Typical Applications

The HMC498LC4 is ideal for use as a LNA or Driver amplifier for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Features

- Output IP3: +36 dBm
- Saturated Power: +26 dBm @ 23% PAE
- Gain: 22 dB
- +5V @ 250 mA Supply
- 50 Ohm Matched Input/Output
- RoHS Compliant 4x4 mm SMT Package

General Description

The HMC498LC4 is a high dynamic range GaAs PHEMT MMIC Medium Power Amplifier housed in a leadless "Pb free" SMT package. Operating from 17 to 24 GHz, the amplifier provides 22 dB of gain, +26 dBm of saturated power and 23% PAE from a +5V supply voltage. Noise figure is 4 dB while output IP3 is +36 dBm typical enabling the HMC498LC4 to function as a low noise front end as well as a driver amplifier. The RF I/Os are DC blocked and matched to 50 Ohms for ease of use. The HMC498LC4 eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

Functional Diagram

![Functional Diagram](image)

Electrical Specifications, \(T_A = +25^\circ C, Vdd1, 2, 3 = 5V, Idd = 250 mA^* \)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>17 - 19</td>
<td>19 - 23</td>
<td>23 - 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>18</td>
<td>22</td>
<td>20</td>
<td>22.5</td>
<td>18</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Variation Over Temperature</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td>dB/°C</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>13</td>
<td>13</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>15</td>
<td>15</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power for 1 dB Compression (P1dB)</td>
<td>22</td>
<td>25</td>
<td>21.5</td>
<td>24.5</td>
<td>22.5</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>26.5</td>
<td>25.5</td>
<td></td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3)</td>
<td>35</td>
<td>36</td>
<td></td>
<td>35.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Supply Current (Idd) (Vdd = +5V, Vgg = -0.8V Typ.)</td>
<td>250</td>
<td>250</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

* Adjust Vgg between -2 to 0V to achieve Idd = 250 mA typical.
HMC498LC4
GaAs PHEMT MEDIUM
POWER AMPLIFIER, 17 - 24 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
GaAs PHEMT MEDIUM
POWER AMPLIFIER, 17 - 24 GHz

Output IP3 vs. Temperature

Gain, Power & OIP3 vs. Supply Voltage @ 23 GHz

Reverse Isolation vs. Temperature

Power Compression @ 18 GHz

Power Compression @ 23 GHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Bias Voltage (Vdd1, Vdd2, Vdd3)</td>
<td>+5.5 Vdc</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vgg)</td>
<td>-4.0 to 0 Vdc</td>
</tr>
<tr>
<td>RF Input Power (RFIN) (Vdd = +5Vdc)</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>175 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T= 85 °C, derate 18 mW/°C above 85 °C)</td>
<td>1.62 W</td>
</tr>
<tr>
<td>Thermal Resistance (channel to ground paddle)</td>
<td>55.6 °C/W</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1A</td>
</tr>
</tbody>
</table>

Typical Supply Current vs. Vdd

<table>
<thead>
<tr>
<th>Vdd (Vdc)</th>
<th>Idd (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4.5</td>
<td>239</td>
</tr>
<tr>
<td>+5.0</td>
<td>250</td>
</tr>
<tr>
<td>+5.5</td>
<td>262</td>
</tr>
</tbody>
</table>

Note: Amplifier will operate over full voltage ranges shown above. Vgg adjusted to achieve Idd= 250 mA at +5V.

Outline Drawing

24-Terminal Ceramic Leadless Chip Carrier [LCC] (E-24-1)
Dimensions shown in millimeters.

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking [2]</th>
</tr>
</thead>
</table>

[1] Max peak reflow temperature of 260 °C
[2] 4-Digit lot number XXXX
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5 - 8, 10 - 14, 18, 20, 22, 24</td>
<td>N/C</td>
<td>These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>2, 4, 15, 17</td>
<td>GND</td>
<td>Package bottom has an exposed metal paddle that must also be connected to RF/DC ground.</td>
<td>![Interface Schematic]</td>
</tr>
<tr>
<td>3</td>
<td>RFIN</td>
<td>This pin is AC coupled and matched to 50 Ohms.</td>
<td>![Interface Schematic]</td>
</tr>
<tr>
<td>9</td>
<td>Vgg</td>
<td>Gate control for amplifier. Adjust to achieve Id of 250 mA. Please follow "MMIC Amplifier Biasing Procedure" Application Note. External bypass capacitors of 100 pF, 1000 pF and 2.2 (\mu)F are required.</td>
<td>![Interface Schematic]</td>
</tr>
<tr>
<td>16</td>
<td>RFOUT</td>
<td>This pin is AC coupled and matched to 50 Ohms.</td>
<td>![Interface Schematic]</td>
</tr>
<tr>
<td>23, 21, 19</td>
<td>Vdd1, Vdd2, Vdd3</td>
<td>Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1000 pF, and 2.2 (\mu)F are required.</td>
<td>![Interface Schematic]</td>
</tr>
</tbody>
</table>

Application Circuit

![Application Circuit Diagram]

*For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D*
List of Materials for Evaluation PCB 108537 [1]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1, J2</td>
<td>2.92 mm PC mount K-connector</td>
</tr>
<tr>
<td>J3 - J8</td>
<td>DC Pin</td>
</tr>
<tr>
<td>C1 - C4</td>
<td>100 pF capacitor, 0402 pkg.</td>
</tr>
<tr>
<td>C5 - C8</td>
<td>1,000 pF Capacitor, 0603 pkg.</td>
</tr>
<tr>
<td>C9 - C12</td>
<td>2.2µF Capacitor, Tantalum</td>
</tr>
<tr>
<td>U1</td>
<td>HMC498LC4 Amplifier</td>
</tr>
<tr>
<td>PCB [2]</td>
<td>108535 Evaluation PCB</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices, upon request.