FEATURES

- **Guaranteed** Slew Rate: 23V/µs Min
- **Guaranteed** Offset Voltage: 250µV Max
 - −55°C to 125°C: 750µV Max
- **Guaranteed** Drift: 5µV/°C Max
- **Guaranteed** Bias Current:
 - 70°C, 180pA Max
 - 125°C, 4nA Max
- **Guaranteed** Gain-Bandwidth Product: 8.5MHz Typ
- **Guaranteed** Settling Time to 0.05% (10V Step): 0.9µs Typ

APPLICATIONS

- Fast D/A Output Amplifiers (12, 14, 16 Bits)
- High Speed Instrumentation
- Fast, Precision Sample and Hold
- Voltage-to-Frequency Converters
- Logarithmic Amplifiers

DESCRIPTION

The LT®1022 JFET input operational amplifier combines high speed and precision performance.

A 26V/µs slew rate and 8.5MHz gain-bandwidth product are simultaneously achieved with offset voltage of typically 80µV, 1.5µV/°C drift, bias currents of 50pA at 70°C, 500pA at 125°C. The output delivers 20mA of load current without gain degradation.

The 250µV maximum offset voltage specification represents less than 1/2 least significant bit error in a 14-bit, 10V system.

The LT1022A meets or exceeds all OP-16A and OP-16E specifications. It is faster and more accurate without stability problems at cold temperatures.

The LT1022 can be used as the output amplifier for 12-bit current output D/A converters, as shown below.

For a more accurate, lower power dissipation, but slower JFET input op amp, please refer to the LT1055 data sheet.

TYPICAL APPLICATION

12-Bit Voltage Output D/A Converter

![Diagram of 12-Bit Voltage Output D/A Converter](image)

- $C_T = 15pF$ to 33pF
- SETTLING TIME TO 2mV (0.8 LSB) = 1.5µs TO 2µs

Large-Signal Response

![Diagram of Large-Signal Response](image)

- $A_V = 1$
- $C_L = 100pF$
- $T_A = 25°C$
- $V_S = ±15V$
LT1022

ABSOLUTE MAXIMUM RATINGs
(Note 1)

Supply Voltage ... ±20V
Differential Input Voltage............................. ±40V
Input Voltage .. ±20V
Output Short Circuit Duration Indefinite

Operating Temperature Range
LT1022AM/1022M (OBSOLETE) -55°C to 125°C
LT1022AC/1022C .. 0°C to 70°C
Storage Temperature Range -65°C to 150°C
Lead Temperature (Soldering, 10 sec.) 300°C

PACKAGe/ORDER INFORMATION

ORDER PART
NUMBER
LT1022AMH
LT1022MH
LT1022ACH
LT1022CH

METAL CAN H PACKAGE
T_{J,\text{MAX}} = 150°C, \theta_{JA} = 150°C/W, \theta_{JC} = 45°C/W

OBSoLETE PACKAGe
Consider the N8 Package as an Alternate Source

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

VS = ±15V, TA = 25°C, V_{CM} = 0V unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LT1022AM</th>
<th>LT1022AC</th>
<th>LT1022CH</th>
<th>LT1022CN8</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage (Note 2)</td>
<td>H Package</td>
<td>80</td>
<td>250</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N8 Package</td>
<td></td>
<td></td>
<td>160</td>
<td>1000</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>Fully Warmed Up</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>I_{B}</td>
<td>Input Bias Current</td>
<td>Fully Warmed Up</td>
<td>(\pm 10)</td>
<td>(\pm 50)</td>
<td>(\pm 10)</td>
<td>(\pm 50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CM} = +10V</td>
<td>30</td>
<td>100</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CM} = –11V to 8V</td>
<td>(10^{12})</td>
<td></td>
<td>(10^{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CM} = 8V to 11V</td>
<td>(10^{11})</td>
<td></td>
<td>(10^{11})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\epsilon_n)</td>
<td>Input Noise Voltage</td>
<td>0.1Hz to 10Hz</td>
<td>2.5</td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>(\epsilon_n)</td>
<td>Input Noise Voltage Density</td>
<td>(f_0 = 10Hz) (Note 3)</td>
<td>28</td>
<td>50</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_0 = 1kHz) (Note 4)</td>
<td>14</td>
<td>20</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>I_{n}</td>
<td>Input Noise Current Density</td>
<td>(f_0 = 10Hz, 1kHz) (Note 5)</td>
<td>1.8</td>
<td>4</td>
<td>1.8</td>
<td>4</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Large Signal Voltage Gain</td>
<td>(V_{O} = \pm 10V, R_L = 2k)</td>
<td>150</td>
<td>400</td>
<td>120</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 1k)</td>
<td>130</td>
<td>300</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Input Voltage Range</td>
<td>(V_{CM} = \pm 10.5V)</td>
<td>(\pm 10.5)</td>
<td>(\pm 12)</td>
<td>(\pm 10.5)</td>
<td>(\pm 12)</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>(V_{CM} = \pm 10.5V)</td>
<td>86</td>
<td>94</td>
<td>82</td>
<td>92</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(V_{S} = \pm 10V) to (\pm 18V)</td>
<td>88</td>
<td>104</td>
<td>86</td>
<td>102</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing</td>
<td>(R_L = 2k)</td>
<td>(\pm 12)</td>
<td>(\pm 13.2)</td>
<td>(\pm 12)</td>
<td>(\pm 13.2)</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td></td>
<td>23</td>
<td>26</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

\(V_S = \pm 15V, \ TA = 25^\circ C, \ VCM = 0V \) unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LT1022AM</th>
<th>LT1022AC</th>
<th>LT1022M, LT1022CH</th>
<th>LT1022CN8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td>f = 1MHz</td>
<td>8.5</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>H Package</td>
<td>5.2</td>
<td>7.0</td>
<td>5.2</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N8 Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling Time</td>
<td>A = +1 or A = –1</td>
<td>0.9</td>
<td>0.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10V Step to 0.05%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10V Step to 0.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset Voltage Adjustment Range</td>
<td>R_POT = 100k</td>
<td>±7</td>
<td>±7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ● denotes the specifications which apply over the full operating temperature range of \(VCM = 0V, \ 0^\circ C \leq TA \leq 70^\circ C \). \(VS = \pm 15V \), unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LT1022AC</th>
<th>LT1022CN8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>V_OS</td>
<td>Input Offset Voltage (Note 2)</td>
<td>H Package</td>
<td>140</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N8 Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Temperature Coefficient of Input Offset Voltage</td>
<td>H Package</td>
<td>1.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N8 Package (Note 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_OS</td>
<td>Input Offset Current</td>
<td>Warmed Up, (TA = 70^\circ C)</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>Warmed Up, (TA = 70^\circ C)</td>
<td>±50</td>
<td>±200</td>
</tr>
<tr>
<td>A_VOL</td>
<td>Large-Signal Voltage Gain</td>
<td>(V_O = \pm 10V, R_L = 2k)</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>(V_{CM} = \pm 10.4V)</td>
<td>85</td>
<td>93</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(V_S = \pm 10V) to (\pm 18V)</td>
<td>86</td>
<td>103</td>
</tr>
<tr>
<td>V_OUT</td>
<td>Output Voltage Swing</td>
<td>(R_L = 2k)</td>
<td>±12</td>
<td>±13.1</td>
</tr>
</tbody>
</table>

The ● denotes the specifications which apply over the full operating temperature range of \(–55^\circ C \leq TA \leq 125^\circ C \). \(VS = \pm 15V, \ VCM = 0V \), unless otherwise noted.

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Offset voltage is measured under two different conditions:
(a) approximately 0.5 seconds after application of power;
(b) at \(TA = 25^\circ C \), with the chip self-heated to approximately 45°C to account for chip temperature rise when the device is fully warmed up.

Note 3: 10Hz noise voltage density is sample tested on every lot of A grades. Devices 100% tested at 10Hz are available on request.

Note 4: This parameter is tested on a sample basis only.

Note 5: Current noise is calculated from the formula: \(i_n = (2qIB)^{1/2} \), where \(q = 1.6 \times 10^{-19} \) coulomb. The noise of source resistors up to 1GΩ swamps the contribution of current noise.

Note 6: Offsetting voltage drift with temperature is practically unchanged when the offset voltage is trimmed to zero with a 100k potentiometer between the balance terminals and the wiper tied to \(V^+ \). Devices tested to tighter drift specifications are available on request.
The typical behavior of many LT1022 parameters is identical to the LT1056. Please refer to the LT1055/1056 data sheet for the following typical performance characteristics:

Input Bias and Offset Currents vs Temperature

Input Bias Current Over the Common-Mode Range

Distribution of Input Offset Voltage (H and NS Package)

Distribution of Offset Voltage Drift with Temperature

Warm-Up Drift

Long Term Drift of Representative Units

0.1Hz to 10Hz Noise

Voltage Noise vs Frequency

Noise vs Chip Temperature

Short Circuit Current vs Time

Output Impedance vs Frequency

Common Mode Range vs Temperature

Common Mode and Power Supply Rejections vs Temperature

Common Mode Rejection Ratio vs Frequency

Power Supply Rejection Ratio vs Frequency

Voltage Gain vs Temperature

Supply Current vs Supply Voltage

Output Swing vs Load Resistance
APPLICATIONS INFORMATION

The LT1056 applications information is directly applicable to the LT1022. Please consult the LT1055/1056 data sheet for details on:

1. Plug-in compatibility to industry standard devices
2. Offset nulling
3. Achieving picoampere/microvolt performance
4. Phase-reversal protection
5. High speed operation (including settling time test circuit)
6. Noise performance
7. Simplified circuit schematic

TYPICAL APPLICATIONS

![Fast Piezoelectric Accelerometer](image-url)
TYPICAL APPLICATIONS

10Hz to 1MHz Voltage-to-Frequency Converter
PIN Photodiode-to-Frequency Converter

SCALE FACTOR =
1nW/Hz AT 900 NANO METERS FROM 20nW TO 2mW

= HEWLETT PACKARD PHOTODIODE HP5082-4204

= 1N4148

POLYSTYRENE

SELECT VALUE FOR 2mW IN = 2MHz OUT
Fast, Differential Input Current Source

\[I_{OUT} = \frac{V_{IN2} - V_{IN1}}{R} \]

*MATCH TO 0.01%

FULL-SCALE POWER BANDWIDTH
- 1MHz FOR \(I_{OUTR} = 8V_{P-P} \)
- 400kHz FOR \(I_{OUTR} = 20V_{P-P} \)

MAXIMUM \(I_{OUT} = 10mA_{P-P} \)

COMMON-MODE VOLTAGE AT LT1022 INPUT = \(\frac{I_{OUTP-P} \times R_L}{2} \)

Wide Bandwidth Absolute Value Circuit

*0.1%

1% ACCURACY TO 300kHz
5% ACCURACY TO 700kHz

Typical Applications
TYPICAL APPLICATIONS

High Output Current Op Amp

![Circuit Diagram]

- Slew Rate = 26V/μs
- $I_{OUT} = 150mA$
- C_F can be 1μF
- $A_V = +1$, $C_F = 1000pF$
- $A_V = -1$, $C_F = 10pF$

Low Distortion Sine Wave Oscillator

![Circuit Diagram]

- 5kHz to 50kHz range
- Distortion < 0.1%
- Amplitude = 18Vp-p
Fast, Precision Sample-And-Hold

16ns APERTURE TIME
2µs ACQUISITION TIME TO 0.01%
SAMPLE-AND-HOLD OFFSET < 250µV
HOLD SETTLING < 100ns
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
N8 Package

8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)