see the <u>OPERATING MODES OVERVIEW</u> section), plus other configuration parameters explained in the following paragraphs. Each CFG is controlled by the specific CNTL channel (CFG_0 is controlled by CNTL0), and it controls the output based on channel configuration.

The CNTL signals enable (CNTL = 1) or disable (CNTL = 0) the corresponding channels, as shown in <u>Table 2</u>.

The enable/disable signals can be either hardware-based (logic I/Os) or software-based (CNTL bits in the GLOBAL_CTRL register). HW and SW controls are in OR configuration: if either the logic CNTL input or the corresponding bit in the GLOBAL_CTRL register are logic high, then the channel is enabled. It follows that in SW-based control, the logic input pins must be grounded (logic low). Vice versa, for HW-based control, the control bits must be set to zero (default at power up).

In full-bridge operation, a center-aligned PWM chopping method is used so that the effective PWM frequency is doubled and ripple is minimized. With this technique, a zero voltage across the load corresponds to a 50% duty cycle applied on each side of the bridge-tied load. Moreover, the control signals (CNTLx, CNTLy) determine the configuration registers, as shown in Table 3.

Table 2. Control Table

	OUTPUT SETTI	INGS	ACTIVE CON	IFIGURATION RE	GISTER/CONTRO	L CHANNEL
CHS[3:0]	OUTPUT CO	NFIGURATION	CH0 OUTPUT	CH1 OUTPUT	CH2 OUTPUT	CH3 OUTPUT
0x0	4x Independent HB		CFG_0/CNTL0	CFG_1/CNTL1	CFG_2/CNTL2	CFG_3/CNTL3
0x1	3x Parallel HBs 1x Independent HB			CFG_0/CNTL0		CFG_3/CNTL3
0x2	2x Parallel HBs	2x Independent HBs	CFG_0	CFG_0/CNTL0		CFG_3/CNTL3
0x3	2x Parallel HBs 2x Parallel HBs		CFG_0/CNTL0		CFG_2/CNTL2	
0x4	4x Para	allel HBs	CFG_0/CNTL0			
0x5	1x Independent FB	1x Independent FB	see <u>Table 3</u>		see <u>Table 3</u>	
0x6	1x Independent FB	2x Independent HBs	see <u>Table 3</u>		CFG_2/CNTL2	CFG_3/CNTL3
0x7	1x Independent FB 2x Parallel HB		see <u>T</u>	able 3	CFG_2	/CNTL2
0x8 1x Parallel FB				see <u>T</u>	able 3	

Table 3. Full-Bridge Control

CHS[3:0]	BRIDGE CFG	CNTLx	CNTLy	OUTx	ОИТУ	FB Status
0 x 05	OUTx vs OUTy	0	0	HiZ	HiZ	HiZ
	(x, y) = (0,1) or (2, 3)	1	0	CF(G_x	DRIVEN by CH X
		0	1	CF(G_y	DRIVEN by CH Y
		1	1	50% PWM	50% PWM	BRAKE
CHS[3:0]	BRIDGE CFG	CNTL0	CNTL1	OUT0	OUT1	FB Status
0 x 06 or	OUT0 vs OUT1	0	0	HiZ	HiZ	HiZ
0 x 07		1	0	CF(G_0	DRIVEN by CH 0
		0	1	CF(G_1	DRIVEN by CH 1
		1	1	50% PWM	50% PWM	BRAKE
CHS[3:0]	BRIDGE CFG	CNTL0	CNTL1	OUT0 = OUT1	OUT2 = OUT3	FB Status
0 x 08	OUT0 = OUT1 vs OUT2 = OUT3	0	0	HiZ	HiZ	HiZ
		1	0	CFG_0		DRIVEN by CH 0
		0	1	CF(G_1	DRIVEN by CH 1

Table 3. Full-Bridge Control (continued)

	1	1	50% PWM	50% PWM	BRAKE

In a full-bridge configuration, independent of which channel is used to control the output, the current flow is the same. Example, in 0x06, independent if the bridge is controlled using CNTL0 or CNTL1, the current (when a positive voltage/current is set) flows out from OUT0 and in OUT1.

HS or LS Single-Ended Configuration

In single-ended mode, the MAX22216V can be configured as an HS driver (load is connected between OUT and GND) or as an LS driver (load is connected between OUT and V_M). The selection bit HSnLS can be written in the CFG_CTRL[15:0] register. Set HSnLS = "1" for the HS operation. Set HSnLS = "0" for the LS operation.

Chopping Frequency and Timebase Configuration

The MAX22216V feature an integrated oscillator that sets the time base of the device and determines the chopping frequency, F_{PWM}.

F_PWM_M[3:0] bits in the GLOBAL_CTRL register set the controller PWM frequency, as shown in Table 4.

Table 4. PWM Controller Frequency Setting

HEX	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
F_PWM_M	100	80	60	50	40	30	25	20
HEX	0x8	0x9	0xA	0xB	0xC			
F_PWM_M	15	10	7.5	5	2.5			

Note: 0xD, 0xE, and 0XF are same as 0x0 (100kHz).

The controller chopping frequency can be further divided down individually for each half bridge by setting bits F PWM[1:0] in the configuration register for that specific channel, as shown in <u>Table 5</u>.

Table 5. Individual PWM Frequency

F_PW	M[1:0]	CHOPPING FREQUENCY OF INDIVIDUAL CHANNEL			
0	0	F_PWM_M			
0	1	F_PWM_M/2			
1	0	F_PWM_M/4			
1	1	F_PWM_M/8			

The resulting chopping frequency (F_PWM) is also used as a time base for configuring the timings of the sequencer and/ or other functions. Generally, if the PWM frequency is not a requirement of the design, it is recommended to use smaller frequencies, such as 25kHz or 10kHz for increased accuracy. If the channels do not have different PWM frequency requirements, the main frequency can be set in F_PWM_M (PWM controller frequency) and the individual channel F_PWM can be left to the default setting of 0x00. Frequencies in the audio range (such as 10kHz) might create noise in the solenoid coil.

Slew Rate and Blanking Configuration (SRC)

The slew rate of the rising and falling edges can be controlled by means of two configuration bits in the configuration register (SRC[1:0]). <u>Table 6</u> shows the possible settings.

Slower edges reduce over/undershooting and ringing and are therefore effective in mitigating electro magnetic emission (EME). On the other hand, slow edges result in higher power consumption and worse VDR control accuracy.

Current measurements taken just after the falling edges can be inaccurate as they may be affected by electrical noise and ringing occurring after the commutation.

Table 6. Slew-Rate Control

SRC[1:0]	SLEW-RATE CONTROL
00	Fast
01	400V/µs
10	200V/µs
11	100V/µs

The T_BLANKING bits are stored in the CFG_CTRL register. T_BLANKING and SRC Slew Rate affect the output only in single-ended CDR modes, as it adds a delay to the MIN_T_ON and hence adds restrictions to the duty cycle at a given PWM frequency (see the *Minimum TON Limitations* section).

Table 7. Blanking Time

T_BLANKING_[1:0]	T_BLANKING VALUE
00	0
01	24
10	48
11	96

SEQUENCER SETTINGS

Setting the Sequencer Control Mode

As shown in the <u>OPERATING MODES OVERVIEW</u> section, the sequencer can be configured to address different use cases.

The DC_L2H and DC_H levels can be controlled either in voltage mode or current mode. In addition, there are two mixed control modes, from which the Motor Control Mode is used to better address DC motor drive applications, as the DC_L2H can be configured to set the threshold of the current limiter to suppress inrush current and DC_H sets the motor driving voltage (see the <u>DC Motor Drive</u> section).

Two bits in the configuration register of each individual channel allow selecting the desired control mode, as shown in Table 8.

Table 8. Control Mode Setting

CTRL_MODE[1]	CTRL_MODE[0]	DC_L2H	DC_H	TYPICAL USE CASES
0	0	VDR	VDR	Solenoid drive
0	1	CDR	CDR	Solenoid drive, Proportional valve
1	0	Current limiter	VDR	Brushed DC motor
1	1	VDR	CDR	Solenoid drive, Proportional valve

A third low level (DC_L) can also be programmed individually for each channel, as explained in <u>OPERATING MODES</u> <u>OVERVIEW</u>. DC_L can be controlled only in voltage mode (VDR) together with the sine wave generator. This is mostly intended to be used in single mode operations to allow inductance measurement (see the <u>Inductance Measurement Overview section</u>).

For full-bridge configuration, it is possible to demagnetize the coil by applying a reverse demagnetization voltage at the end of the excitation phase (see the <u>Bridge-Tied Load Operation (Full Bridge)</u> section). The demagnetization voltage can be set by writing the global register DC_H2L[15:0] with a negative value and setting H2L_EN for each individual channel. To avoid current inversion, the demagnetization voltage is automatically de-asserted as soon as the current approaches zero.

It is also possible to set the device so that the reverse demagnetization voltage is applied when the coil is energized and the supply drops below a threshold stored into the VM_THLD_DOWN[3:0] bits of the VM_THRESHOLD register (for more details, see the Register Map and $\underline{V_M}$ Switching Standalone sections). If this function is enabled, as soon as the supply drops below VM_THLD_DOWN, a reverse voltage equal to DC_H2L is applied so that the coil is quickly

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

demagnetized. The reverse voltage is maintained until the current is zeroed. During the demagnetization transitory, the coil current recirculates back to the supply, causing the V_M voltage to be pumped up. Therefore, the bypass capacitor on V_M must be large enough to absorb the coil energy without exceeding the maximum operating voltage.

SEQUENCER LEVEL SETTINGS

Voltage Drive Regulation (VDR)

DC_L2H, DC_H, and DC_L levels can be configured for VDR mode operation by programming the corresponding configuration registers for each individual channel. VDR is supported for high-side drive, low-side drive, and differential drive bridge-tied load (BTL) configurations.

Two alternative voltage control modes can be selected by means of the VDRnVDRDUTY selection bit in the GLOBAL CFG register.

When VDRDUTY is selected (VDRnVDRDUTY = "0"), the DC_ levels correspond to the target duty cycle. The average output is proportional to the supply (V_M) . The average output voltage is therefore given by:

$$V_{OUT}(V) = K_{VDR} \times V_{M}(V) \times DC_{[15:0]DEC}$$

Where K_{VDR} is a constant equal to 30.518 μ (see the <u>Electrical Characteristic</u> table). In this formula, it should be used as 30.518 x 10⁻⁶ V.

When VDR is selected (VDRnVDRDUTY = "1"), the DC_ levels correspond to the target output voltage. Variations of the supply voltage are internally compensated. The average output voltage is given by:

$$V_{OUT}(V) = K_{VDR} \times 36 \times DC_{15:0]_{DEC}$$

The voltage control accuracy is affected by several nonidealities that are not internally compensated. In particular, rise and fall edge mismatch and voltage drop on power FETs can have an impact on the VDR accuracy. In general, better performance can be achieved when fast edges and low PWM chopping frequencies are selected.

The internal PWM generator runs at 25MHz, so the actual resolution of the control depends on the programmed PWM chopping frequency. For instance, if channels run at 30kHz, the PWM resolution is $2 \times 30kHz/25MHz = 0.24\%$.

The duty-cycle control range is limited depending on the programmed chopping frequency, and in single ended CDR mode by the MIN_T_ON. However, the 100% and 0% (always ON and always OFF) statuses are always supported and mapped as DC [15:0] = 0x7FFF and DC [15:0] = 0x0000, respectively.

When in full-bridge configuration, the PWM modulator adopts a center-aligned modulation scheme. Both sides of the coil are PWM-modulated.

$$D_{OUTX} = (1 + D)/2$$
, $D_{OUTY} = (1-D)/2$
Duty Cycle = D = $D_{OUTX} - D_{OUTY}$

Where X and Y are the two generic channels driving the load in full-bridge configuration.

This approach results in doubling the ripple frequency and halving the amplitude of the ripple. When VDR or VDRDUTY equals zero, the two channels output a 50% duty cycle.

CURRENT DRIVE REGULATION (CDR)

Current Drive Regulation (CDR)

DC_L2H, DC_H, and DC_L levels can be configured for CDR Mode operation by programming the corresponding 16 bits configuration registers. CDR is supported for single-ended LS and HS drive and differential BTL configurations.

In DC motor drive mode (CTRL_MODE_[1:0] = "10" in the channel configuration register), the DC_L2H stores the threshold at which the current limiter starts limiting the current either during motor start up or under stall conditions.

When the current drive regulation method is used, a proportional integral controller controls the current at the required set point. Current is internally sensed onto the low-side power FET without the need of external shunt resistors. The sensing is bidirectional, so that the MAX22216V can measure both sinking currents (LS drive and Full Bridge modes) and sourcing currents (HS drive Configuration Mode). However, in HS mode, the maximum current that can be accurately measured is less than for the LS and full-bridge modes since excessive currents can turn on the FET body drain diode and affect the accuracy of the measurement.

Under steady conditions, the controlled current can be calculated from the following formula:

 I_{OUT} (mA) = K_{CDR} x GAIN x SNSF x DC_[15:0]_{DEC}

where:

- DC_[15:0]_{DEC} is the target DC current value (in decimal notation) stored in the corresponding register. To avoid saturation, it is recommended not exceeding DC_[15:0]_{DEC} = 3145 for LS and full-bridge configurations and 1475 for HS configurations (Assuming GAIN = SNSF = 1). In other terms, the maximum full-scale current is 3.2A in LS or full-bridge mode, and 1.5A in HS mode. The maximum bit value for the current is based on the channel control configuration and I_MONITOR scaling of each channel. For more details, see the <u>Digital Current Monitor Function</u> section. If the real current value is set too high, the OCP triggers (as it is independent of the I_MONITOR), or the IC heats up too much and triggers the OVT. Always set the I_MONITOR range, taking into consideration the maximum current in the configuration.
- K_{CDR} is a constant typically equal to 1.017mA. K_{CDR} directly depends on the external 12kΩ reference resistor connected between the I_{REF} pin (see the <u>Current Reference</u> section). For accurate current control, a precise resistor must be used.
- GAIN (see <u>Table 9</u>) is a 2 bits programmable gain factor (GAIN[1:0] bits into the configuration register).
- SNSF (see <u>Table 9</u> is a 2 bits programmable Sense Scaling Factor (SNSF[1:0] bits into the Configuration Register).
 As shown in <u>Table 9</u>, the SNSF value determines the resistance of the low-side power FET (R_{ON}), which is used as a sense element. A higher resistance of the sensing element results in better accuracy of the control at low currents.

When multiple half- or full-bridges are used in parallel, the maximum digital reading value multiplies independently of the individual channels GAIN or SNSF settings (as the I_MEASUREMENT becomes the sum of the individual channel currents); however, the GAIN/SNSF settings apply to all connected channels based on the main configuration channel (see the *Digital Current Monitor Function* section). For a quality reading of the current, it is recommended to set the GAIN and SNSF based on the worst-case maximum current for the application (including temperature increase in current consumption and MOSFET resistances), while using the smallest range possible for better resolution. If the I_MONITOR value overflows, then the Inductance and Resistance measurements become unreliable. Table 9 shows the scaling factors for the current measurement of 1 channel (maximum digital current value of 4095) and their effects.

Table 9. Full Scale and Sense Scale

GAIN [1:0]	GAIN	SNSF [1:0]	SNSF	TYP. LS R _{ON} (Ω)	TOTAL FACTOR	MULTIPLIER	MAX CURRENT (A)
00	1				1	1.00	4.165
01	1/2	00	1	0.17	1/2	0.5	2.082
10	1/3	00	'	0.17	1/3	0.333	1.388
11	1/4				1/4	0.25	1.041
00	1				2/3	0.667	2.776
01	1/2	01	2/3	0.23	2/6	0.333	1.388
10	1/3	01	2/3		2/9	0.222	0.925
11	1/4				2/12	0.167	0.694
00	1				1/3	0.333	1.388
01	1/2	10	1/3	0.43	1/6	0.167	0.694
10	1/3	10	1/3	0.43	1/9	0.111	0.463
11	1/4				1/12	0.083	0.347

PI Controller

The current loop is based on Proportional Integral (PI) control. Proportional and Integral coefficients can be set individually for each channel. PI control results in optimal current control and tunable time response characteristics.

16-bits Register CFG_P[15:0] and CFG_I[15:0] define the control parameters for each channel. The registers define the Proportional Gain (Kp) and Integral Gain (Ki) characteristics in Q8.8 format.

Figure 4 shows the block diagram of the current control loop.

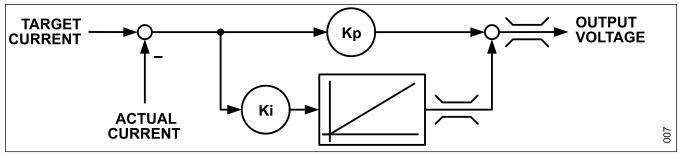


Figure 4. Block Diagram of Current Control Loop

As the output of the IC is affected and limited by the load, it is recommended that a tuning method that takes this into consideration.

Both P and I are 16-bit variables, accepting values from 0 to 65535, which gives a great level of control. It is also recommended to use the opening current and opening time given by the load manufacturer; in this case, they represent DC_L2H and TIME_L2H.

Minimum TON Limitations

For single-ended (HS or LS configurations) CDR operation, a minimum duty cycle of the low-side transistor has to be applied. This is needed to grant a correct measurement of the current. If the PI controller applies a duty cycle below the possible duty cycle, the output value of the PI controller overwrites. In this case, the integrator of the PI controller is frozen unless the calculated values lead to a higher duty cycle on the low-side transistor. This behavior results in a minimal voltage above zero that can be applied in CDR mode in a LS driver configuration and a maximal voltage that is below the $V_{\rm M}$ supply voltage in a HS driver configuration. Figure 5 and Figure 6 show the behavior of the LS driver and HS driver configurations.

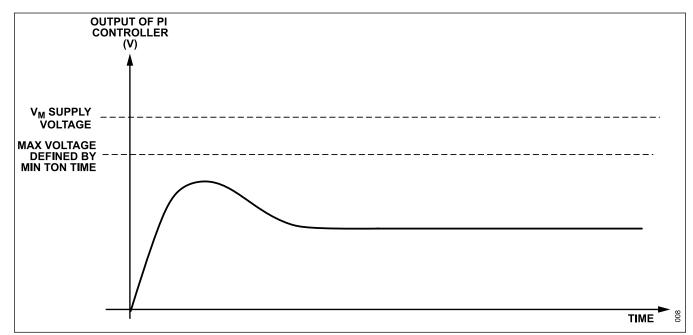


Figure 5. HS Configuration Maximal Voltage Graph

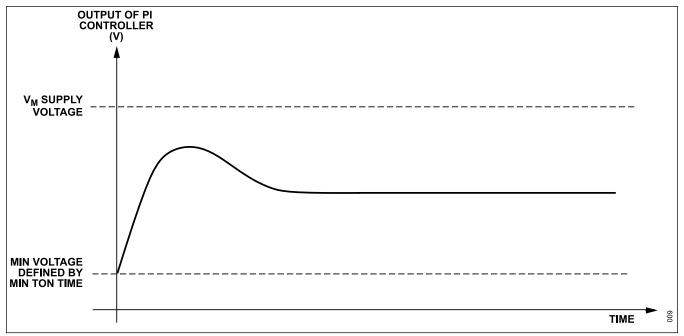


Figure 6. LS Configuration Minimal Voltage Graph

The minimal on-time on the low-side transistor is described by the formula:

$$MIN_T_ON (s) = (MIN_TON_SINGLE_ENDED + 2^{SLEW}_RATE[1:0] + 1 + T_BLANKING) \times (2/CLK_FREQ (Hz))$$
 where MIN_TON_SINGLE_ENDED = 15 and CLK_FREQ = 25MHz.

The below formulas define the minimal/maximal voltages resulting from the minimal ON time on the low-side transistor for both the HS and LS driver configurations.

Single-ended LS configuration:

$$V_{MIN}(V) = V_{M}(V) \times MIN T ON(s) \times F PWM(Hz)$$

Single-ended HS configuration:

$$V_{MAX}(V) = V_{M}(V) \times (1 - MIN_{T_{ON}}(s) \times F_{PWM}(Hz))$$

To regulate a current in the single-ended configuration, the applied voltage in a steady state should not be too close to the resulting voltage constraint (V_{MIN} in the LS driver configuration and V_{MAX} in the HS driver configuration).

Current Reference

The user must connect a precise $12k\Omega$ resistor between the I_{REF} pin and GND to set the reference current of the internal ADC. The MAX22216V reads the current flowing through the resistor by enforcing a constant voltage of about 0.9V on the I_{REF} pin. Therefore, the I_{REF} current is about:

$$I_{REF}(A) = 0.9V/12k\Omega = 75\mu A$$

The current control accuracy directly depends on the I_{REF} current accuracy. Therefore, it is recommended to use 1% or more accurate resistors.

Setting the Excitation Time (TIME_L2H)

For solenoid drive operation, one 16-bit register allows the configuration of the excitation time (TIME_L2H) for each individual channel according to the following formula:

TIME L2H (ms) = TIME L2H[15:0]
$$DEC$$
/F PWM (KHz)

in which F_PWM is the chopping frequency of the individual channel (see the <u>Chopping Frequency and Timebase Configuration</u> section).

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

The TIME_L2H determines the per-programmed excitation time. The actual excitation time can be shortened and the power dissipation can be further reduced by using the automatic HIT to HOLD commutation function, which is based on the detection of plunger movement (DPM) function (see the <u>Detection of Plunger Movement (DPM) - Overview</u> section).

If TIME_L2H[15:0] = 0xFFFF, the excitation level DC_L2H is applied continuously.

For Brushed DC Motor drive operation (CTRL_MODE[1:0] = 10), the content of this register assumes a different meaning and determines the limiter current threshold during braking operation. This function is explained in detail in the <u>Brake Current Limiter Function</u> section.

Setting the Ramp Slopes

Slowing down the rising/falling edges of the current in an ON/OFF solenoid valve smooths the mechanical movement of the plunger into an ON/OFF solenoid valve and reduces the acoustic clicking noise during activation/deactivation of the valve. Moreover, it also helps reducing over-/under-shoots of the current when the PI-based current drive regulation (CDR mode) is used. The RAMP function generates controlled ramps among the excitation, hold, and off levels. The 8 bits in the channel configuration register (RAMP[7:0]) set the required slew rates. Bits RDWE, RMDE, and RUPE enable/disable the function, respectively, for RAMP DW, RAMP MD, and RAMP UP (see the <u>OPERATING MODES OVERVIEW</u> section). The ramp control is supported both in voltage and current drive modes. In VDR mode, the RAMP function ramps up/down the voltage applied to the load until the setpoint is reached. The voltage slew rate is approximatively given by the following formula:

RAMP SLEW RATE [V/ms] =
$$K_{VDR} \times 36V \times (RAMP[7:0]_{DFC} + 1) \times F PWM(kHz)$$

For instance, if the chopping frequency is 25kHz, the ramp-up slew rate can be configured from 0.4V/ms to 102V/ms. In VDRDUTY mode, the RAMP function ramps up/down the output duty cycle until the setpoint is reached. The voltage slew rate is approximatively given by the following formula:

RAMP SLEW RATE [V/ms] =
$$K_{VDR} \times V_{M} \times (RAMP[7:0]_{DFC} + 1) \times F_{PWM}(kHz)$$

In CDR mode, the RAMP function ramps up/down the load current until the setpoint is reached. The current slew rate is approximatively given by the following formula:

```
RAMP_SLEW_RATE (mA/ms) = K<sub>CDR</sub> x GAIN x SNSF x (RAMP[7:0]<sub>DEC</sub> + 1) x F_PWM(kHz)
```

For instance, if F_PWM = 25kHz and GAIN = SNSF = 1, the slew rate of the MAX22216V can be configured from 25.425mA/ms to 6508.8mA/ms. It must be noted that the maximum slew rate achievable in CDR mode can be limited by system parameters. In particular, for inductive loads, the maximum slew rate cannot exceed the theoretical maximum equal to $V_{\rm M}/I_{\rm LOAD}$.

Brake Current Limiter Function

As shown in <u>OPERATING MODES OVERVIEW</u>, the MAX22216V can be used to drive a bidirectional DC motor in full-bridge configuration (CTRL MODE[1:0] = 10).

To stop a running motor, the BRAKE condition has to be enforced (CNTL0 = CNTL1 = "1") (see <u>Table 3</u> in the <u>Hardware Configuration</u> section). During brake, both sides of the load are driven with a 50% duty cycle, causing the load to be virtually shorted so that the deceleration begins.

Because the BEMF voltage gets virtually shorted, the brake current can be very high and limited only by the motor resistance. This causes the MAX22216V overcurrent protection to be triggered and the device to outputs to be tri-stated. To overcome the problem, the MAX22216V feature a brake current limiter function that allows the fastest deceleration given the current limit constraint.

If this function is triggered, the content of the CFG_L2H_TIME register (namely bits TIME_L2H[15:0]) sets the upper limit of the brake current (IBRAKE_LIM). Whenever the current amplitude exceeds the IBRAKE_LIM (see the formulas below), a current control loop is triggered, and the brake current is limited to the desired value, which is given by:

I BRAKE LIM (mA) =
$$K_{CDR}$$
 x GAIN x SNSF x TIME L2H[15:0]_{DEC}

In particular, when TIME_L2H[15:0] = "0", the driver enforces HiZ (coast).

The CFG_L2H_TIME register of the channel with the lower channel count is used for this function, so only the first half of the register creates the BRAKE: 0x0001 to 0x7FFF.

Enabling the Sine Wave Generator for Dithering or Inductance Measurement

The MAX22216V integrate a sine wave generator, which creates a sine wave signal with programmable frequency and amplitude.

The purpose of the sine wave generator is twofold:

- 1. It can be used to add dithering to the DC voltage or current to overcome static friction and hysteresis problems, which in particular affect proportional valves.
- 2. It can be used as an AC scan signal to measure the coil inductance and detect the on/off status of the solenoid valve for diagnostic purposes.

The DITH_EN and LMEAS_EN bits in the configuration register of each individual channel activate/deactivate either the dithering or the inductance measurement function. For the dithering function, the sine wave is superimposed onto the DC_H level with added noise at the DC_L level. For the inductance measurement function, it can be set to superimpose the sine wave onto DC_LH and/or DC_H levels, while it is always superimposed on the DC_L level.

The sine wave generator starts after the first use of the channel. <u>Table 10</u> summarizes how the function is activated and onto which DC levels the sine wave signal is applied.

- In case the sine wave is used for dithering (DITH_EN = "1", LMEAS_EN = "0"), the AC signal is superimposed onto the DC_H (hold) level and added noise at the DC_L (low) level. Both voltage and current control modes are supported. The main use of this function is to get rid of friction in proportional valves.
- In case the sine wave is aimed to measure the inductance for diagnostic purposes (LMEAS_EN = "1", DITH_EN = X), then the AC voltage sine wave is superimposed only if the DC level is controlled in voltage mode (VDR). The inductance measurement can possibly be done in every sequencer phase (DC_L2H, DC_H, and DC_L). Selection bits are available to enable/disable the measurement for the corresponding phase, as discussed in detail in the Inductance Measurement section. The primary use of the inductance measurement function is to detect the status of ON/OFF solenoid valves.

Table 10. Dither and Inductance Measurement Table

FUNCTION	ACTIVATION BITS	DESCRIPTION	CONTROL MODES	DRIVER PHASES	MAIN TARGET APPLICATION
Sine Off	DITH_EN = 0 LMEAS_EN = 0	Sine wave generator disabled			
Dither	DITH_EN = 1 LMEAS_EN = 0	AC current/voltage superimposed onto the DC current/voltage level	 Supported both in CDR and VDR modes. AC SCAN amplitude can be either a current or a voltage, depending on the DC_H setting 	DC_H and noise at the DC_L level	Proportional valves
Inductance Measurement	LMEAS_EN = 1 DITH_EN = don't care	AC voltage superimposed onto the DC voltage level AC current is measured for inductance measurement	 VDR mode only. If CDR control is set, the sine wave generator is automatically disabled 	DC_L always, DC_L2H, and DC_H selectable (L_MEAS_L2H, L_MEAS_H)	On/Off valves

Dithering enables a small level of noise at the DC_L level that can be used (together with the RAMP_SLEW_RATE control) to lower the impact of the valve armature onto the valve seal and prevent a sticky plunger in some applications. It is recommended to disable the function once the valve is closed (right after turning off the channel), otherwise some valves may not close properly or heat up while not in use.

During the inductance or resistance measurements, the IND flag can be triggered when the channel turns off (depending on line noise and valve) due to the functionality of IAC_THLD when measuring the DC_L phase. In the case where the IND Flag is triggered continuously on the DC_L level (if it reappears after clearing, this usually happens when IAC_THLD is not 0), it is recommended to disable LMEAS_EN while the channel is off (if LMEAS is turned off before the channel, the IND flag should not appear when turning off the channel) or to limit the readings using L_NBR_CALC and clear the

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

flag. The IND flag triggers when the channel is turned on due to the coil transient response; to counter this, use the L_MEAS_WCYCLES to create a delay in the inductance measurement readings. Similarly, if it does not set RES_THLD before turning on the channel (while LEAS_EN is in use), the RES Flag triggers, as the standard value for RES_THLD is 0. Resistance measurements might also be affected by the transient response in some cases.

Setting the Sine Wave Generator

The sine wave amplitude and frequency can be configured as global parameters.

The sine wave frequency can be set by programming the global F_AC_SCAN register as shown in the formula below:

Sine Wave Frequency (Hz) = F PWM M x (F AC SCAN[11:0]DFC/65535)

The sine wave generator amplitude can be set by programming the global U_AC_SCAN register. Depending on the control mode, the amplitude is set as shown in <u>Table 11</u>.

Table 11. Sine Wave Generator Amplitude Setting

Control Mode	Settings
VDRDUTY	$VOUT_AC (V) = K_{VDR} \times V_{M} (V) \times U_AC_SCAN[14:0]_{DEC}$
VDR	$VOUT_AC (V) = K_{VDR} \times 36 \times U_AC_SCAN[14:0]_{DEC}$
CDR	IOUT_AC (mA) = K _{CDR} x GAIN x SNSF x U_AC_SCAN[14:0] _{DEC}

For more details on CDR and VDR parameters, see the <u>Current Drive Regulation (CDR)</u> and <u>Voltage Drive Regulation</u> (VDR) sections.

DIAGNOSTIC FUNCTIONS AND STATUS MONITOR

Digital Current Monitor Function

The internally sensed current is sampled at the PWM frequency and stored into Read Only registers (I_MONITOR[15:0]). The user can read real time the I_MONITOR value via SPI for diagnostic and/or control purposes. During SPI read/write operations, the content of these registers is held. The digital current monitor function is available even in voltage drive modes (VDR or VDRDUTY). Similarly to what is described in the <u>Current Drive Regulation (CDR)</u> section, the actual value of the current can be decoded using the following formula:

$$I_{MONITOR}$$
 (mA) = K_{CDR} x GAIN x SNSF x $I_{MONITOR}$ [15:0]_{DEC}

The maximum digital value of the ADC for each individual channel is ±4095 (13 bits signed). For each parallel configuration, this maximum digital value is multiplied by the number of parallel systems (full- or half-bridge), but if one of the channels overflows (the current exceeds the maximum measurable current), the I_MONITOR shows the maximum possible measured value for that configuration.

I_MONITOR has to store the sum of up to 4 signed channel measurements (so it needs at least 15 bits); for this reason, it is stored in a 16-bit register. In the case of parallel channel configurations, the I_MONITOR appears only in the Diagnostics of the main control channel. All the other diagnostics are channel-dependent, even in parallel channel configurations. Table 12 shows the maximum I_MONITOR digital value for each channel configuration.

Table 12. I MONITOR ADC Max Value - Dec

CHS[3:0]	CONFIGURATION	CH0	CH1	CH2	СНЗ
0x0	4xIHB	4095	4095 4095		4095
0x1	3xPHB, 1xIHB	12287 4095			4095
0x2	2xPHB, 2xIHB	8191		4095	4095
0x3	2xPHB, 2xPHB	8191		8191	
0x4	4xPHB	16383			
0x5	1xIFB, 1xIFB	4095		4095	
0x6	1xIFB, 2xIHB	4095		4095	4095
0x7	1xIFB, 2xPHB	40	4095 8191		91
0x8	1xPFB	8191			

In the case of a full-bridge configuration, the secondary channel I_MONITOR shows the negative current flowing through it

In the case of parallel half-bridges, the summed current appears on the I_MONITOR of each channel, but for ease of use, it is recommended to use the I_MONITOR on CH0 (0x45). In full-bridge configurations, the main I_MONITOR channel is CH0 (0x45) or CH2 (0x57), and in parallel full-bridge the main I_MONITOR is on CH0 (0x45).

PWM Duty Cycle Monitor Function

16 bits register PWM_DUTY reports a real-time digital representation of the duty cycle applied to the load. This information is particularly useful in current drive regulation (CDR) to monitor the actual duty cycle applied to the load and detect possible anomalies.

Digital V_M Supply Voltage Monitor

The supply voltage (V_M) is internally measured and digitized. The user can monitor the real-time supply voltage by reading the VM MONITOR[15:0] register via SPI. This information can be decoded using the following formula:

$$V_{M}$$
 (mV) = K_{VM} x VM MONITOR[15:0]_{DFC}

where $K_{VM} = 9.73$ mV typical.

Inductance Measurement Overview

The sine wave voltage generator (see the *Enabling the Sine Wave Generator for Dithering or Inductance Measurement* and *Setting the Sine Wave Generator* sections) can be used to indirectly estimate the solenoid inductance by measuring the AC current induced by the AC scan voltage. The value of the inductance is, at first order, inversely proportional to the air gap. Therefore, the measurement of the inductance provides a sensor-less estimate of the spool displacement inside the valve. When driving ON/OFF valves, this technique can be used as a diagnostic tool to assess whether the valve is open or closed (see the *Setting the Status Monitor* section).

This function is supported in both VDR and VDR_DUTY modes, although VDR is normally recommended as it is less sensitive to supply variations. The function is not supported in CDR Mode.

The inductance measurement activated the I_AC readings, which measure the current AC wave amplitude and the current median level of the output. For the I_AC measurement, it is important to consider that the IC filters the read signal around the sine wave generator frequency. This means that it does not see a lot of higher-frequency noise at the output, which can create a measurement bias. Both the I_AC measurement and the average bias are usually very stable.

The MAX22216V measure the AC current generated by the scan AC sine wave voltage and store the result in the readonly register I_AC[15:0].

The AC current value in Amperes is given by:

$$I_AC (mA) = K_{CDR} x GAIN x SNSF x I_AC[15:0]_{DEC}$$

A rough calculation of the solenoid inductance in Henry is then given by:

$$L[H] = \frac{U_AC_SCAN}{2\pi \times F_AC_SCAN \times I_AC}$$

where U_AC_SCAN and F_AC_SCAN are, respectively, the amplitude and frequency of the AC voltage scan signal. The actual inductance of the valve can significantly differ from what is predicted by this formula. First, the simple L+R model assumed for the calculation is really a rough approximation of the electrical model of a solenoid, in which many parameters play a role (coil saturation, eddy currents, magnetic hysteresis, and load effects). Secondarily, similarly to what was discussed regarding the VDR mode generating the DC levels (see the *Voltage Drive Regulation (VDR)* section), the generation of the AC scan voltage is affected by errors, especially when high chopping frequencies and slow PWM edges are used. Nevertheless, the measurement of the absolute value of the I_AC current has been found to be a good indicator to determine whether the plunger is in the ON or OFF position, making the method reliable for valves in which the I_AC in the two statuses are well separated.

For HS or LS drives (single-ended operation), the superimposed AC signal amplitude must be less than the applied DC level. To measure the inductance when the coil is de-energized, the user must enforce a DC level (DC_L) small enough to ensure the solenoid does not change its status but large enough to superimpose enough AC signal for the measurement.

Setting the Inductance Measurement

Two 16 bits registers (CFG_IND_0 [15:0] and CFG_IND_1[15:0]) store the configuration parameters for the inductance measurement (or, better said, the I_AC measurement) function for each individual channel.

As shown in the <u>Enabling the Sine Wave Generator for Dithering or Inductance Measurement</u> section, the bit L MEAS EN enables the function.

It is required that the I_AC measurement starts only after the drive voltage has settled down to the pre-programmed DC level. By writing L_MEAS_WCYCLES, the user can set a delay from the change of the DC level to the actual start of the I_AC measurement. This delay is expressed in the number of AC scan periods.

The I_AC measurement is the average of multiple measurements on consecutive scan periods. By writing the L_NBR_CALC bits, the user can set the duration of the measurement. Such a duration is expressed in the number of AC scan periods.

In some applications, the solenoid is intentionally overdriven during the excitation time (TIME_L2H), causing the coil to saturate. When this occurs, the inductance measurement becomes unreliable and misleading. The L_MEAS_L2H bit allows to inhibit the AC signal and any inductance measurement during the excitation time. Similarly, the L_MEAS_H bit allows to disable the inductance measurement during the hold phase (level H) if the coil saturates during said phase. Measurements performed during the OFF phase (or DC_L phase) are generally more reliable.

The IAC_THLD[11:0] bits set the threshold, which can be used for diagnostic purposes or to detect the status of the valve.

$$IAC_THLD (mA) = K_{CDR} \times GAIN \times SNSF \times IAC_THLD[11:0]_{DEC}$$

After the completion of the measurement, the content of the I_AC[11:0] register is compared with the content of the IAC THLD[11:0] register.

If, as a result of the comparison, a fault is detected, the flag bit IND in the FAULT register is set.

While in DC_L2H or DC_H phase, the Fault is signaled out if the measured I_AC amplitude is found larger than the threshold. Vice versa, while in DC_L phase, a Fault is signaled out if the measured I_AC is found smaller than the threshold. Table 13 summarizes the fault conditions.

Table 13. Inductance Measurement Fault Detection

PHASE	CONDITION	IND FAULT	DESCRIPTION
DC_L2H DC_H	I_AC > IAC_THLD	1	A fault gets signaled out if the measured amplitude of the AC signal is larger than the configured IAC_THLD.
DC_L	I_AC < IAC_THLD	1	A fault gets signaled out if the measured amplitude of the AC signal is smaller than the configured IAC_THLD.

The comparison between I AC and IAC THLD can also be used to monitor the status of the valve.

The MAX22216V can be configured in such a way that the STT[3:0] bits in the STATUS register and/or the STAT0, STAT1 output pins of the MAX22216V directly reflect the result of the comparison, as shown in <u>Table 14</u>. This is discussed in more detail in the next paragraphs.

Table 14. STATUS Monitor Based on Inductance Measurement

OUTPUT STATUS	STT[3:0] BITS
BITS/PINS	STAT0, STAT1 PINS
I_AC > IAC_THLD	0
I_AC <iac_thld< td=""><td>1</td></iac_thld<>	1

Detection of Plunger Movement (DPM) - Overview

The detection of plunger movement (DPM) function senses the local dip of the current caused by the BEMF, which is generated by the plunger movement when the valve is activated. This detection is active during the entire TIME_L2H excitation time.

This function is available both in voltage mode (VDR) and in current mode (CDR).

In VDR mode, the plunger movement can be reliably detected in the entire TIME L2H excitation time.

In CDR mode, once the excitation level (DC_L2H) has been reached, the internal control loop counteracts the BEMF perturbation in an attempt to stabilize the current, which makes the plunger movement detection problematic. For this reason, the DPM function in CDR is more reliable when the BEMF dip occurs during the excitation current ramp-up.

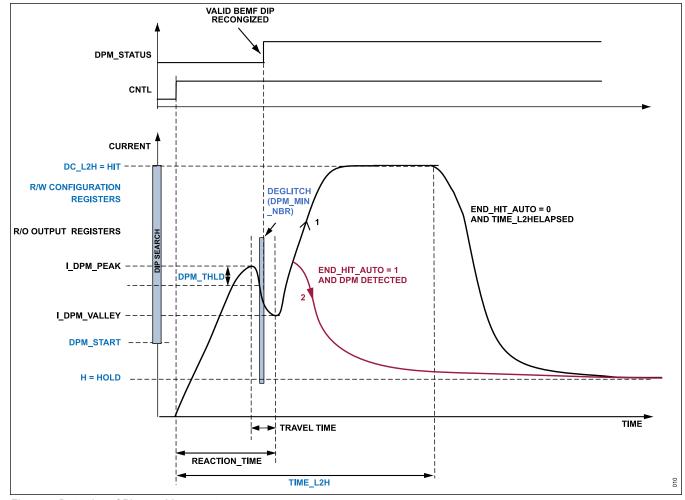


Figure 7. Detection of Plunger Movement

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

<u>Figure 7</u> shows the typical current signature of a properly working solenoid valve. The algorithm works on the rising edge of the current only (valve activation). DPM_START and DPM_THLD are current thresholds used to reduce noise and lower false triggers and errors.

When a current depth larger than DPM_THLD occurs, a valid plunger movement is detected and DPM_STATUS is triggered. After the end of the dip, the DPM calculates the TRAVEL TIME and the REACTION TIME.

If the END_HIT_AUTO bit is set logic low, then the sequencer increases the current/voltage up to DC_L2H level and switches to DC_H only when TIME_L2H has elapsed.

If the END_HIT_AUTO bit is set logic high, then as soon as the DPM confirms a valid plunger movement, the sequencer automatically enforces the DC H setpoint, resulting in significant power savings.

The amplitude of the dip and its relative position along the current rising edge are useful indications of the status and aging of the valve.

When activated, the DPM function implemented in the MAX22216V outputs the four parameters (I_DPM_PEAK, I_DPM_VALLEY, REACTION_TIME, and TRAVEL_TIME) that are stored in the corresponding Diagnostic Read Only registers of each individual channel and can be used to analyze the status of the solenoid.

With reference to Figure 7,

- 1. I_DPM_PEAK[15:0] represents the local maximum of the current (local peak) during the excitation phase.
- 2. I_DPM_VALLEY[15:0] represents the local minimum of the current (local valley) during the excitation phase.
- 3. REACTION_TIME[15:0] represents the time interval expressed in the number of PWM periods from the ON command to the local minimum of the current.
- 4. TRAVEL_TIME[15:0] represents the time interval expressed in the number of PWM periods from the local maximum to the local minimum of the current.

A drift of these parameters is a symptom of the aging of the valve and indicates the need for preventive maintenance of the valve during its operating life. The REACTION_TIME and TRAVEL_TIME can be calculated using the following formula:

I_DPM_PEAK and I_DPM_VALLEY are numeric representations of the currents. The actual values can be calculated using the formula:

$$I_DPM_(mA) = 8 \times K_{CDR} \times GAIN \times SNSF \times I_DPM_[11:0]_{DEC}$$

When the sequencer starts and if the DPM function is enabled, the algorithm first searches for I_DPM_PEAK and updates the resister once the peak is found.

Afterwards, the I_DPM_VALLEY, the REACTION_TIME, and the TRAVEL_TIME registers get written when either the current has risen back to the local maximum level or the TIME L2H has elapsed. This ends DPM detection.

Setting the Detection of Plunger Movement

Several parameters can be configured independently for each individual channel to configure and tune the DPM algorithm. They are stored in two 16 bits registers named CFG_DPM0[15:0] and CFG_DPM1[15:0] (see the Register Map section).

The DPM_EN bit into CFG_DPM1[15:0] is the enable bit. Set this bit high to enable the DPM function for that specific channel.

As shown in Figure 7, the algorithm starts searching for the BEMF dip above a programmable current level given by:

DPM_START (mA) =
$$64 \times K_{CDR} \times GAIN \times SNSF \times DPM_START[7:0]_{DEC}$$

where DPM START[7:0] is an 8 bits bit field into the CFG DPM1 register.

As soon as the local maximum of the current I_DPM_PEAK is detected, it is stored in the corresponding R/O register. The algorithm then compares the subsequent dip caused by the plunger movement with a programmable threshold, which can be set by writing the DPM_THLD[11:0] bit field in the CFG_DPM0 register. Current thresholds are given by,

$$DPM_THLD (mA) = 8 \times K_{CDR} \times GAIN \times SNSF \times DPM_THLD[11:0]_{DEC}$$

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

The user can set a deglitch time to avoid a false BEMF dip being detected. The deglitch time is set in the number of PWM cycles and is equal to:

 $DPM_DEGLITCH = 2 \times DPM_MIN_NBR[3:0]_{DEC} \times 1/FPWM$

where DPM MIN NBR[3:0] is a 4 bits bit field into into the CFG DPM1 register.

If the current drops from the peak more than the DPM_THLD for longer than the DPM_DEGLITCH, then a valid BEMF dip is detected, meaning that the valve is working properly.

As soon as a valid BEMF dip has been recognized, the algorithm starts searching the local valley (the local minimum in the current profile). When the local valley is found, its value is stored into the I_DPM_VALLEY register. Moreover, the DPM_STATUS bit in the STATUS register is set. Since the STATUS bit is cleared every time the valve is deactivated (CNTL goes low), the DPM_STATUS bit is informative on whether the valve has been properly activated (see the <u>Setting the Status Monitor</u> section).

Vice versa, in case if no valid BEMF dip has been recognized during the whole DC_L2H time interval (Hit or Excitation time), then the DPM_STATUS bit remains low and the DPM_FAULT bit is set and can possibly be signaled out (see the PROTECTIONS AND FAULT INDICATOR section).

Finally, it is also possible to configure the MAX22216V so that the sequencer ends the excitation phase (HIT) as soon as a valid BEMF dip is detected. The 2 bits in CFG DPM1 control this function: END HIT AUTO and END HIT HIZ AUTO.

- Set END_HIT_AUTO = "1" to enable the automatic DC_L2H to DC_H switchover once a valid BEMF dip is detected
 and the current has risen back to the local maximum level (I_DPM_PEAK). This is shown with the red curve in the
 Figure 7.
- Set END_HIT_HIZ_AUTO = "1" to enable the automatic DC_L2H to HiZ (High Impedance) switchover once a valid BEMF dip is detected and the current has risen back to the local maximum level. If no BEMF dip is detected, the drive phase switches to HiZ when the TIME L2H elapses.

The END_HIT_AUTO or the END_HIT_HIZ_AUTO dramatically improves the drive efficiency in latched valve applications.

Resistance Measurement

The MAX22216V can be configured to calculate the equivalent resistance of the coil. As the resistance is expected to increase when the coil temperature increases, this function enables an indirect measurement of the solenoid or motor temperature.

To enable the function, the inductance measurement must be enabled (see the <u>Setting the Inductance Measurement</u> section). If the inductance measurement is not required and only the resistance measurement is needed, the user can simply set the AC SCAN amplitude to zero so that only a DC level is applied to the load.

The resistance measurement is performed by dividing the average voltage and average current applied to the load during the inductance measurement (see the <u>Setting the Inductance Measurement</u> section). The measured resistance for each individual channel can be read by accessing the RES[15:0] bits via SPI.

The resistance measurement formula is:

 $R(m\Omega) = R[15:0] \times (K_R/(SNSF \times GAIN))$

where $K_R = 8.437 \text{m}\Omega$.

The user can set a resistance threshold by writing the RES_THLD[15:0] bits into the configuration registers.

RES_THLD (m Ω) = RES_THLD[15:0] x (K_R/(SNSF x GAIN))

where $K_R = 8.437 \text{m}\Omega$.

If the calculated resistance exceeds the RES_THLD value, then the MAX22216V set the RES status bit into the STATUS register. Moreover, the RES_ bit in the FAULT register can be set, and a fault can possibly be signaled out (see the PROTECTIONS AND FAULT INDICATOR section).

Setting the Status Monitor

The MAX22216V allows monitoring the channel status either by reading the STT[3:0] bits into the STATUS register via SPI or by observing the STAT0 and STAT1 logic output pins. The status monitor function can be configured by writing

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

the Global Register STATUS_CFG[15:0].

Status information is mapped onto the STAT0 and STAT1 output pins according to <u>Table 15</u>, where CHS determines the Hardware configuration (see the <u>Hardware Configuration</u> section), and STAT_SEL0 and STAT_SEL1 are two selection bits in the STATUS_CFG register.

Note that if a channel is configured in a full-bridge configuration (FB), the status pins output the logical OR of the STT_bits of the corresponding channels in all modes except for PWM monitoring. When PWM monitoring is selected, the STAT_pin outputs the PWM signal of the half bridge with the lower channel count. The polarity of the STAT pins can be changed with the STAT_POL bit in the GLOBAL_CFG register.

The MAX22216V can be configured to output different types of information. <u>Table 16</u> summarizes all the possible settings. Three STAT_FUN[2:0] bits into the STATUS_CFG register permit the selection of the desired function.

STAT_FUN 0x0: ON/OFF Status is detected based on the inductance measurement. This is achieved by comparing the internally measured I_AC with a user-configurable threshold, IAC_THLD. This threshold can be programmed individually for each channel (see the Inductance Measurement section).

STAT_FUN 0x1: The STAT pins act as PWM Monitor outputs. In this configuration, a low-voltage replica of the PWM signal applied to the load is output on the status pin (STAT) for monitoring purposes. In particular, if MAX22216V is configured in CDR mode, the STAT signal can be processed by an external processor to detect stall conditions, load or supply disconnections, or any abrupt changes in the load conditions causing an abnormal duty cycle variation.

STAT_FUN 0x2: STT bits are set (and hence the STAT pin outputs a logic high value) every time the Coil resistance exceeds a pre-programmed threshold (RES_THLD) (see the <u>Resistance Measurement</u> section).

STAT_FUN 0x3: ON/OFF Status is detected based on the detection of plunger movement. When this configuration is used, the STT bit is cleared (and hence the STAT pins are deasserted) every time the channel is OFF (that is, CNTL = 0). When a valid BEMF dip is detected during the excitation phase, the STT bit is set (and hence the STAT pin is asserted).

STAT_FUN 0x4: In this configuration, the STT bits are set and the STAT pins are asserted when the part is supplied (V_M greater than UVLO) and cleared when the V_M drops (V_M less than UVLO). This stat is mainly used to show that the IC is within a functional voltage range, so it can also be controlled using VM_THLD_DOWN or a combination of VM_THLD_DOWN and VM_THLD_UP. For more details, see the V_M Switching Standalone section.

STAT_FUN 0x5: the STT bits are set and the STAT pins asserted when the coil current from the I_MONITOR is higher than a programmable DC current threshold (IDC_THLD). The IDC_THLD can be programmed individually for each channel by writing the 16 bits CFG_IDC_THLD[15:0] register. In full-bridge configuration, the IDC_THLD must be set on both channels. In comparison, in parallel full bridge, it must be set only on CH0 and CH1, while triggering both STAT pins independent of STAT_SEL. In parallel configurations, the IDC_THLD must be set based on the sum of currents on all channels, but only on the main control channel, and it triggers the STAT on all connected channels. The threshold is given by:

 $IDC_THLD (mA) = K_{CDR} \times GAIN \times SNSF \times IDC_THLD[15:0]_{DFC}$

Also, for a visual representation of the status monitor function, see the <u>STAT Monitor - Single-Ended Diagrams</u> and <u>STAT Monitor - Differential Diagrams</u> sections.

Table 15. STAT Logic Output Pin Selection

снѕ	CONFIGURATION SETTING	STAT0	STAT1
0x0	4x Independent HB	STT0 if STAT_SEL(0) = 0 STT1 if STAT_SEL(0) = 1	STT2 if STAT_SEL(1) = 0 STT3 if STAT_SEL(1) = 1
0x1	3x Parallel HB 1x Independent HB	STT0 = STT1 = STT2	STT3
0x2	2x Parallel HB 2x Independent HB	STT0 = STT1	STT2 if STAT_SEL(1) = 0 STT3 if STAT_SEL(1) = 1
0x3	2x Parallel HB 2x Parallel HB	STT0 = STT1	STT2 = STT3
0x4	4x Parallel HB	STT0 = STT1 = STT2 = STT3	-
0x5	1x Independent FB 1x Independent FB	STT0 in PWM monitoring (STT0 OR STT1) all other modes	STT2 in PWM monitoring (STT2 OR STT3) all other modes
0x6	1x Independent FB 2x Independent HB	STT0 in PWM monitoring (STT0 OR STT1) all other modes	STT2 if STAT_SEL(1) = 0 STT3 if STAT_SEL(1) = 1
0x7	1x Independent FB 2x Parallel HB	STT0 in PWM monitoring (STT0 OR STT1) all other modes	STT2 = STT3
0x8	1x Parallel FB	STT0 if STAT_SEL(0) = 0 STT1 if STAT_SEL(0) = 1	STT0 if STAT_SEL(0) = 0 STT1 if STAT_SEL(0) = 1

Table 16. Multifunction Status Pin

STAT_FUN	FUNCTION	CONDITION	STAT STAT_POL = "0"	STAT STAT_POL = "1"	STT BITS
0x0	Status detection based on the inductance	If IAC > IAC_THLD	Low	High	"0"
UXU	measurement	If IAC < IAC_THLD	High	Low	"1"
0x1	PWM monitor	-	PWM	PWM	-
0x2	Status detection based on resistance	If RES < RES_THLD	Low	High	"0"
UXZ	measurement	If RES > RES_THLD	High	Low	"1"
0x3	Status detection based on successful plunger	If CNTL = Low or CNTL = HIGH but DPM not detected	Low	High	"0"
	movement (DPM)	If CNTL = HIGH and DPM is detected	High	Low	"1"
0x4	Status datastian based on V., datastian	If V _M < UVLO	Low	High	"0"
0.004	Status detection based on V _M detection	If V _M > UVLO	High	Low	"1"
0x5	Status detection based on I_MONITOR	If I_MONITOR < IDC_THLD	Low	High	"0"
UXS	measurement	If I_MONITOR> IDC_THLD	High	Low	"1"

STAT Monitor - Single-Ended Diagrams

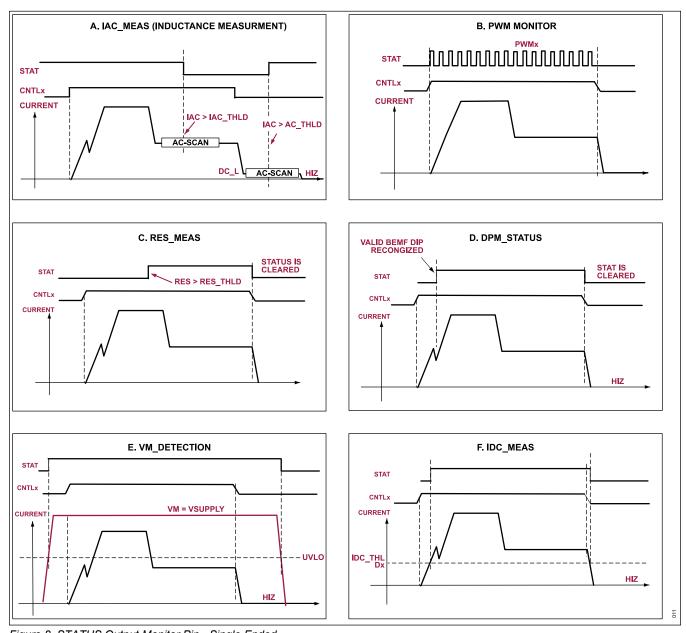


Figure 8. STATUS Output Monitor Pin - Single Ended

STAT Monitor - Differential Diagrams

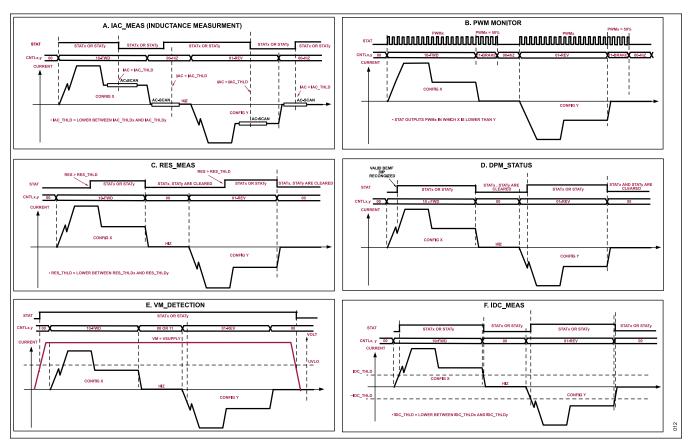


Figure 9. STATUS Output Monitor Pin - Differential

PROTECTIONS AND FAULT INDICATOR

Protections and Fault Indicator Pin (FAULT)

The MAX22216V feature a full set of protections and diagnostic functions. These include:

- 1. Undervoltage lockout (UVM)
- 2. Overcurrent protection (OCP)
- 3. Overtemperature protection (OVT)
- 4. Open-load detection (OL)
- 5. "Hit current not reached" detection (HHF)
- 6. Communication error detection (COMER)
- 7. Detection of plunger movement fault (DPM)
- 8. Inductance measurement (IND)
- 9. Load resistance fault (RES)

Every time a fault occurs, the corresponding global bit in the R/O STATUS register is set.

Fault events are also logged into two R/O 16 bits fault registers named FAULT0[15:0] and FAULT1[15:0] for diagnostic purposes. Dedicated flag bits for each channel are available for OCP, OL, HHF, DPM, IND, and RES faults so that the user can determine which of the channels failed. The fault registers are "Write 1 to clear registers". The user can read back the registers via SPI and decide to clear each individual fault flag by writing "1" to the corresponding bit. Alternatively, the fault registers can be cleared by driving the ENABLE pin logic low or by powering off the device (power cycling).

An active low open-drain fault indicator pin (FAULT) is available to signal out the fault condition for each of the above mentioned faults, with the exception of the IND and RES faults.

Faults can be masked by setting high the corresponding mask bit in the 16 bits global register GLOBAL_CFG[15:0] register. When masked, the fault event does not activate the FAULT pin, so the external controller does not receive any interrupts. The mask bits are listed in the <u>Table 17</u>. The default value is zero.

Table 17. Mask Bits

FAULT	MASK BIT
UVM	M_UVM
OCP	M_OCP
OVT	M_OVT
OL	M_OLF
HHF	M_HHF
DPM	M_DPM
COMER	M_COM

Two bits in the STATUS_CFG register (STRETCH_EN[1:0]) can be used to stretch the duration of the fault signal following an <u>undervoltage</u> (UVM) or an overtemperature (OVT) fault detection, as shown in <u>Table 18</u>. This function ensures the <u>FAULT</u> pin is kept active (logic low) for a minimum time interval (stretch time) after the fault occurrence. Whenever the <u>FAULT</u> pin is used to drive an external LED (for instance, in standalone use cases), setting a long stretch time allows visual observation of the fault event.

Table 18. Stretch Enable

STRETCH_EN	STRETCH TIME				
00b	No stretch				
01b	1s				
10b	2s				
11b	3s				

Undervoltage Lockout (UVM)

If at any time the voltage on the V_M pin falls below the undervoltage lockout threshold (about +4V typ), all channels are tri-stated, the internal charge pump is disabled, and the UVM bits in the fault register and in the STATUS register are set. The content of the logic registers is preserved until V_{DD} falls below the digital power-on reset (POR) threshold. When this happens (typically, at V_{DD} = 1.0V), all registers are reset to their default values.

The output of the UVLO comparator activates the FAULT indicator pin if it is not masked.

On the FAULT pin, the user can choose to output either the non-latched information of the UVLO comparator or the latched UVM bit information from the register map (see Figure 10).

Moreover, in the former case, the user can set a minimum FAULT assertion time (Stretch Time, see the <u>Protections and Fault Indicator Pin (FAULT)</u> section).

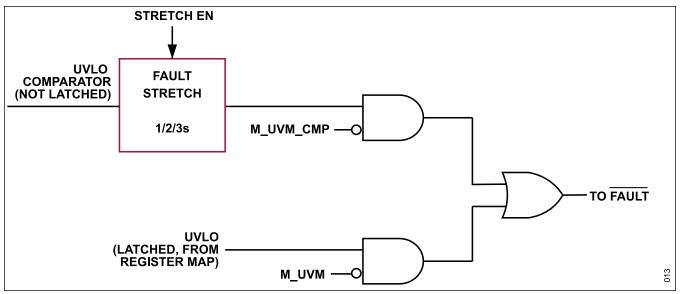


Figure 10. Fault Output Schematic

Overcurrent Protection (OCP)

The overcurrent protection protects the device from short-circuits of the driver outputs to the rails (V_M and GND) or across the load. When the output current exceeds OCP thresholds (see the <u>Electrical Characteristic</u> table), then the corresponding channel is automatically tri-stated, the global OCP bit in the STATUS register as well as the individual OCP_ bit in the FAULT register are <u>set</u>, and the FAULT output is asserted (if not masked). Writing 1 to the fault register clears the flag and deasserts the FAULT output but does not turn on the failed channel. Once the flag is cleared, normal operations are resumed by turning the failed channel off in the status register. In bridge-tied load or parallel configurations, all the channels that form the full bridge or the parallel configuration must be turned off to resume normal operation.

Open-Load Detection During Channel OFF (OL)

The OL_EN bit in the CFG_CTRL register enables or disables the open-load detection (OL) function. When this function is enabled, whenever the channel is tri-stated, a small source/sink current pulls the output node (I_{OL} LS, I_{OL} HS).

In single-ended configuration, if the voltage on the output pin is found to be less than $V_{OL\ LS}$ for low-side configuration or greater than $V_{OL\ HS}$ for high-side configuration, then an open-load condition is detected.

In full-bridge configuration, for the open-load detection to work properly, both channels must have open-load enabled, and the bridge must have one output configured as low-side ($HSnLS_x = 0$) and the other output as high-side ($HSnLS_y = 1$). The open-load condition is detected if both sides detect an open-load condition, and it appears as OLF for both channels at the same time. In the case of parallel full-bridges, open-load detection has to be set on all channels, and 2 channels on the same side of the full-bridge have to be set to HSnLS (CH0 and CH1 or Ch2 and CH3). The OLF appears for all channels at the same time.

If multiple channels are configured in parallel, even if the channels are connected via the PCB, the open-load detection works independently for each of the channels connected in parallel. Generally, it is recommended use open-load detection only on the main control channel. In the case of using parallel half-bridges together with the HSnLS, if there is a need of open-load detection on all channels, each channel has to be individually set to HSnLS.

In all the cases, a relatively long deglitch time (t_{OL} = 200 μ s typ) starting from the enabling of the function ensures the output has settled down before the open-load condition is checked.

When an open-load condition is detected, the corresponding bit in the fault register as well as the OLF bit in the STATUS register are set. The FAULT output pin is also asserted if it is not masked.

Overtemperature Protection (OVT)

If the die temperature exceeds safe limits, all outputs are disabled. The OVT flag bit in the FAULT and STATUS registers is set, and the FAULT pin is driven low if not masked.

Once the die temperature has fallen to a safe level, operation automatically resumes. The FAULT pin is released after the stretch time (see the <u>Protections and Fault Indicator Pin (FAULT)</u> section), but the flag bit remains set to '1' until the fault register is write to 1.

"HIT Current not Reached" Flag (HHF)

In CDR mode, the user can monitor whether the preprogrammed HIT current level is reached. This diagnostic tool can be enabled by setting the bit HHF_EN_ to "1" in the CFG_CTRL register. If the target current is not reached at the end of TIME_L2H, then the individual HHF flag bit in the Fault register as well as the global HHF bit in the STATUS register are set. The FAULT indication pin is asserted if not masked. Note that this fault does not tri-state the driver. The flag bit is cleaned up when the fault register is write to 1.

HOW TO CONFIGURE THE MAX22216V

SPI Description

The MAX22216V feature a 10MHz capable serial peripheral interface (SPI) Mode 0, but is also compatible with Mode 3. The cyclic redundancy check control (CRC) is optional and can be activated by driving logic high the pin CRC_EN.

The SPI supports daisy-chain connections so that multiple devices can be controlled from a single SPI line. This feature is developed for easy daisy-chaining of MAX22216V, with the requirement that all devices in line need to have the same full message length (24 bit for standard message, and 32 bit when CRC is enabled).

SDI input is clocked in on the rising edge of the SCK signal. Data output on SDO is clocked out on the falling edge of the SCK signal.

The SPI transfers are byte-oriented.

SPI transactions without CRC error detection.

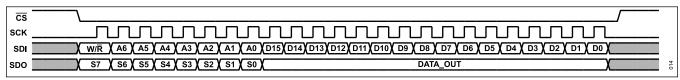


Figure 11. SPI Datagram without CRC

The SPI input data transfer consists of a 24 bit word: 8 bits for the address and a W/R bit plus 16 bits of data. SPI transactions with CRC error detection.

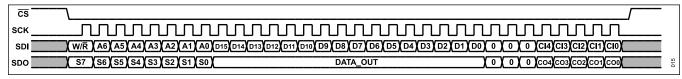


Figure 12. SPI Datagram with CRC

The SPI input data transfer consists of 32 bits: 8 bits for the address and W/R bit, 16 bits of data, and 8 bits of FCS. The CRC error detection is just enabled if the CRC EN pin is high.

For more details on CRC error detection, see the CRC Error Detection on the Serial Interface section.

SPI Data

The SPI bit fields are the following:

- W/nR: Is 1 for a Write command, and it is 0 for a Read command.
- A[6:0]: Address.
- D[15:0]: Input data (can be X for a read).
- S[7:0]: Status data
 - S[7] OVT
 - S[6] OCP
 - S[5] OLF
 - S[4] COMER
 - S[3] UVM
 - S[2] DPM
 - S[1] STAT1
 - S[0] STAT0
- DATA OUT: Output data (it depends on the previous command).
 - If the previous command is a write, DATA OUT contains the D[15:0] data sent in the previous command.
 - If the previous command is a read, DATA_OUT contains the register map data at the A[6:0] address sent in the
 previous command.

A read access request uses dummy write data. Read data is transferred back to the controller with subsequent read or write access. Hence, reading multiple registers can be done in a pipelined fashion.

Example:

Table 19. SS - Status Data

ACTION	DATA SENT ON SDI	DATA RECEIVED ON SDO
Read register 0x21 (send command)	0x21XXXX	0xSS, unused_data
Read register 0x21 (receive data)	0x21XXXX	0xSS, data_register_21
Write 0x1234 to register 0x10	0x901234	0xSS, data_register_21
Write 0x5678 to register 0x10	0x905678	0xSS1234

CRC Error Detection on the Serial Interface

CRC error detection on the serial interface CRC error detection of the serial data can be enabled to minimize incorrect operation/misinformation due to data corruption of the SDI/SDO signals.

The CRC Error Detection can be enabled by setting the CRC EN input logic high.

If error detection is enabled, then the MAX22216V:

- 1. Performs error detection on the SDI data that it receives from the controller.
- 2. And calculates a CRC on the SDO data and appends a check byte to the SDO diagnostics/status data that it sends to the controller.

This ensures that both the data that it receives from the controller (setting/configuration) and the data that it sends to the controller (diagnostics/status) have a low likelihood of undetected errors. Setting the CRCEN input high enables CRC error detection. A CRC Frame Check Sequence (FCS) is then sent along with each serial transaction. The 5-bit FCS is based on the generator polynomial $x^5 + x^4 + x^2 + 1$ with a CRC starting value = 11111. When CRC is enabled, the MAX22216V expect a check byte appended to the SDI program/configure data that it receives. The check byte has the following format (see Figure 13):

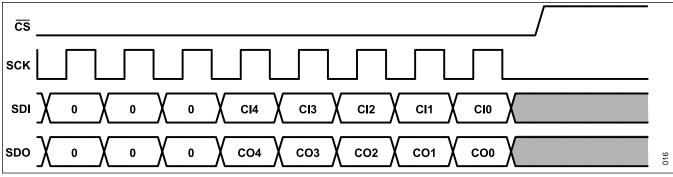


Figure 13. CRC Byte

The five FCS bits (Clx/COx) are calculated on all the data sent in one SPI command, including the three "0" in the MSBs of the check byte. Therefore, the CRC is calculated from 19 bits. CI0 is the LSB of the FCS. The MAX22216V verify the received FCS. If no error is detected, the MAX22216V changes configuration per the SDI data. If a CRC error is detected, then the MAX22216V do not change the configuration. Instead, the MAX22216V set the COMER bit of the status byte of the next SPI transmission high.

Here is an example for how CRC works in MAX22216V (CRC-5-ITU):

00110000000000100000000 <- Step 8

000000

Polynomial: $x^5 + x^4 + x^2 + x^0$ Binary: 110101 10000000 <- Register address 0000000000000001 <- Register data 10000000000000000000001000 <- Data bits with 3 padding zero bits 11111 <- Starting value that gets XORed into the data bits 0111100000000000000000001000 <- Data bits with starting value XORed in 0111100000000000000000100000000 <- Data bits with starting value XORed in and five 0 bits appended 000000 111100000000000000000100000000 <- Step 1 01001000000000000000100000000 <- Step 2 (XOR applied) 000000 1001000000000000000100000000 <- Step 3 110101 100010000000000000100000000 <- Step 4 (XOR applied) 110101 101110000000000000100000000 <- Step 5 (XOR applied) 110101 11011000000000000100000000 <- Step 6 (XOR applied) 110101 000110000000000100000000 <- Step 7 (XOR applied) 000000

```
0110000000000100000000 <- Step 9
000000
110000000000100000000 <- Step 10
110101
00101000000100000000 <- Step 11 (XOR applied)
000000
 0101000000100000000 <- Step 12
 000000
  101000000100000000 <- Step 13
  110101
  111010000100000000 <- Step 14 (XOR applied)
  110101
   01111000100000000 <- Step 15 (XOR applied)
   000000
   1111000100000000 <- Step 16
   110101
    010010100000000 <- Step 17 (XOR applied)
    000000
    10010100000000 <- Step 18
     110101
     100000000000 <- Step 19 (XOR applied)
     110101
      101010000000 <- Step 20 (XOR applied)
      110101
      11111000000 <- Step 21 (XOR applied)
      110101
       0101100000 <- Step 22 (XOR applied)
       000000
       101100000 <- Step 23
       110101
        11001000 <- Step 24 (XOR applied)
        0011100 <- Step 25 (XOR applied)
        000000
         011100 <- Step 26
         000000
         11100 <- Step 27
```

Datagram: 10000000 00000000 00000001 00011100

If multiple MAX22216V are connected in a daisy-chain, the FCS bits for a specific MAX22216V in a chain are calculated just on the data that has been sent to this specific MAX22216V. Each MAX22216V in a daisy-chain is sent an FCS byte calculated independently from the data that has been sent to the other MAX22216V. CRC error detection has to be

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

consistently enabled or disabled within a daisy chain of the MAX22216V.

One-Time Programmable (OTP)

The configuration settings can be programmed as power-on default by writing one-time programming registers (OTPs). The user can write OTPs registers in production according to his specific needs and verify their content by reading them back through SPI. Once the configuration settings are written into OTP registers, the MAX22216V can be operated by means of logic input signals (CNTL) without the need of SPI control. This operating mode is referred as "standalone mode".

The default values of every functional register in the RegMap can possibly be written in the OTP Memory bank. Typically, for standalone applications, only a subset of RegMap registers needs to be OTP programmed.

To enter OTP programming mode, the specific SPI command 0xF12A7 needs to be issued (see the <u>OTP Programming</u> section). This command gives access to the OTP Controller registers: OTP_CONTROL(0x68), OTP_STATUS (0x69), OTP_DATA0 (0x7A), OTP_DATA1 (0x7B), and OTP_ADDR (0x7C). Similarly to the functional register case, the SPI transfer to the OTP controller register consists of a 24-bit word: 8 bits for the address and the W/R bit plus 16 bits of data.

OTP Programming

The OTP writing procedure must be executed in a controlled environment. It is normally operated in a factory under well-controlled temperature and voltage conditions.

For safe OTP writing, the following conditions must be fulfilled:

Programming Temp: 25°C ± 10°C

Programming Voltage (V_M): 8.7V ± 0.13V (1.5%)

The OTP writing procedure is as follows:

- 1. Power up the MAX22216V with V_M at the programming voltage (8.7V).
- 2. Drive $CRC_EN = 0$.
- 3. Activate the device by setting high the bit ACTIVE in the GLOBAL_CFG register (0x01). All the remaining bits can be set at zero.
- 4. To enter the OTP programming mode, send an SPI command equal to 0xFD12A7.
- 5. To send a second SPI command 0xF8001B to prepare the OTP controller.
- 6. Write the address of the functional register that a user wants to program into the OTP ADDR register (0x7C).
- 7. Write the Least Significant Data Byte into the OTP_DATA0 register (0x7A). This becomes the Least Significant Data Byte Default value at power-up for that specific register.
- 8. Write the Most Significant Data Byte into the OTP_DATA1 register (0x7B). This becomes the Most Significant Data Byte Default value at power-up for that specific register.
- 9. To start programming, write the Start Programming bit (SRT_PROG) of the register OTP_CONTROL (0x68) with the remaining bits set at zero.
- 10. Poll the register OTP_STATUS (0x69) until the DONE bit equals to 1. If a user finds other bits equal to 1, it means that something failed during programming, and hence the OTP content is corrupted.
- 11. If everything is ok, repeat step 6 to step10 for the next Functional Register that a user wants to program. If a problem occurs at step 8, retry the procedure (step 6 to step10) for the same Functional Register (see Note 1).
- 12. To verify if the whole process is successful, do a power cycle and read back the default values of the Functional Registers that a user have programmed. In case of errors, re-program the failed register by repeating step 6 to step10 (see Note 1).

Note 1: When a writing cycle (step 6 to step10) does not succeed and failures are found at step 10 or step 12, one register of the OTP memory bank becomes unusable. Since the size of the OTP memory bank is limited, a user has a limited number of extra OTP write cycle attempts, including successful and unsuccessful attempts.

It is also possible to "lock" the OTP memory bank and avoid further attempts to write OTPs. Once all records' data have been written, the user can write a record with MTP_ADDR = 0x41 and MTP_DATA = 0xA5A5 and reboot the device. Doing that, no further programming session of the part is possible. This prevents the final user from modifying the factory-programmed settings.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

Wake-Up Time for OTP Download at Power-Up

At power-up, the content of the OTP memory bank must be downloaded into the volatile register bank.

The total wake-up time (T_{WU}) is the sum of a fixed contribution and a variable contribution. The variable contribution is due to the download of the OTP memory and depends on the total number of OTP registers that have been preprogrammed. In formula:

$$T_{WU} = T_{FW} + T_{VWU} \times N_{OTP}$$

Where T_{FW} denotes the fixed wake-up time and T_{VWU} denotes the variable wake-up time (see the <u>Electrical Characteristic</u> table), and N_{OTP} is the number of RegMap registers whose default value has been pre-programmed into OTP registers.

Register Map

FUNCTIONAL REGISTERS

Functional registers can be addressed directly via SPI.

The default values from the factory of all registers is 0. All startup default register values can be re-written and locked in nonvolatile memory (OTP) (see the OTP Programming section).

ADDRESS	NAME	MSB		•					LSB		
GLOBAL R		_	I	<u> </u>	I	l	I	I			
	GLOBAL CTRL[15:8]	_	_	_	_	_	_	_	_		
0x00	GLOBAL_CTRL[7:0]		F_PWM	I_M[3:0]		CNTL3	CNTL2	CNTL1	CNTL0		
0.04	GLOBAL_CFG[15:8]	ACTIVE	M_OVT	M_OCP	M_OLF	M_HHF	M_DPM	M_COM F	M_UVM		
0x01	GLOBAL_CFG[7:0]	CNTL_P OL									
0x02	STATUS[15:8]	-	STT3	STT2	STT1	STT0	MIN_T_ ON	RES	IND		
	STATUS[7:0]	OVT	OCP	OLF	HHF	DPM	COMER	UVM	RFU		
0x03	STATUS_CFG[15:8]	-	_	_	_	-	_	M_UVM_ CMP	V5_nV3		
UXUS	STATUS_CFG[7:0]	EN_LDO	STRETC	H_EN[1:0]	STAT_S EL1	STAT_S EL0	S ⁻	TAT_FUN[2:	0]		
0x04	DC_H2L[15:8]				DC_H2	2L[15:8]					
UXU4	DC_H2L[7:0]				DC_H	2L[7:0]					
0,05	VM_MONITOR[15:8]	-	_	-		VM_	MONITOR[12:8]			
0x05	VM_MONITOR[7:0]	VM_MONI				ITOR[7:0]					
0,406	VM_THRESHOLD[15:8]	-	_	-	_	-	-	-	-		
0x06	VM_THRESHOLD[7:0]		VM_THL	D_UP[3:0]			VM_THLD_	DOWN[3:0]			
0.07	F_AC[15:8]	-	-	-	_		F_AC_SC	CAN[11:8]			
0x07	F_AC[7:0]		•		F_AC_S	CAN[7:0]					
0,,00	U_AC_SCAN[15:8]	_			U_A	AC_SCAN[1	4:8]				
80x0	U_AC_SCAN[7:0]		•		U_AC_S	CAN[7:0]					
CONFIGUR	ATION REGISTERS CH 0	•									
000	CFG_DC_L2H[15:8]				DC_L2F	I_0[15:8]					
0x09	CFG_DC_L2H[7:0]				DC_L2l	H_0[7:0]					
004	CFG_DC_H[15:8]				DC_H_	0[15:8]					
0x0A	CFG_DC_H[7:0]				DC_H	_0[7:0]					
000	CFG_DC_L[15:8]				DC_L_	0[15:8]					
0x0B	CFG_DC_L[7:0]				DC_L	_0[7:0]					
000	CFG_L2H_TIME[15:8]				TIME_L2	H_0[15:8]					
0x0C	CFG_L2H_TIME[7:0]				TIME_L2	2H_0[7:0]					
0x0D	CFG_CTRL0[15:8]	CTRL_MC	DE_0[1:0]	HHF_EN _0	OL_EN_ 0	H2L_EN _0	RDWE_0	RDWE_0 RMDE_0 RUPE_0			
	CFG_CTRL0[7:0]		RAMP_0[7:0]								
0x0E	CFG_CTRL1[15:8]	_	_	_	_	_	HSnLS_ 0	F_PWM	1_0[1:0]		

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB	
	CFG_CTRL1[7:0]	T_BLANK	ING_0[1:0]	SLEW_RA	TE_0[1:0]	GAIN	V[1:0]	SNSI	F[1:0]	
	CFG DPM0[15:8]	<u> </u>	_	_	_		DPM_THL	_D_0[11:8]		
0x0F	CFG DPM0[7:0]				DPM_TH	LD_0[7:0]				
0x10	CFG_DPM1[15:8]	_	DPM_EN _0	END_HI T_TO_HI Z_AUTO _0	END_HI T_AUTO _0		DPM_MIN_NBR_0[3:0]			
	CFG_DPM1[7:0]				DPM_ST	ART[7:0]				
0x11	CFG_IDC_THLD[15:8]				IDC_THL	D_0[15:8]				
UXII	CFG_IDC_THLD[7:0]				IDC_THL	_D_0[7:0]				
0x12	CFG_R_THLD[15:8]				RES_THL	.D_0[15:8]				
0.712	CFG_R_THLD[7:0]				RES_THI	LD_0[7:0]				
0x13	CFG_IND_0[15:8]	_	_	_	_	DITH_E N_0	L_MEAS _EN_0	L_MEAS _L2H_0	L_MEAS _H_0	
	CFG_IND_0[7:0]	L_	MEAS_WC	YCLES_0[3	:0]		L_NBR_C	ALC_0[3:0]		
0x14	CFG_IND_1[15:8]	_	_	-	-		IAC_THL	D_0[11:8]		
UX14	CFG_IND_1[7:0]				IAC_THL	D_0[7:0]				
0x15	CFG_P[15:8]				CFG_P	_0[15:8]				
0.7.10	<u>CFG_P[7:0]</u>				CFG_F					
0x16	CFG_I[15:8]					_0[15:8]				
	CFG_I[7:0]				CFG_I	_0[7:0]				
CONFIGUR	ATION REGISTERS CH 1	<u> </u>								
0x17	CFG_DC_L2H[15:8]					I_1[15:8]				
	CFG_DC_L2H[7:0]				DC_L2					
0x18	CFG_DC_H[15:8]				DC_H_					
	CFG_DC_H[7:0]					_1[7:0]				
0x19	CFG_DC_L[15:8]					1[15:8]				
	CFG_DC_L[7:0]					_1[7:0]				
0x1A	CFG_L2H_TIME[15:8]					H_1[15:8]				
-	CFG_L2H_TIME[7:0]			T		2H_1[7:0]	T	T	Г	
0x1B	CFG_CTRL0[15:8]	CTRL_MC	DE_1[1:0]	HHF_EN _1	OL_EN_ 1	H2L_EN _1	RDWE_1	RMDE_1	RUPE_1	
	CFG_CTRL0[7:0]			T	RAMP	_1[7:0]		T		
0x1C	CFG_CTRL1[15:8]	-	_	_	_	_	HSnLS_ 1	F_PWN	1_1[1:0]	
	CFG_CTRL1[7:0]	T_BLANK	NG_1[1:0]	SLEW_RA	TE_1[1:0]	GAIN	N[1:0]	SNSI	F[1:0]	
0x1D	CFG_DPM0[15:8]	_	_	_	_		DPM_THL	_D_1[11:8]		
ONTE	CFG_DPM0[7:0]				DPM_TH	LD_1[7:0]				
0x1E	CFG_DPM1[15:8]	_	DPM_EN _1	END_HI T_TO_HI Z_AUTO _1	END_HI T_AUTO _1		DPM_MIN_NBR_1[3:0]			
	CFG_DPM1[7:0]				DPM_ST	ART[7:0]				
0x1F	CFG_IDC_THLD[15:8]				IDC_THL	D_1[15:8]				
UXIF	CFG_IDC_THLD[7:0]				IDC_THL	D_1[7:0]				

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB
0.20	CFG_R_THLD[15:8]				RES_THL	.D_1[15:8]			
0x20	CFG_R_THLD[7:0]				RES_TH	LD_1[7:0]			
0x21	CFG_IND_0[15:8]	_	_	-	-	DITH_E N_1	L_MEAS _EN_1	L_MEAS _L2H_1	L_MEAS _H_1
	CFG_IND_0[7:0]	L_MEAS_WCYCLES_1[3:0] L_NBR_CALC_1[3:0]							
0x22	CFG_IND_1[15:8]	_	_	_	_		IAC_THL	D_1[11:8]	
UXZZ	CFG_IND_1[7:0]				IAC_THL	D_1[7:0]			
0x23	CFG_P[15:8]				CFG_P	_1[15:8]			
0,25	<u>CFG_P[7:0]</u>				CFG_F	2_1[7:0]			
0x24	CFG_I[15:8]				CFG_I	_1[15:8]			
0,24	CFG_I[7:0]				CFG_I	_1[7:0]			
CONFIGUR	ATION REGISTERS CH 2								
0x25	CFG_DC_L2H[15:8]				DC_L2F	I_2[15:8]			
0,25	CFG_DC_L2H[7:0]				DC_L2l	H_2[7:0]			
0x26	CFG_DC_H[15:8]				DC_H_	2[15:8]			
0,20	CFG_DC_H[7:0]				DC_H	_2[7:0]			
0x27	CFG_DC_L[15:8]				DC_L_	2[15:8]			
0,27	CFG_DC_L[7:0]				DC_L	_2[7:0]			
0x28	CFG_L2H_TIME[15:8]				TIME_L2	H_2[15:8]			
0,20	CFG_L2H_TIME[7:0]				TIME_L2	2H_2[7:0]	,		
0x29	CFG_CTRL0[15:8]	CTRL_MC	DE_2[1:0]	HHF_EN _2	OL_EN_ 2	H2L_EN _2	RDWE_2	RMDE_2	RUPE_2
	CFG_CTRL0[7:0]				RAMP	_2[7:0]			
0x2A	CFG_CTRL1[15:8]	_	_	_	_	_	HSnLS_ 2	F_PWM	1_2[1:0]
	CFG_CTRL1[7:0]	T_BLANK	ING_2[1:0]	SLEW_RA	ATE_2[1:0]	GAIN	N[1:0]	SNSI	F[1:0]
0x2B	CFG_DPM0[15:8]	-	_	-	-		DPM_THL	_D_2[11:8]	
UNZB	CFG_DPM0[7:0]				DPM_TH	LD_2[7:0]			
0x2C	CFG_DPM1[15:8]	_	DPM_EN _2	END_HI T_TO_HI Z_AUTO _2	END_HI T_AUTO _2		DPM_MIN_	NBR_2[3:0]	
	CFG_DPM1[7:0]				DPM_ST	ART[7:0]			
0.43D	CFG_IDC_THLD[15:8]				IDC_THL	D_2[15:8]			
0x2D	CFG_IDC_THLD[7:0]				IDC_THL	D_2[7:0]			
٥٠٠٥٦	CFG_R_THLD[15:8]				RES_THL	.D_2[15:8]			
0x2E	CFG_R_THLD[7:0]				RES_TH	LD_2[7:0]			
0x2F	CFG_IND_0[15:8]	_	_	_	_	DITH_E N_2	L_MEAS _EN_2	L_MEAS _L2H_2	L_MEAS _H_2
	CFG_IND_0[7:0]	L_	MEAS_WC	YCLES_2[3	:0]		L_NBR_C	ALC_2[3:0]	
0x30	CFG_IND_1[15:8]	_	_	_	_		IAC_THL	D_2[11:8]	
UX30	CFG_IND_1[7:0]				IAC_THL	D_2[7:0]			
0x31	CFG_P[15:8]				CFG_P	_2[15:8]			
0,31	CFG_P[7:0]				CFG_F	2[7:0]			

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB	
0x32	CFG_I[15:8]				CFG_I_	_2[15:8]				
0x32	CFG_I[7:0]				CFG_I	_2[7:0]				
CONFIGUR	ATION REGISTERS CH 3									
0x33	CFG_DC_L2H[15:8]				DC_L2H	_3[15:8]				
UXSS	CFG_DC_L2H[7:0]				DC_L2H	H_3[7:0]				
0x34	CFG_DC_H[15:8]				DC_H_	3[15:8]				
0,04	CFG_DC_H[7:0]		DC_H_3[7:0]							
0x35	CFG_DC_L[15:8]				DC_L_	3[15:8]				
0,00	CFG_DC_L[7:0]				DC_L	_3[7:0]				
0x36	CFG_L2H_TIME[15:8]				TIME_L2	H_3[15:8]				
0,00	CFG_L2H_TIME[7:0]				TIME_L2	H_3[7:0]				
0x37	CFG_CTRL0[15:8]	CTRL_MC	DDE_3[1:0]	HHF_EN _3	OL_EN_ 3	H2L_EN _3	RDWE_3	RMDE_3	RUPE_3	
	CFG_CTRL0[7:0]		_		RAMP	_3[7:0]				
0x38	CFG_CTRL1[15:8]	_	_	_	ı	-	HSnLS_ 3	F_PWN	1_3[1:0]	
	CFG_CTRL1[7:0]	T_BLANK	ING_3[1:0]	SLEW_RA	ATE_3[1:0]	GAI	N[1:0]	SNS	- [1:0]	
0x39	CFG_DPM0[15:8]	_	_	_	_		DPM_THL	_D_3[11:8]		
0x39	CFG_DPM0[7:0]				DPM_TH	LD_3[7:0]				
0x3A	CFG_DPM1[15:8]	-	DPM_EN	END_HI T_TO_HI Z_AUTO _3	END_HI T_AUTO _3		DPM_MIN_	NBR_3[3:0]		
	CFG_DPM1[7:0]		•		DPM_ST	ART[7:0]				
000	CFG_IDC_THLD[15:8]				IDC_THL	D_3[15:8]				
0x3B	CFG_IDC_THLD[7:0]				IDC_THL	.D_3[7:0]				
0x3C	CFG_R_THLD[15:8]				RES_THL	D_3[15:8]				
UXSC	CFG_R_THLD[7:0]				RES_THI	_D_3[7:0]				
0x3D	CFG_IND_0[15:8]	_	_	_	_	DITH_E N_3	L_MEAS _EN_3	L_MEAS _L2H_3	L_MEAS _H_3	
	CFG_IND_0[7:0]	L_	_MEAS_WC	YCLES_3[3	:0]		L_NBR_C	ALC_3[3:0]		
0x3E	CFG_IND_1[15:8]	_	_	_	-		IAC_THL	D_3[11:8]		
UXSL	CFG_IND_1[7:0]				IAC_THL	.D_3[7:0]				
0x3F	CFG_P[15:8]				CFG_P	_3[15:8]				
0,01	CFG_P[7:0]				CFG_P	_3[7:0]				
0x40	CFG_I[15:8]				CFG_I_	3[15:8]				
	CFG_I[7:0]	CFG_I_3[7:0]								
DIAGNOST	ICS_CH 0									
0x41	<u>I_DPM_PEAK[15:8]</u>				I_DPM_PE	AK_0[15:8]				
	I_DPM_PEAK[7:0]				I_DPM_PE					
0x42	I_DPM_VALLEY[15:8]				_DPM_VAL					
	I_DPM_VALLEY[7:0]				I_DPM_VAL]			
0x43	TRAVEL_TIME[15:8]				TRAVEL_					
3,7,10	TRAVEL_TIME[7:0]				TRAVEL_	TIME[7:0]				

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB	
2 44	REACTION_TIME[15:8]			F	REACTION_	TIME_0[15:	:8]			
0x44	REACTION_TIME[7:0]				REACTION	_TIME_0[7:0	0]			
0.45	I_MONITOR[15:8]				I_MONITO	DR_0[15:8]				
0x45	I_MONITOR[7:0]				I_MONIT	OR_0[7:0]				
047	I_AC[15:8]				I_AC_	0[15:8]				
0x47	I_AC[7:0]				I_AC	_0[7:0]				
0x48	RES[15:8]		RES[15:8]							
UX 4 0	RES[7:0]				RES	3[7:0]				
0x49	PWM_DUTY[15:8]			P\	WM_DUTYC	CYCLE_0[18	5:8]			
0849	PWM_DUTY[7:0]			Р	WM_DUTY	CYCLE_0[7	:0]			
DIAGNOST	ICS_CH 1									
0.44	I_DPM_PEAK[15:8]				I_DPM_PE	AK_1[15:8]				
0x4A	I_DPM_PEAK[7:0]				I_DPM_PI	EAK_1[7:0]				
0x4B	I_DPM_VALLEY[15:8]				I_DPM_VAL	LEY_1[15:8	3]			
UX 4 D	I_DPM_VALLEY[7:0]				I_DPM_VA	LLEY_1[7:0]			
0x4C	TRAVEL_TIME[15:8]				TRAVEL_	TIME[15:8]				
UX4C	TRAVEL_TIME[7:0]				TRAVEL_	_TIME[7:0]				
0x4D	REACTION_TIME[15:8]			F	REACTION_	TIME_1[15:	:8]			
UX4D	REACTION_TIME[7:0]				REACTION_	_TIME_1[7:0	0]			
0x4E	I_MONITOR[15:8]				I_MONIT(DR_1[15:8]				
UX4E	I_MONITOR[7:0]				I_MONIT	OR_1[7:0]				
0x50	<u>I_AC[15:8]</u>				I_AC_	1[15:8]				
0,00	<u>I_AC[7:0]</u>				I_AC_	_1[7:0]				
0x51	RES[15:8]				RES	[15:8]				
0.01	RES[7:0]					S[7:0]				
0x52	PWM_DUTY[15:8]			P\	NM_DUTYC	CYCLE_1[1	5:8]			
0,02	PWM_DUTY[7:0]			Р	WM_DUTY	CYCLE_1[7	:0]			
DIAGNOST	ICS_CH 2									
0x53	I_DPM_PEAK[15:8]				I_DPM_PE	AK_2[15:8]				
	I_DPM_PEAK[7:0]					EAK_2[7:0]				
0x54	I_DPM_VALLEY[15:8]				I_DPM_VAL					
	I_DPM_VALLEY[7:0]				I_DPM_VA]			
0x55	TRAVEL_TIME[15:8]					TIME[15:8]				
	TRAVEL_TIME[7:0]					_TIME[7:0]				
0x56	REACTION_TIME[15:8]				REACTION_					
	REACTION_TIME[7:0]				REACTION_		0]			
0x57	I_MONITOR[15:8]					DR_2[15:8]				
	I_MONITOR[7:0]					OR_2[7:0]				
0x59	<u>I_AC[15:8]</u>					2[15:8]				
3	<u>I_AC[7:0]</u>					_2[7:0]				
0x5A	RES[15:8]					[15:8]				
5	RES[7:0]				RES	3[7:0]				

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB
0x5B	PWM_DUTY[15:8]			PV	VM_DUTYC	YCLE_2[15	5:8]		
UXOD	PWM_DUTY[7:0]			P	WM_DUTY	CYCLE_2[7	:0]		
DIAGNOST	ICS_CH 3								
0x5C	<u>I_DPM_PEAK[15:8]</u>				I_DPM_PE	AK_3[15:8]			
UXSC	I_DPM_PEAK[7:0]				I_DPM_PE	EAK_3[7:0]			
0x5D	I_DPM_VALLEY[15:8]			Į	_DPM_VAL	LEY_3[15:8	3]		
UXSD	I_DPM_VALLEY[7:0]				I_DPM_VAI	_LEY_3[7:0]		
0x5E	TRAVEL_TIME[15:8]				TRAVEL_	TIME[15:8]			
UXSE	TRAVEL_TIME[7:0]				TRAVEL_	TIME[7:0]			
0x5F	REACTION_TIME[15:8]			R	EACTION_	TIME_3[15:	8]		
UXSF	REACTION_TIME[7:0]			F	REACTION_	_TIME_3[7:0)]		
0x60	I_MONITOR[15:8]				I_MONITO	DR_3[15:8]			
0,000	<u>I_MONITOR[7:0]</u>				I_MONIT	OR_3[7:0]			
0x62	<u>I_AC[15:8]</u>				I_AC_	3[15:8]			
0.02	I_AC[7:0]				I_AC_	_3[7:0]			
0x63	RES[15:8]				RES	[15:8]			
0.000	RES[7:0]				RES	[7:0]			
0x64	PWM_DUTY[15:8]			PV	VM_DUTYC	YCLE_3[15	5:8]		
0.04	PWM_DUTY[7:0]			P\	WM_DUTY	CYCLE_3[7	:0]		
FAULT LOC	3								
0x65	FAULT0[15:8]	DPM3	DPM3 DPM2 DPM1 DPM0 OLF3 OLF2 OLF1 OLF0						OLF0
0.000	FAULT0[7:0]	HHF3 HHF2 HHF1 HHF0 OCP3 OCP2 OCP1							OCP0
0x66	FAULT1[15:8]	_	_	_	_	_	RES3	RES2	RES1
0,000	FAULT1[7:0]	RES0	OVT	COMER	UVM	IND3	IND2	IND1	IND0

Register Details

GLOBAL_CTRL (0x00)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_	_	_	_	_	_
Reset	_	_	_	_	-	-	_	_
Access Type	_	-	-	-	-	-	-	-
DIT	1							
BIT	7	6	5	4	3	2	1	0
Field	7		5 1_M[3:0]	4	3 CNTL3	2 CNTL2	1 CNTL1	0 CNTL0
	7	F_PWM	-	4		_	1 CNTL1 0x0	-

BITFIELD	BITS	DESCRIPTION	DECODE
F_PWM_M	7:4	Controller Chopping Frequency.	0x0: 100kHz. 0x1: 80kHz. 0x2: 60kHz. 0x3: 50kHz. 0x4: 40kHz. 0x5: 30kHz. 0x6: 25kHz. 0x7: 20kHz. 0x8: 15kHz. 0x9: 10kHz. 0xA: 7.5kHz. 0xB: 5kHz. 0xC: 2.5kHz.
CNTL3	3	Used to control the corresponding channel depending on the CHS register field of the GLOBAL_CFG register. For more details, see Table 2 and Table 3.	0x0: Disable the channel. 0x1: Enable the channel.
CNTL2	2	Used to control the corresponding channel depending on the CHS register field of the GLOBAL_CFG register. For more details, see Table 2 and Table 3.	0x0: Disable the channel. 0x1: Enable the channel.
CNTL1	1	Used to control the corresponding channel depending on the CHS register field of the GLOBAL_CFG register. For more details, see Table 2 and Table 3.	0x0: Disable the channel. 0x1: Enable the channel.
CNTL0	0	Used to control the corresponding channel depending on the CHS register field of the GLOBAL_CFG register. For more details, see Table 2 and Table 3.	0x0: Disable the channel. 0x1: Enable the channel.

GLOBAL_CFG (0x01)

BIT	15	14	13	12	11	10	9	8
Field	ACTIVE	M_OVT	M_OCP	M_OLF	M_HHF	M_DPM	M_COMF	M_UVM
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read
BIT	7	6	5	4	3	2	1	0
Field	CNTL_POL	STAT_POL	_	VDRnVDRD UTY		CHS	5[3:0]	
Reset	0x0	0x0	_	0x0	0x0			
Access Type	Write, Read	Write, Read	_	Write, Read		Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
ACTIVE	15	Enable Bit to Activate the Part.	0x0: Disable part, low-power mode is active. 0x1: Enable part.
M_OVT	14	Masks Overtemperature Detection for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION	DECODE		
M_OCP	13	Masks Overcurrent Protection for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
M_OLF	12	Masks Open-Load Detection for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
M_HHF	11	Masks Hit Current not Reached Error for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
M_DPM	10	Masks the DPM Error for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
M_COMF	9	Masks the COMF Error for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
M_UVM	8	Masks the UVM Detection for the FAULT Pin.	0x0: Unmask detection for FAULT pin. 0x1: Mask detection for FAULT pin.		
CNTL_POL	7	Polarity of Control Pins.	0x0: Control pins are active-high. 0x1: Control pins are active-low.		
STAT_POL	6	Configures Polarity of Status Pins.	0x0: Pin is active-high. 0x1: Pin is active-low.		
VDRnVDRD UTY	4	When set Logic High, L2H, DC_H, and DC_L registers for each channel indicate a voltage level in voltage mode. When set Logic Low, L2H, DC_H, and DC_L registers for each channel indicate a duty cycle in voltage mode. This bit does not have any effect in current mode (CDR).	0x0: Compensation of V_M is turned off. 0x1: Compensation of V_M is turned on.		
CHS	3:0	Hardware Configuration Settings. For more details, see <u>Table 1</u> , <u>Table 2</u> , and <u>Table 3</u> .	0x0: Four individual half-bridges. Either connected to V _M or to GND. 0x1: Three half-bridges in parallel. One half-bridge independent. 0x2: Two half-bridges in parallel. Two half-bridges independent. 0x3: Two half-bridges in parallel. Two half-bridges independent. 0x4: Four half-bridges in parallel. 0x5: Two independent full-bridges. 0x6: One independent full-bridge. Two independent half-bridges. 0x7: One independent full-bridge. Two half-bridges in parallel. 0x8: One parallel full-bridge.		

STATUS (0x02)

BIT	15	14	13	12	11	10	9	8
Field	_	STT3	STT2	STT1	STT0	MIN_T_ON	RES	IND
Reset	_							
Access Type	_	Read Only	Read Only	Read Only				
		1			l			l
BIT	7	6	5	4	3	2	1	0
BIT Field	7 OVT	6 OCP	5 OLF	4 HHF	3 DPM	2 COMER	1 UVM	0 RFU
	7 OVT		-		-	_	1 UVM	-

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION	DECODE
STT3	14	Status Bit. See <u>Table 16</u> .	
STT2	13	Status Bit. See <u>Table 16</u> .	
STT1	12	Status Bit. See <u>Table 16</u> .	
STT0	11	Status Bit. See <u>Table 16</u> .	
MIN_T_ON	10	Read-Only Status Bit. All channels combined.	0x0: MIN_T_ON is compliant. 0x1: MIN_T_ON is not compliant.
RES	9	Read-Only Bit of Resistance Measurement. All channels combined.	0x0: Measured resistance is compliant. 0x1: Measured resistance is not compliant.
IND	8	Read-Only Bit of Inductance Measurement. All channels combined.	0x0: Measured inductance is compliant. 0x1: Measured inductance is not compliant.
OVT	7	Read-Only Bit of Overtemperature Measurement.	0x0: No overtemperature detected. 0x1: Overtemperature detected.
ОСР	6	Read-Only Bit of Overcurrent Protection. All channels combined.	0x0: No overcurrent detected. 0x1: Overcurrent detected.
OLF	5	Read-Only Bit of Open-Load Detection. All channels combined.	0x0: No open-loop detected. 0x1: Open-loop detected.
HHF	4	Read-Only Bit of Hit Current not Reached Function. All channels combined.	0x0: Hit current is reached. 0x1: Hit current is not reached.
DPM	3	Read-Only Bit of Detection of Plunger Movement Status. All channels combined.	0x0: Plunger moved. 0x1: Plunger did not move.
COMER	2	Read-Only Bit of Detection of SPI Communication Error.	0x0: No communication error detected. 0x1: Communication error detected.
UVM	1	Read-Only Bit of Detection of Undervoltage Status.	0x0: No undervoltage detected. 0x1: Undervoltage detected.
RFU	0	Reserved for Future Use.	

STATUS_CFG (0x03)

BIT	15	14	13	12	11	10	9	8
Field	_	-	_	_	_	_	M_UVM_C MP	V5_nV3
Reset	_	_	-	-	_	-	0x0	
Access Type	_	-	-	_	_	П	Write, Read	Read Only
BIT	7	6	5	4	3	2	1	0
Field	EN_LDO	STRETCH	H_EN[1:0]	STAT_SEL 1	STAT_SEL 0	STAT_FUN[2:0]]
Reset		0>	k 0	0x0	0x0	0x0		
Access	Read Only	\\/rito	0x0 Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
M_UVM_CM P	9	Mask Stretched UVM Information on the FAULT Pin.	0x0: Unmask UVM to FAULT pin. 0x1: Mask UVM to FAULT pin.
V5_nV3	8	Internal LDO Voltage.	0x0: 3.3V. 0x1: 5V.
EN_LDO	7	Enable of the Internal LDO on V _{IO} Pin.	0x0: Disable internal LDO on V _{IO} . 0x1: Enable internal LDO on V _{IO} .

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION	DECODE
STRETCH_E	6:5	Stretch the Fault Indicator Pin Duration for UVM and OVT Faults. See <u>Table 18</u> .	0x0: No stretch. 0x1: 1s. 0x2: 2s. 0x3: 3s.
STAT_SEL1	4	Used to Select the Channel that Drives the Status Pins. See <u>Table 15</u> .	0x0: Use STAT2 bit of STATUS register to drive STAT1 pin. 0x1: Use STAT3 bit of STATUS register to drive STAT1 pin.
STAT_SEL0	3	Used to Select the Channel that Drives the Status Pins. See <u>Table 15</u> .	0x0: Use STAT0 bit of STATUS register to drive STAT0 pin. 0x1: Use STAT1 bit of STATUS register to drive STAT0 pin.
STAT_FUN	2:0	Configuration of the Value that Drives the Status Pins. See <u>Table 16</u> .	0x0: Status detection based on inductance measurement. 0x1: PWM monitor. 0x2: Status detection based on resistance measurement. 0x3: Status detection based on DPM. 0x4: Status detection based on VM detection. 0x5: Status detection based on I_MONITOR measurement.

DC_H2L (0x04)

BIT	15	14	13	12	11	10	9	8
Field				DC_H2	L[15:8]			
Reset				0x0	000			
Access Type				Write,	Read			
BIT	7	6	5	4	3	2	1	0
Field				DC_H	2L[7:0]	•	•	
Reset				0x0	000			
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION
		Demagnetization Voltage Setting (Global). Used to configure the demagnetization voltage of high to low time in bridge-tied-load configurations if the H2L_EN bit is set. Depending on the VDR_nDUTY bit, it either configures a voltage or a duty cycle.
DC_H2L	15:0	DC_H2L indicates a Voltage if VDRnVDRDUTY = "1". The voltage value is V_{OUT} (V) = K_{VDR} x 36 x DC_H2L [15:0] _{DEC} . DC_H2L indicates a Duty Cycle if VDRnVDRDUTY = "0". The voltage value is V_{OUT} (V) = K_{VDR} x VM x DC_H2L [15:0] _{DEC} .

VM_MONITOR (0x05)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_		VM	_MONITOR[12	2:8]	
Reset	_	-	-					
Access Type	_	_	-			Read Only		
BIT	7	6	5	4	3	2	1	0
Field				VM_MON	ITOR[7:0]	•		
Reset								
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
VM_MONITOR	12:0	V_{M} Measurement: $V_{M} = K_{VM} \times VM_{MONITOR}[15:0]$.

VM_THRESHOLD (0x06)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_	_	_	_	_	_
Reset	_	_	_	_	_	_	_	_
Access Type	_	-	-	-	_	-	-	_
BIT	7	6	5	4	3	2	1	0
Field		\				\/\/\ TIII D	DOM/NICO.01	•
i icia		VIVI_ I HLI	D_UP[3:0]			VM_THLD_	ַנט:נוַאואיטט	
Reset			x0 x0		VM_THLD_DOWN[3:0] 0x0			

BITFIELD	BITS	DESCRIPTION	DECODE
VM_THLD_U P	7:4	Rising Edge VM Threshold (from 1 to 15) 4.5V to 32.5V in 2V Steps.	0x0: Disabled. 0x1: 4.5V. 0x2: 6.5V. 0x3: 8.5V. 0x4: 10.5V. 0x5: 12.5V. 0x6: 14.5V. 0x7: 16.5V. 0x8: 18.5V. 0x9: 20.5V. 0x8: 24.5V. 0x8: 24.5V. 0x0: 28.5V. 0xE: 30.5V.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION	DECODE
VM_THLD_D OWN	3:0	Falling Edge VM Threshold (from 1 to 15) 4.3V to 32.3V in 2V Steps.	0x0: Disabled. 0x1: 4.3V. 0x2: 6.3V. 0x3: 8.3V. 0x4: 10.3V. 0x5: 12.3V. 0x6: 14.3V. 0x7: 16.3V. 0x8: 18.3V. 0x9: 20.3V. 0xA: 22.3V. 0xB: 24.3V. 0xC: 26.3V. 0xD: 28.3V. 0xE: 30.3V. 0xF: 32.3V.

F_AC (0x07)

BIT	15	14	13	12	11 10 9 8				
Field	_	_	_	_	F_AC_SCAN[11:8]				
Reset	_	_	_	_	0x000				
Access Type	-	_	_	_	Write, Read				
BIT	7	6	5	4	3	2	1	0	
Field				F_AC_S	CAN[7:0]		•	•	
Reset				0x	000				
Access Type				Write	, Read				

BITFIELD	BITS	DESCRIPTION
F_AC_SCAN	11:0	Defines the carrier frequency that is used for the AC scan signal of the inductance measurement: F_AC (Hz) = F_PWM_M (Hz) x (F_AC_SCAN[11:0]DEC/65535).

U_AC_SCAN (0x08)

BIT	15	14	13	12	11	10	9	8	
Field	_			U_	AC_SCAN[14	:8]			
Reset	_				0x0000				
Access Type	_				Write, Read				
BIT	7	6	5	4	3	2	1	0	
Field			,	U_AC_S	CAN[7:0]			1	
Reset				0x0	000				
Access		0x0000 Write, Read							

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION
U_AC_SCAN	14:0	Defines the amplitude of the AC signal used for the inductance measurement or for dithering. VDR: V_{AC} (V) = K_{VDR} x 36 x U_AC_SCAN[14:0] _{DEC} . VDRDUTY: V_{AC} (V) = K_{VDR} x VM x U_AC_SCAN[14:0] _{DEC} . CDR Mode: I_{AC} (mA) = K_{CDR} x GAIN x SNSF x U_AC[14:0] _{DEC} .

CFG DC L2H (0x09, 0x17, 0x25, 0x33)

BIT	15	14	13	12	11	10	9	8
Field	DC_L2H[15:8]							
Reset		0x0000						
Access Type				Write,	Read			
BIT	7	6	5	4	3	2	1	0
Field		•		DC_L2	2H[7:0]	1	•	•
Reset				0x0	000			
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION
DC_L2H	15:0	Sets the DC_L2H level: VDR: $V_{OUT}(V) = K_{VDR} \times 36 \times DC_L2H[15:0]_{DEC}$. VDRDUTY: $V_{OUT}(V) = K_{VDR} \times V_{M} \times DC_L2H[15:0]_{DEC}$. CDR: $I_{OUT}(mA) = K_{CDR} \times GAIN \times SNSF \times DC_L2H[15:0]_{DEC}$.

CFG_DC_H (0x18, 0x26, 0x34, 0xA)

BIT	15	14	13	12	11	10	9	8		
Field	DC_H[15:8]									
Reset				0x0	0000					
Access Type				Write	, Read					
BIT	7	6	5	4	3	2	1	0		
Field				DC_	H[7:0]					
Reset				0x0	0000					
Access Type				Write	, Read					

BITFIELD	BITS	DESCRIPTION
DC_H	15:0	Sets the DC_H level: VDR: V _{OUT} (V) = K _{VDR} x 36 x DC_H[15:0] _{DEC} . VDRDUTY: V _{OUT} (V) = K _{VDR} x V _M x DC_H[15:0] _{DEC} . CDR: I _{OUT} (mA) = K _{CDR} x GAIN x SNSF x DC_H[15:0] _{DEC} .

CFG_DC_L (0x19, 0x27, 0x35, 0xB)

BIT	15	14	13	12	11	10	9	8
Field		DC_L[15:8]						
Reset		0x0000						
Access Type		Write, Read						
BIT	7	6	5	4	3	2	1	0
Field				DC_l	_[7:0]	•		•
Reset		0x0000						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
DC_L	15:0	Sets the DC_L level: $ \begin{array}{l} \text{VDR: V}_{\text{OUT}}\left(\text{V}\right) = \text{K}_{\text{VDR}} \text{ x 36 x DC_L2H[15:0]}_{\text{DEC}}. \\ \text{VDRDUTY: V}_{\text{OUT}}\left(\text{V}\right) = \text{K}_{\text{VDR}} \text{ x V}_{\text{M}} \text{ x DC_L2H[15:0]}_{\text{DEC}}. \\ \text{CDR: I}_{\text{OUT}}\left(\text{mA}\right) = \text{K}_{\text{CDR}} \text{ x GAIN x SNSF x DC_L2H[15:0]}_{\text{DEC}}. \\ \end{array} $

CFG_L2H_TIME (0x1A, 0x28, 0x36, 0xC)

BIT	15	14	13	12	11	10	9	8
Field		TIME_L2H[15:8]						
Reset		0x0000						
Access Type	Write, Read							
BIT	7	6	5	4	3	2	1	0
Field				TIME_I	2H[7:0]	•		•
Reset		0x0000						
Access Type				Write	Read			

BITFIELD	BITS	DESCRIPTION
TIME_L2H	15:0	Sets the TIME_L2H: TIME_L2H = TIME_L2H[15:0] _{DEC} /F_PWM.

CFG CTRL0 (0x1B, 0x29, 0x37, 0xD)

BIT	15	14	13	12	11	10	9	8
Field	CTRL_MODE[1:0]		HHF_EN	OL_EN	H2L_EN	RDWE	RMDE	RUPE
Reset	0x0		0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read		Write, Read					
BIT	7	6	5	4	3	2	1	0
Field				RAMI	P[7:0]			
Reset	0x00							
Access Type		Write, Read						

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION	DECODE		
CTRL_MOD E	15:14	CTRL_MODE Defines the Control Scheme for DC_L2H and DC_H. Table 8 shows that VDR stands for VDR or VDRDUTY Mode, depending on the VDR_nDUTY bit.	0x0: VOLT. 0x1: CDR. 0x2: Limiter/VOLT. 0x3: VOLT (during L2H) and CDR (during H).		
HHF_EN	13	Current not Reached Fault Detection.	0x0: Disable current not reached fault detection. 0x1: Enable current not reached fault detection.		
OL_EN	12	Open-Load Circuit Enable (Enable Pull-Up/dw).	0x0: Open-load detection disabled. 0x1: Open-load detection enabled.		
H2L_EN	11	H2L Fast Demagnetization Enable Bit. "1" enforces DC_H2L after CNTL H2L transition (for bridge operation only).	0x0: Disable fast demagnetization. 0x1: Enable fast demagnetization.		
RDWE	10	Ramp Down Enable Bit.	0x0: Disable ramp down. 0x1: Enable ramp down.		
RMDE	9	Ramp Mid Enable Bit.	0x0: Disable mid ramp. 0x1: Enable mid ramp.		
RUPE	8	Ramp-UP Enable.	0x0: Disable ramp up. 0x1: Enable ramp up.		
RAMP	7:0	$\label{eq:RAMP[7:0] Sets the Ramp Slew Rate.} RAMP[7:0] Sets the Ramp Slew Rate. $			

CFG_CTRL1 (0x1C, 0x2A, 0x38, 0xE)

BIT	15	14	13	12	11	10	9	8
Field	_	_	-	_	_	HSnLS	F_PW	M[1:0]
Reset	_	_	_	_	_	0x0	0x0	
Access Type	_	_	_	_	_	Write, Read	Write, Read	
BIT	7	6	5	4	3	2	1	0
Field	T_BLAN	T_BLANKING[1:0]		RATE[1:0]	GAIN	N[1:0]	SNS	F[1:0]
Reset	0x0		0x0		0x0		0x0	
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
HSnLS	10	HS/LS: Bit Single-Ended Mode Only.	0x0: Low-side driver. 0x1: High-side driver.
F_PWM	9:8	Defines the PWM Frequency that is Used for the Channel. See <u>Table 5</u> .	0x0: F_PWM_M. 0x1: F_PWM_M/2. 0x2: F_PWM_M/4. 0x3: F_PWM_M/8.

BITFIELD	BITS	DESCRIPTION	DECODE
T_BLANKIN G	7:6	Defines an Additional Blanking Time for the Current Measurement in Single-Ended Mode.	0x0: 0. 0x1: 24. 0x2: 48. 0x3: 96.
SLEW_RATE	5:4	SRC[1:0]: Slew-Rate Control Bits. "10", "11" inhibited for F_PWM > 50kHz.	0x0: Fast. 0x1: 400V/µs. 0x2: 200V/µs. 0x3: 100V/µs.
GAIN	3:2	Sets a Digital GAIN for the Current Driver Regulation (CDR).	0x0: Scale 1. 0x1: Scale 2. 0x2: Scale 3. 0x3: Scale 4.
SNSF	1:0	Sets the Sense Scaling Factor.	0x0: Full scale. 0x1: 2/3. 0x2: 1/3.

CFG_DPM0 (0x1D, 0x2B, 0x39, 0xF)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_	_	DPM_THLD[11:8]			
Reset	_	_	_	_	0x000			
Access Type	_	_	-	_	Write, Read			
BIT	7	6	5	4	3	2	1	0
Field				DPM_TI	HLD[7:0]			
Reset	0x000							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
DPM_THLD	11:0	DPM fault threshold: Fault is detected if the BEMF dip of the current is less than DPM_THLD (mA) = 8 x K _{CDR} x GAIN x SNSF x DPM_THLD[11:0].

CFG_DPM1 (0x10, 0x1E, 0x2C, 0x3A)

BIT	15	14	13	12	11 10 9 8				
Field	_	DPM_EN	END_HIT_T O_HIZ_AUT O	END_HIT_A UTO	DPM_MIN_NBR[3:0]				
Reset	_	0x0	0x0	0x0	0x0				
Access Type	_	Write, Read	Write, Read	Write, Read	Write, Read				
BIT	7	6	5	4	3	2	1	0	
Field				DPM_ST	ART[7:0]				
Reset	0x00								
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DPM_EN	14	DPM Enable Bit.	0x0: DPM disabled. 0x1: DPM enabled.
END_HIT_T O_HIZ_AUT O	13	Enable Automatic DC_L2H to HiZ Switchover.	0x0: Automatic end of hit time is disabled. 0x1: Automatic end of hit time is enabled.
END_HIT_A UTO	12	Enable Automatic DC_L2H to DH_H Switchover.	0x0: Automatic end of hit time is disabled. 0x1: Automatic end of hit time is enabled.
DPM_MIN_N BR	11:8	To detect a valid BEMF dip, the condition has to be fulfilled for at least DPM_MIN_NBR x 2 consecutive PWM cycles. DPM_DEGLITCH = 2 x DPM_MIN_NBR[3:0]DEC x 1/FPWM.	
DPM_START	7:0	The detection starts once the actual current has succeeded. DPM_START (mA) = 64 x K _{CDR} x GAIN x SNSF x DPM_START[7:0] _{DEC} .	

CFG_IDC_THLD (0x11, 0x1F, 0x2D, 0x3B)

BIT	15	14	13	12	11	10	9	8		
Field	IDC_THLD[15:8]									
Reset		0x0000								
Access Type		Write, Read								
BIT	7	6	5	4	3	2	1	0		
Field				IDC_TH	ILD[7:0]		•			
Reset				0x0	000					
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION
IDC_THLD	15:0	IDC_THLD thresholds IDC for mapping to status output STAT. IDC_THLD (mA) = K _{CDR} x GAIN x SNSF x IDC_THLD[15:0] _{DEC} .

CFG R THLD (0x12, 0x20, 0x2E, 0x3C)

BIT	15	14	13	12	11	10	9	8	
Field	RES_THLD[15:8]								
Reset	0x0000								
Access Type	Write, Read								
BIT	7	6	5	4	3	2	1	0	
Field				RES_TH	LD[7:0]				
Reset				0x00	000				
Access Type	Write, Read								

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION
RES_THLD	15:0	Threshold of measured resistance that triggers the corresponding RES bits of the FAULT register or for mapping to status output STAT. RES_THLD (m Ω) = RES_THLD[15:0] x (K _R /(SNSF x GAIN)).

CFG_IND_0 (0x13, 0x21, 0x2F, 0x3D)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_	_	DITH_EN	L_MEAS_E N	L_MEAS_L 2H	L_MEAS_H
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read
BIT	7	6	5	4	3	2	1	0
Field		L_MEAS_W	CYCLES[3:0]			L_NBR_C	CALC[3:0]	
Reset		0)	к0		0x0			
Access Type	Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
DITH_EN	11	Used to Enable Dithering Function.	0x0: Dithering disabled. 0x1: Dithering enabled.
L_MEAS_EN	10	U_AC_SCAN is superimposed onto DC_L2H, DC_H, and DC_L if measurement is enabled.	0x0: Inductance measurement disabled. 0x1: Inductance measurement enabled.
L_MEAS_L2 H	9	Used to Enable Inductance Measurement during L2H Excitation Time.	0x0: Disabled during excitation time. 0x1: Enabled during excitation time.
L_MEAS_H	8	Used to Enable Inductance Measurement during Hold Time.	0x0: Disabled during hold time. 0x1: Enabled during hold time.
L_MEAS_W CYCLES	7:4	Number of AC scan periods (Tscan/1/F_AC) starting from a L2H or H2L transition during which the inductance measurement is skipped because of unreliable measurements.	
L_NBR_CAL C	3:0	Number of AC scan periods used to calculate the inductance. If L_NBR_CALC is different from zero and dithering is not enabled, AC_scan is disabled for L_NBR_CALC cycles.	

CFG_IND_1 (0x14, 0x22, 0x30, 0x3E)

BIT	15	14	13	12	11	10	9	8	
Field	_	-	_	_	IAC_THLD[11:8]				
Reset	_	_	_	_	0x000				
Access Type	-	-	-	-	Write, Read				

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BIT	7	6	5	4	3	2	1	0		
Field		IAC_THLD[7:0]								
Reset		0x000								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
IAC_THLD	11:0	IAC_TLHD thresholds I_AC for mapping to the status output STAT. If the measured I_AC value exceeds this value, the status of the inductance measurement gets set to 1. IAC_THLD (mA) = KCDR x GAIN x IAC_THLD[11:0] _{DEC} .

CFG P (0x15, 0x23, 0x31, 0x3F)

BIT	15	14	13	12	11	10	9	8		
Field	CFG_P[15:8]									
Reset		0x0000								
Access Type		Write, Read								
BIT	7	6	5	4	3	2	1	0		
Field		•		CFG_	P[7:0]	•		•		
Reset				0x0	000					
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION
CFG_P	15:0	Set the P parameter of the PI controller. The CFG_P_0 value is interpreted in Q8.8 representation.

CFG_I (0x16, 0x24, 0x32, 0x40)

BIT	15	14	13	12	11	10	9	8		
Field	CFG_I[15:8]									
Reset		0x0000								
Access Type	Write, Read									
BIT	7	6	5	4	3	2	1	0		
Field				CFG_	_I[7:0]		•	•		
Reset				0x0	000					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
CFG_I	15:0	Set the I parameter of the PI controller. The CFG_I_0 value is interpreted in Q8.8 representation.

I_DPM_PEAK (0x41, 0x4A, 0x53, 0x5C)

BIT	15	14	13	12	11	10	9	8		
Field	I_DPM_PEAK[15:8]									
Reset										
Access Type	Read Only									
BIT	7	6	5	4	3	2	1	0		
Field		•		I_DPM_F	PEAK[7:0]					
Reset										
Access Type		Read Only								

BITFIELD	BITS	DESCRIPTION
I_DPM_PEAK	15:0	BEMF current local peak during ramp-up. I_DPM_PEAK (mA) = 8 x K _{CDR} x GAIN x SNSF x I_DPM_PEAK[11:0] _{DEC} .

<u>I_DPM_VALLEY (0x42, 0x4B, 0x54, 0x5D)</u>

BIT	15	14	13	12	11	10	9	8			
Field	I_DPM_VALLEY[15:8]										
Reset											
Access Type	Read Only										
BIT	7	6	5	4	3	2	1	0			
Field				I_DPM_VA	ALLEY[7:0]	•					
Reset											
Access Type				Read	Only						

BITFIELD	BITS	DESCRIPTION
I_DPM_VALLEY	15:0	BEMF current local valley during ramp-up. VDR or Duty Mode only. I_DPM_VALLEY (mA) = 8 x K _{CDR} x GAIN x SNSF x I_DPM_VALLEY[11:0] _{DEC} .

TRAVEL_TIME (0x43, 0x4C, 0x55, 0x5E)

BIT	15	14	13	12	11	10	9	8	
Field	TRAVEL_TIME[15:8]								
Reset									
Access Type				Read	Only				
BIT	7	6	5	4	3	2	1	0	
Field				TRAVEL_	TIME[7:0]			•	
Reset									
Access				Read					

BITFIELD	BITS	DESCRIPTION
TRAVEL_TIME	15:0	Travel time from local maximum to local minimum detection: TRAVEL_TIME in (ms) = TRAVEL_TIME[15:0] _{DEC} /(F_PWM_M (kHz) x F_PWM).

REACTION TIME (0x44, 0x4D, 0x56, 0x5F)

BIT	15	14	13	12	11	10	9	8		
Field	REACTION_TIME[15:8]									
Reset										
Access Type	Read Only									
BIT	7	6	5	4	3	2	1	0		
Field				REACTION	I_TIME[7:0]					
Reset										
Access Type	Read Only									

BITFIELD	BITS	DESCRIPTION
REACTION_TIME	15:0	Reaction time from CNTL L2H to local minimum detection: REACTION_TIME in (ms) = REACTION_TIME[15:0] _{DEC} /(F_PWM_M (kHz) x F_PWM).

I MONITOR (0x45, 0x4E, 0x57, 0x60)

BIT	15	14	13	12	11	10	9	8		
Field	I_MONITOR[15:8]									
Reset										
Access Type	Read Only									
BIT	7	6	5	4	3	2	1	0		
Field				I_MONI	TOR[7:0]			•		
Reset										
Access Type				Read	l Only					

BITFIELD	BITS	DESCRIPTION
I_MONITOR	15:0	I_MONITOR Instantaneous sampled current. Return latest measured current sample. I_MONITOR (mA) = K _{CDR} x GAIN x SNSF x I_MONITOR[15:0] _{DEC} .

<u>I_AC (0x47, 0x50, 0x59, 0x62)</u>

BIT	15	14	13	12	11	10	9	8		
Field		I_AC[15:8]								
Reset										
Access Type				Read	Only					

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BIT	7	6	5	4	3	2	1	0	
Field		I_AC[7:0]							
Reset									
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
I_AC	15:0	AC current measured: I_AC (mA) = K _{CDR} x GAIN x SNSF x I_AC[15:0] _{DEC} .

RES (0x48, 0x51, 0x5A, 0x63)

BIT	15	14	13	12	11	10	9	8	
Field		RES[15:8]							
Reset									
Access Type				Read	Only				
BIT	7	6	5	4	3	2	1	0	
Field				RES	[7:0]	'			
Reset									
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
RES	15:0	Measured resistance: $R = R[15:0] \times (K_R/(SNSF \times GAIN)).$

PWM DUTY (0x49, 0x52, 0x5B, 0x64)

15	14	13	12	11	10	9	8
PWM_DUTYCYCLE[15:8]							
			Read	Only			
7	6	5	4	3	2	1	0
			PWM_DUTY	CYCLE[7:0]		•	•
			Read	Only			
	7			PWM_DUTY Read 7 6 5 4 PWM_DUTY	PWM_DUTYCYCLE[15:8] Read Only	PWM_DUTYCYCLE[15:8] Read Only 7 6 5 4 3 2 PWM_DUTYCYCLE[7:0]	PWM_DUTYCYCLE[15:8] Read Only 7 6 5 4 3 2 1 PWM_DUTYCYCLE[7:0]

BITFIELD	BITS	DESCRIPTION
PWM_DUTYCYCLE	15:0	Duty-Cycle Monitor.

FAULT0 (0x65)

BIT	15	14	13	12	11	10	9	8
Field	DPM3	DPM2	DPM1	DPM0	OLF3	OLF2	OLF1	OLF0
Reset								
Access Type	Write 1 to Clear, Read							
BIT	7	6	5	4	3	2	1	0
BIT Field	7 HHF3	6 HHF2	5 HHF1	4 HHF0	3 OCP3	2 OCP2	1 OCP1	OCP0
	7 HHF3	-	•	<u> </u>		_	1 OCP1	•

BITFIELD	BITS	DESCRIPTION	DECODE
DPM3	15	DPM Status Bit.	0x0: Plunger moved. 0x1: Plunger did not move.
DPM2	14	DPM Status Bit.	0x0: Plunger moved. 0x1: Plunger did not move.
DPM1	13	DPM Status Bit.	0x0: Plunger moved. 0x1: Plunger did not move.
DPM0	12	DPM Status Bit.	0x0: Plunger moved. 0x1: Plunger did not move.
OLF3	11	Open-Loop Detection Bit.	0x0: No open-loop detected. 0x1: Open-loop detected.
OLF2	10	Open-Loop Detection Bit.	0x0: No open-loop detected. 0x1: Open-loop detected.
OLF1	9	Open-Loop Detection Bit.	0x0: No open-loop detected. 0x1: Open-loop detected.
OLF0	8	Open-Loop Detection Bit.	0x0: No open-loop detected. 0x1: Open-loop detected.
HHF3	7	Hit Current not Reached Detection Bit.	0x0: Hit current is reached. 0x1: Hit current is not reached.
HHF2	6	Hit Current not Reached Detection Bit.	0x0: Hit current is reached. 0x1: Hit current is not reached.
HHF1	5	Hit Current not Reached Detection Bit.	0x0: Hit current is reached. 0x1: Hit current is not reached.
HHF0	4	Hit Current not Reached Detection Bit.	0x0: Hit current is reached. 0x1: Hit current is not reached.
ОСР3	3	Overcurrent Protection Detection Bit.	0x0: No overcurrent detected. 0x1: Overcurrent detected.
OCP2	2	Overcurrent Protection Detection Bit.	0x0: No overcurrent detected. 0x1: Overcurrent detected.
OCP1	1	Overcurrent Protection Detection Bit.	0x0: No overcurrent detected. 0x1: Overcurrent detected.
ОСР0	0	Overcurrent Protection Detection Bit.	0x0: No overcurrent detected. 0x1: Overcurrent detected.

FAULT1 (0x66)

BIT	15	14	13	12	11	10	9	8
Field	_	_	_	_	_	RES3	RES2	RES1
Reset	_	_	_	_	_			
Access Type	_	_	_	_	-	Write 1 to Clear, Read	Write 1 to Clear, Read	Write 1 to Clear, Read
BIT	7	6	5	4	3	2	1	0
BIT Field	7 RES0	6 OVT	5 COMER	4 UVM	3 IND3	2 IND2	1 IND1	0 IND0
	7 RES0	-		-		_	1 IND1	

BITFIELD	BITS	DESCRIPTION	DECODE
RES3	10	Bit is set if the measured resistance exceeds the R_THLD value of the according channel.	0x0: Measured resistance is compliant. 0x1: Measured resistance is not compliant.
RES2	9	Bit is set if the measured resistance exceeds the R_THLD value of the according channel.	0x0: Measured resistance is compliant. 0x1: Measured resistance is not compliant.
RES1	8	Bit is set if the measured resistance exceeds the R_THLD value of the according channel.	0x0: Measured resistance is compliant. 0x1: Measured resistance is not compliant.
RES0	7	Bit is set if the measured resistance exceeds the R_THLD value of the according channel.	0x0: Measured resistance is compliant. 0x1: Measured resistance is not compliant.
OVT	6	Bit is set if overtemperature is detected.	0x0: No overtemperature detected. 0x1: Overtemperature detected.
COMER	5	Bit is set if a communication error is detected.	0x0: No communication error detected. 0x1: Communication error detected.
UVM	4	Bit is set if undervoltage is detected. Active after IC startup.	0x0: No undervoltage detected. 0x1: Undervoltage detected.
IND3	3	Bit is set if the measured inductance is not compliant according to Excitation Hold or Low Phase.	0x0: Measured inductance is compliant. 0x1: Measured inductance is not compliant.
IND2	2	Bit is set if the measured inductance is not compliant according to Excitation Hold or Low Phase.	0x0: Measured inductance is compliant. 0x1: Measured inductance is not compliant.
IND1	1	Bit is set if the measured inductance is not compliant according to Excitation Hold or Low Phase.	0x0: Measured inductance is compliant. 0x1: Measured inductance is not compliant.
IND0	0	Bit is set if the measured inductance is not compliant according to Excitation Hold or Low Phase.	0x0: Measured inductance is compliant. 0x1: Measured inductance is not compliant.

OTP_CONTROLLER

The OTP_CONTROLLER register can be accessed in OTP Programming mode only. To enter OTP Programming mode, the SPI command 0xFD12A7 needs to be issued (see the OTP Programming procedure).

111000, 11100	T T COMMINICATION CAN B 127 ()	110000 10	00 100000	(555 ti.15 5		ming prov	00 441 0 /.		
ADDRESS	NAME	MSB							LSB
MTP_CTRL									
0x68	OTP_CONTROL[7:0]	_	_	_	_	_	_	STOP_P ROG	SRT_PR OG

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

ADDRESS	NAME	MSB							LSB
0x69	OTP_STATUS[7:0]	DONE	ECC_ER R_2BIT	ECC_ER R_1BIT	OV_DUR ING_BU RN_PUL SE	VPP_INI T_FAIL	OTP_FU LL	VERI_FA IL	_
OTP_RECO	RD								
0x7A	OTP_DATA0[7:0]				OTP_REC	ORD[7:0]			
0x7B	OTP_DATA1[7:0]		OTP_RECORD[15:8]						
0x7C	OTP_ADDR[7:0]				OTP_REC	DRD[23:16]			

Register Details

OTP_CONTROL (0x68)

OTP Control Register

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	_	STOP_PRO G	SRT_PROG
Reset	_	_	_	_	_	_	0b0	0b0
Access Type	_	_	_	_	_	_	Write, Read, Pulse	Write, Read, Pulse

BITFIELD	BITS	DESCRIPTION
STOP_PROG	1	At any time, writing this bit to 1 STOP/abandon a field program burn.
SRT_PROG	0	Start executing the OTP write procedure.

OTP STATUS (0x69)

OTP Status Register

OTT Ctataort	- 3							
BIT	7	6	5	4	3	2	1	0
Field	DONE	ECC_ERR_ 2BIT	ECC_ERR_ 1BIT	OV_DURIN G_BURN_P ULSE	VPP_INIT_ FAIL	OTP_FULL	VERI_FAIL	_
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	_
Access Type	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	_

BITFIELD	BITS	DESCRIPTION
DONE	7	Programming complete.
ECC_ERR_2BIT	6	One of the previously burned records contains an uncorrectible 2-bit error. The record is not loaded, and the registers it is intended to load are not written. If an erronus record is overwritten by a correct record, this status is not cleared.
ECC_ERR_1BIT	5	One of the actively loaded records contains a single-bit error that is corrected. If an erroneous record is overwritten by a correct record, this status is cleared for each mtp register.
OV_DURING_BURN_P ULSE	4	When the memory is actively executing a burn pulse, the high-voltage VPP voltage has gone above the abs-max specified in the data sheet. This is considered a critical failure, and device operation is not guaranteed thereafter.
VPP_INIT_FAIL	3	The programming voltage did not reach the required value before burning. Therefore, the burn is abandoned and not attempted.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

BITFIELD	BITS	DESCRIPTION
OTP_FULL	2	The OTP is full, and no more records can be burned.
VERI_FAIL	1	OTP record is attempted to be burned OTP_REPG_TIMES times, and verification of each attempt produced an incorrect result. Where OTP_REPG_TIMES is a parameter to the IP.

OTP DATA0 (0x7A)

Least Significant Byte for OTP write

BIT	7	6	5	4	3	2	1	0		
Field		OTP_RECORD[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
OTP_RECORD	7:0	

OTP_DATA1 (0x7B)

Most Significant Byte for OTP write

BIT	7	6	5	4	3	2	1	0		
Field		OTP_RECORD[15:8]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
OTP_RECORD	7:0	

OTP ADDR (0x7C)

RegMap Register Address for OTP Write

BIT	7	6	5	4	3	2	1	0		
Field		OTP_RECORD[23:16]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
OTP_RECORD	7:0	

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

Applications Information

Examples of Use

The high configurability of the MAX22216V provide flexibility. Figure 14 shows some of the typical applications addressed by the device.

- A shows a SPI-based application. The MCU and the driver communicate via SPI. Configuration settings are written into the device after power up. Status information is exchanged via SPI too. Different loads are supported (single/ended/differential solenoids, brushed DC motors, mixed solenoid + brushed).
- B and C show two typical applications in which the MAX22216V are OTP programmed and controlled by a remote
 host controller. The number of control signal wires is minimized.
 - B refers to a single differential valve driver with minimum wiring (supply and GND only) (see the <u>V_M Switching</u> <u>Standalone</u> section).
 - C refers to a multi valves and/or DC-motor driver in which the remote host controller outputs the CNTL trigger signals for the actuators.

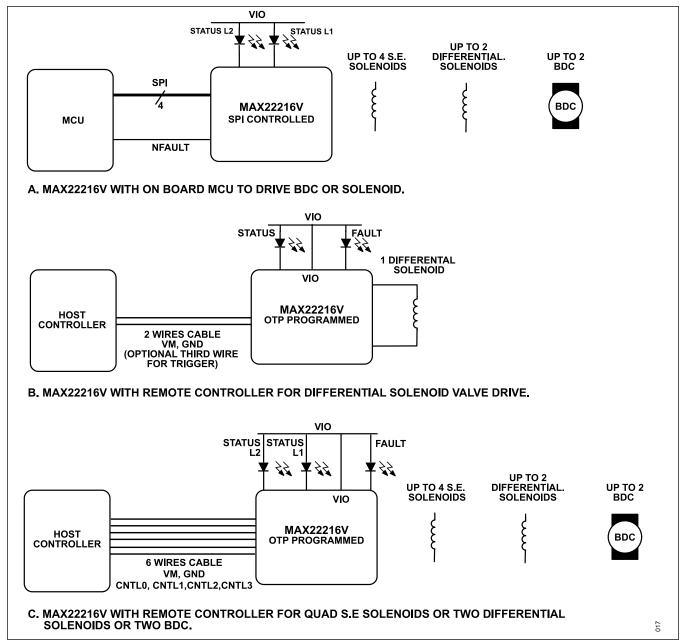


Figure 14. Examples of Use

In these examples, the STAT output pins drive LED diodes.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

V_M Switching Standalone

Figure 15 shows an example of an electronic valve application. The driver is locally mounted into the valve housing and controlled remotely by simply switching the supply voltage (V_M) . The MAX22216V are OTP programmed to drive a solenoid valve differentially with pairs of half bridges connected in parallel. This configuration requires two control wires from a remote controller (VM and GND). The V_{IO} is internally generated (see the V_{IO} Pin Description (V_{IO}) section). The solenoid energization is triggered by the rising edge of the V_M supply and starts after a wake-up time (T_{WAKE}), which includes the rising time of the supply and the wake-up time of the device (see the Electrical Characteristics table).

The activation and deactivation V_M thresholds (VM_THLD_UP, VM_THLD_DW) can be set by writing the corresponding 4 bits OTP bitfields in the VM_THRESHOLD register. If only the VM_THLD_DOWN is used, the set voltage in this register becomes the deactivation limit if the V_M falls under it, and it resumes normal functionality when the V_M goes again over it. When both V_M thresholds are used, they create a hysteresis effect in which VM_THLD_DOWN remains the low-voltage deactivation limit, but for reactivation, the V_M must be bigger than the set voltage for VM_THLD_UP. These limits can be set to control the ICs functionality even without the OTP.

FAULT and STAT logic outputs can be used to activate LED diodes, as shown in Figure 15. In this example, the STAT output provides the ON/OFF status of the valve.

For fast valves, where the MAX22216V wake-up time limits the speed performance of the valve, a third wire is necessary to drive the CNTL signal of the device.

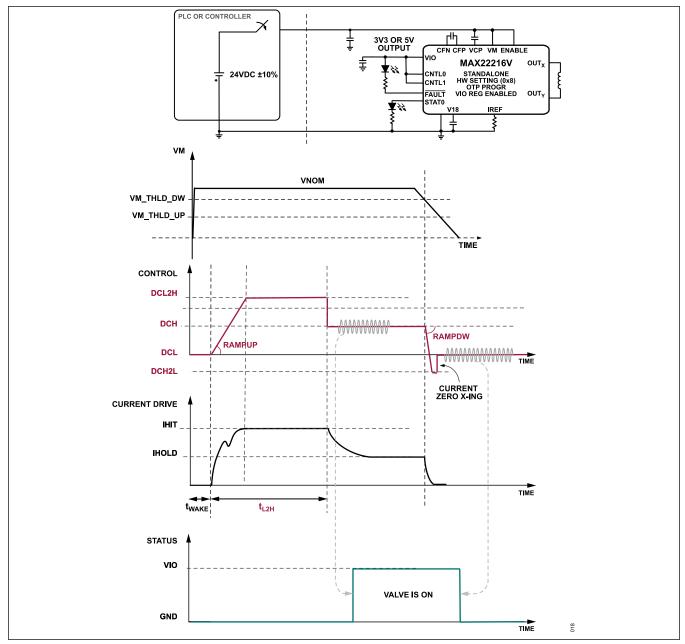
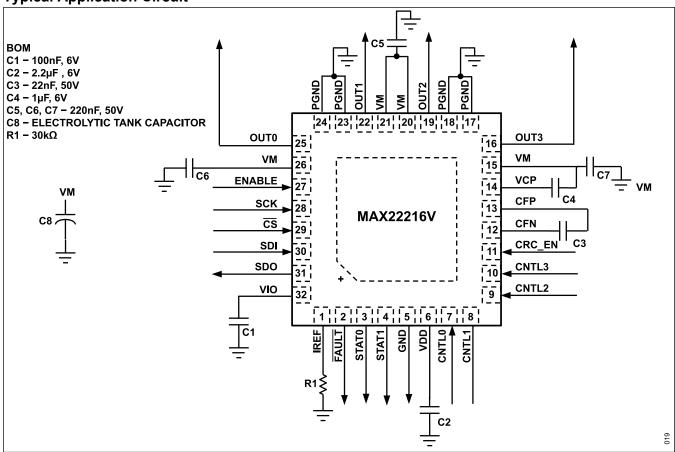



Figure 15. Standalone - V_M Switching

Typical Application Circuits

Typical Application Circuit

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PIN-PACKAGE	FULL-SCALE CURRENT (IFS)
MAX22216VATJ/VY+	-40°C to +125°C	32-TQFN - 5mm x 5mm	3.2A

N denotes an automotive qualified part.

⁺ denotes a lead(Pb)-free/RoHS-compliant package.

AEC-Q100 Certified Quad Smart Serial-Controlled Solenoid and Motor Driver with Advanced Diagnostic

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/25	Initial release	_

