Typical Applications
The HMC877LC3 is ideal for:
- Synchronization of clock and data
- Transponder design
- Broadband Test & Measurement
- RF ATE Applications

Features
- Very Wide Bandwidth: 8 - 23 GHz
- Continuous Adjustable Delay Range: 500° (1.4 UI[1])
- Single-Ended or Differential Operation
- Adjustable Differential Output Voltage
 - Swing: 500 - 950 mVp-p @ 16 GHz
- Delay Control Modulation Bandwidth: 2.5 GHz
- Single Supply: +3.3V
- 16 Lead Ceramic 3x3mm SMT Package: 9mm²

General Description
The HMC877LC3 is a phase shifter/time delay with 0 to 500° (1.4 UI) continuously adjustable shift/delay range. The delay control is linearly monotonic with respect to the differential control voltage (VDCP, VDCN) and the control input has a modulation bandwidth of 2.5 GHz. The device provides a differential output voltage with constant amplitude for single-ended or differential input voltages above the input sensitivity level, while the output voltage swing may be adjusted using the VAC control pin. The HMC877LC3 features internal temperature compensation and bias circuitry to minimize delay variations with temperature. The device also features a delay control voltage range adjustment pin, LC. All RF input and outputs of the HMC877LC3 are internally terminated with 50 Ohms to Vcc, and may either be AC or DC coupled. Output pins can be connected directly to a 50 Ohm to Vcc terminated system, while DC blocking capacitors must be used if the terminated system input is 50 Ohms to a DC voltage other than Vcc. The HMC877LC3 is available in ROHS-compliant 3x3mm SMT package.

Electrical Specifications, $T_A = +25°\ C$, $Vcc = 3.3V$, $GND=ODWN = 0V$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>± 5% Tolerance</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>ODWN = 0V</td>
<td>175</td>
<td>190</td>
<td>215</td>
<td>mA</td>
</tr>
<tr>
<td>Phase Shift Range</td>
<td>@ 10 GHz</td>
<td>504</td>
<td>Deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 16 GHz</td>
<td>498</td>
<td>Deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 22 GHz</td>
<td>485</td>
<td>Deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Delay Range</td>
<td>@ 10 GHz</td>
<td>1.4</td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 16 GHz</td>
<td>1.38</td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 22 GHz</td>
<td>1.35</td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay Control Modulation Bandwidth</td>
<td>VCC-0.6</td>
<td>2.5</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay Control Voltage (VDCP)</td>
<td>VCC+0.6</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

[1] The UI stands for unit interval

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
BROADBAND TIME DELAY & PHASE SHIFTER

SMT, 8 - 23 GHz

Electrical Specifications, \(T_A = +25^\circ C \), Vcc = 3.3V, GND=ODWN = 0V (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Amplitude Control Voltage (VAC)</td>
<td>Single-Ended, peak-to-peak @ 10 GHz</td>
<td>0.65</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Single-Ended, peak-to-peak @ 16 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended, peak-to-peak @ 22 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Amplitude</td>
<td>Differential</td>
<td>490</td>
<td>648</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended</td>
<td>420</td>
<td>520</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended</td>
<td>320</td>
<td>424</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td>Input Amplitude Range</td>
<td>Differential</td>
<td>200</td>
<td>1200</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended</td>
<td>100</td>
<td>600</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td>Harmonic Suppression*</td>
<td>VDCP=VDCN=3.3 V @ 22 GHz ((f_{in}/2))</td>
<td>26</td>
<td>48</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDCP=VDCN=3.3 V @ 8 GHz ((3f_{in}/2))</td>
<td>28</td>
<td>62</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDCP=VDCN=3.3 V @ 16 GHz ((2f_{in}))</td>
<td>30</td>
<td>32</td>
<td>36</td>
<td>dBc</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>frequency < 23 GHz</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>frequency < 23 GHz</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>RMS Jitter</td>
<td>frequency @ 16 GHz</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>Rise Time, tr</td>
<td>frequency @ 16 GHz</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>Fall Time, tf</td>
<td>frequency @ 16 GHz</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>Time Delay Temperature Sensitivity</td>
<td>frequency @ 16 GHz</td>
<td></td>
<td></td>
<td></td>
<td>deg/°C</td>
</tr>
<tr>
<td>Propagation Delay, td</td>
<td>VDCP=2.7V, VDCN=3.3V @ 16GHz (Relative to zero phase shift)</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

* Harmonic suppression measurements are taken for single-ended inputs and outputs.

Time Delay vs. Frequency

![Graph showing time delay vs. frequency for different input frequencies.]

Time Delay vs. Bias Voltage

![Graph showing time delay vs. bias voltage for different input frequencies.]

[1] VCC = 3.3V

[2] ODWN= 0 V, VDCN=VCC

[3] On the x-axis differential control voltage represents VDCP-VDCN voltage

[4] Input Frequency: 20 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
HMC877LC3

BROADBAND TIME DELAY & PHASE SHIFTER

SMT, 8 - 23 GHz

Time Delay vs. Temperature[^1][^2][^3][^4]

![Graph showing time delay vs. temperature](image)

Time Delay vs. Control Voltage

![Graph showing time delay vs. control voltage](image)

Time Delay vs. Temperature @ VDCP=3.3V (Relative to VDCP=VCC-0.6V)[^1][^2][^3][^4]

![Graph showing time delay vs. temperature at VDCP=3.3V](image)

Phase Shift vs. Frequency[^1][^2][^3][^4]

![Graph showing phase shift vs. frequency](image)

Phase Shift vs. Bias Voltage[^2][^3][^4][^5][^6]

![Graph showing phase shift vs. bias voltage](image)

Phase Shift vs. Temperature[^1][^2][^3][^4][^5][^6]

![Graph showing phase shift vs. temperature](image)

[^1]: VCC = 3.3V
[^2]: ODWN= 0 V, VDCN=VCC
[^3]: On the x-axis differential control voltage represents VDCP-VDCN voltage
[^4]: Input Frequency: 20 GHz
[^5]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
HMC877LC3

BROADBAND TIME DELAY & PHASE SHIFTER
SMT, 8 - 23 GHz

Phase Shift vs. Control Voltage
@ VDCP=2.7V to 3.9V with 0.1V step

- **Phase Shift vs. Temperature @VDCP=3.3V**
 (Relative to VDCP=VCC-0.6V)

Phase Error vs. Control Voltage
@ Fmean=16 GHz

Phase Shift vs. Control Voltage
@ 10 GHz

Phase Shift vs. Control Voltage
@ 22 GHz

DC Current vs. Temperature

[1] VCC = 3.3V
[2] ODWN= 0 V, VDCN=VCC
[4] VDCP-VDCN=0.6V is taken as reference level
[5] VDCP=3.3V and input frequency is 20 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700
Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
BROADBAND TIME DELAY & PHASE SHIFTER
SMT, 8 - 23 GHz

Single-Ended Output Swing vs.
Supply Voltage [1][2][3]

Single-Ended Output Swing vs.
Frequency [1][3][4]

Single-Ended Output Swing vs.
Control Voltage [1][4][5]

Duty Cycle Distortion @ 16 GHz [1][4][5]

Single-Ended Output Swing vs.
Amplitude Control Voltage [1][3][4][6]

[1] ODWN= 0V, VDCN=VCC
[2] Input Frequency: 20 GHz
[3] VDCP=3.3V
[4] VCC=3.3V
[5] On the x-axis differential control voltage represents VDCP-VDCN voltage
[6] The input frequency is 10 GHz
BROADBAND TIME DELAY & PHASE SHIFTER

SMT, 8 - 23 GHz

Rise Time vs. Temperature @ 16 GHz

Fall Time vs. Temperature @ 16 GHz

RMS Jitter vs. Temperature @ 16 GHz

RMS Jitter vs. Bias Voltage @ 16 GHz

P_{fin}-P_{3\text{fin}/2} Output Power Difference vs. Control Voltage

P_{fin}-P_{3\text{fin}/2} Output Power Difference vs. Control Voltage

[1] ODWN = 0V, VDCN = VCC

[2] VCC = 3.3V

[3] On the x-axis differential control voltage represents VDCP-VDCN voltage

[4] Source jitter was not deembedded

[5] \(f_{\text{fin}}\) is the fundamental frequency

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
Second Harmonic vs. Control Voltage

Modulation Signal Bandwidth vs. Temperature

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

[1] VCC= 3.3 V, ODWN=0V
[2] fin is the fundamental frequency
[3] -6.8 dBm input power was applied to VDCP, VDCN is 50 Ohms terminated and fin=15 GHz
[4] VDCP=VDCN=VCC
BROADBAND TIME DELAY & PHASE SHIFTER
SMT, 8 - 23 GHz

Output Eye Diagram Snapshot for 15 GHz Input Signal

- Time Scale: 10 ps/div
- Amplitude Scale: 81.8 mV/div
- Test Conditions:
 - VCC=3.3 V, ODWN=0 V
 - VDCP = 300 mVpp @ 1 MHz
 - VDCN is 50 Ohms terminated
- Measurement Results:
 - RMS Jitter: 0.3 ps
 - Peak to peak Jitter: 1.78 ps
 - Rise Time: 11.78 ps
 - Fall Time: 11.78 ps

Output Eye Diagram Continuous Snapshot for 15 GHz Input Signal

- Time Scale: 10 ps/div
- Amplitude Scale: 81.8 mV/div
- Test Conditions:
 - VCC=3.3 V, ODWN=0 V
 - VDCP = 300 mVpp @ 1 MHz
 - VDCN is 50 Ohms terminated
- Measurement Result:
 - 26.8 ps (0.4 UI)
BROADBAND TIME DELAY & PHASE SHIFTER
SMT, 8 - 23 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage (Vcc)</td>
<td>-0.5V to +3.75V</td>
</tr>
<tr>
<td>Input Voltage (V_{in}), Output Voltage (V_{out})</td>
<td>Vcc -1.2V to Vcc+0.6V</td>
</tr>
<tr>
<td>Control Voltage (V_{DC}), Delay Control Voltage Range Adjustment (L_d), Amplitude Control Voltage (V_{AC})</td>
<td>0 to Vcc+0.6V</td>
</tr>
<tr>
<td>Channel Temperature (T_c)</td>
<td>125 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T = 85 °C) (derate 35.8 mW/°C above 85 °C)</td>
<td>1.43 W</td>
</tr>
<tr>
<td>Thermal Resistance (junction to ground paddle)</td>
<td>27.9 °C/W</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +125 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85°C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1A</td>
</tr>
</tbody>
</table>

ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC877LC3</td>
<td>Alumina, White</td>
<td>Gold over Nickel</td>
<td>MSL3 [1]</td>
<td>H877 XXXX</td>
</tr>
</tbody>
</table>

[1] Max peak reflow temperature of 260 °C
[2] 4-Digit lot number XXXX

NOTES:
1. PACKAGE BODY MATERIAL: ALUMINA
2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICRO-INCHES MINIMUM NICKEL.
3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
5. CHARACTERS TO BE BLACK INK MARKED WITH .018"MIN to .030"MAX HEIGHT REQUIREMENTS. UTILIZE MAXIMUM CHARACTER HEIGHT BASED ON LID DIMENSIONS AND BEST FIT. LOCATE APPROX. AS SHOWN.
6. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4-5, 8-9, 12</td>
<td>GND</td>
<td>Signal grounds should be connected to 0V. Ground paddle must be connected to DC ground</td>
<td></td>
</tr>
<tr>
<td>2, 3, 6, 7</td>
<td>INP, INN, VDCP, VDCN</td>
<td>Differential signal inputs.</td>
<td></td>
</tr>
<tr>
<td>10, 11</td>
<td>QN, QP</td>
<td>Differential signal outputs.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VAC</td>
<td>The output amplitude control pin.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ODWN</td>
<td>Enable pin of the output. It should be connected to GND to enable the part. When it is connected to VCC or floated the output is set to VCC.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>VCC</td>
<td>The supply voltage of the part.</td>
<td></td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Pin Descriptions (Continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>LC</td>
<td>This pin enables the control of the linearity level of Control Voltage vs. Phase Shift/Time Delay. Compromise is between linearity level and wideness of the Phase Shift/Time Delay tuning range. For optimum tuning range and linearity balance, R2=R3 are chosen as 4.7 kOhms.</td>
<td></td>
</tr>
</tbody>
</table>

Application Circuit

![Application Circuit Diagram](image)
Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC877LC3[^1]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 - J2, J5-J6</td>
<td>K Connector</td>
</tr>
<tr>
<td>J3-J4</td>
<td>SMA Connector</td>
</tr>
<tr>
<td>TP1-TP5</td>
<td>DC Pin</td>
</tr>
<tr>
<td>C1-C3</td>
<td>1000 pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C5-C7</td>
<td>0.1 µF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C8-C9</td>
<td>4.7 µF Capacitor, Tantalum</td>
</tr>
<tr>
<td>R2-R3</td>
<td>4.7 kOhm Resistor, 0402 Pkg.</td>
</tr>
<tr>
<td>U1</td>
<td>HMC877LC3 Analog Phase Shifter/ Broadband Time Delay</td>
</tr>
<tr>
<td>PCB[^2]</td>
<td>600-00064-00 Evaluation Board</td>
</tr>
</tbody>
</table>

[^1]: Reference this number when ordering complete evaluation PCB

[^2]: Circuit Board Material: Rogers 4350 or Arlon 25 FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.
HMC877LC3

BROADBAND TIME DELAY & PHASE SHIFTER
SMT, 8 - 23 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D