HMC1082LP4E

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Typical Applications
The HMC1082LP4E is ideal for:
- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM
- Marine Radar
- Military EW & ECM

Features
- High Saturated Output Power: 26 dBm @ 26% PAE
- High Output IP3: 35 dBm
- High Gain: 22 dB
- High P1dB Output Power: 24 dBm
- DC Supply: +5V @ 220 mA
- Compact 24 Lead 4x4 mm SMT Package: 16 mm³

General Description
The HMC1082LP4E is a GaAs pHEMT MMIC driver amplifier with an integrated temperature compensated on-chip power detector which operates between 5.5 and 18 GHz. The amplifier provides 22 dB of gain, +35 dBm Output IP3, and +24 dBm of output power at 1 dB gain compression, while requiring 220 mA from a +5V supply. The HMC1082LP4E is capable of supplying +26 dBm of saturated output power with 26 % PAE and is housed in a compact leadless 4x4 mm plastic surface mount package.

The HMC1082LP4E is an ideal driver amplifier for a wide range of applications including point-to-point radio from 5.5 to 18 GHz and marine radar at 9 GHz. The HMC1082LP4E may also be used for 6 to 18 GHz EW and ECM applications.

Functional Diagram

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>5.5 - 6.5</td>
<td>6.5 - 17</td>
<td>17 - 18</td>
<td>GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>21.5</td>
<td>23.5</td>
<td>20.5</td>
<td>22.5</td>
<td>20</td>
<td>22</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Variation over temperature</td>
<td>0.0121</td>
<td>0.0101</td>
<td>0.015</td>
<td>dB/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>22</td>
<td>12</td>
<td>7.5</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>10</td>
<td>14</td>
<td>17.5</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Power for 1 dB Compression (P1dB)</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>24</td>
<td>20.5</td>
<td>23.5</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>25.5</td>
<td>26</td>
<td>24.5</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3)</td>
<td>36</td>
<td>35</td>
<td>33.5</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current (Idd)</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Adjust Vgg between -2 to 0V to achieve Idd = 220mA typical
HMC1082LP4E

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Broadband Gain & Return Loss

- **Gain** vs. **Temperature**
 - Frequency (GHz)
 - Gain (dB)
 - 4V, 4.5V, 5V

- **Input Return Loss vs. Temperature**
 - Frequency (GHz)
 - Return Loss (dB)
 - 25°C, 85°C, -40°C

- **Output Return Loss vs. Temperature**
 - Frequency (GHz)
 - Return Loss (dB)
 - 25°C, 85°C, -40°C

- **P1dB vs. Temperature**
 - Frequency (GHz)
 - P1dB (dBm)
 - 25°C, 85°C, -40°C

- **P1dB vs. Supply Voltage**
 - Frequency (GHz)
 - P1dB (dBm)
 - 4V, 4.5V, 5V

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

HMC1082LP4E
v05.1018
GaAs pHEMT MMIC MEDIUM
POWER AMPLIFIER, 5.5 - 18 GHz

Psat vs. Temperature

Psat vs. Supply Voltage

P1dB vs. Supply Current

Psat vs. Supply Current

Output IP3 vs. Temperature

Output IP3 vs. Supply Current

[1] Pout/Tone = +12 dBm
HMC1082LP4E
GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Output IP3 vs. Supply Voltage

- Frequency (GHz): 5.5, 8, 10.5, 13, 15.5, 18
- Supply Voltages: 4V, 4.5V, 5V
- IP3 (dBm): 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40

Output IM3 @ Vdd = +4V

- Frequency (GHz): 7 GHz, 9 GHz, 12 GHz, 15 GHz, 17 GHz
- IM3 (dBc): 20, 30, 40, 50, 60, 70
- Pout/TONE (dBm): 4, 6, 8, 10, 12, 14, 16

Output IM3 @ Vdd = +4.5V

- Frequency (GHz): 7 GHz, 9 GHz, 12 GHz, 15 GHz, 17 GHz
- IM3 (dBc): 20, 30, 40, 50, 60, 70
- Pout/TONE (dBm): 4, 6, 8, 10, 12, 14, 16

Output IM3 @ Vdd = +5V

- Frequency (GHz): 7 GHz, 9 GHz, 12 GHz, 15 GHz, 17 GHz
- IM3 (dBc): 20, 30, 40, 50, 60, 70
- Pout/TONE (dBm): 4, 6, 8, 10, 12, 14, 16

Power Compression @ 12 GHz

- Gain (dB), P1dB (dBm), PSat (dBm)
- P1dB: 20, 30, 40, 50, 60, 70
- PSat: 4, 6, 8, 10, 12, 14, 16
- Pout/TONE (dBm): 4, 6, 8, 10, 12, 14, 16

Gain & Power vs. Supply Current

- Gain (dB), P1dB (dBm), PSat (dBm)
- Gain: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40
- P1dB: 4, 6, 8, 10, 12, 14, 16
- PSat: 20, 22, 24, 26
- Input Power (dBm): -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16
- Idd (mA): 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

[1] Pout/Tone = +12 dBm

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC1082LP4E

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Gain & Power vs. Supply Voltage

Reverse Isolation vs. Temperature

Power Dissipation

Detector Voltage vs. Temperature @ 6 GHz

Detector Voltage vs. Temperature @ 12 GHz

Detector Voltage vs. Temperature @ 18 GHz
HMC1082LP4E

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Notes:

Additive Phase Noise Vs Offset Frequency, RF Frequency = 8 GHz, RF Input Power = 3 dBm (P1dB)

![Graph showing Iddq Vs Vgg](chart1)

![Graph showing Phase Noise Vs Offset Frequency](chart2)
HMC1082LP4E

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Bias Voltage (Vdd)</td>
<td>5.5V</td>
</tr>
<tr>
<td>RF Input Power (RFIN)</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>175 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T=85 °C) (derate 20mW/°C)</td>
<td>1.81W</td>
</tr>
<tr>
<td>Thermal Resistance (RTH) (junction to ground paddle)</td>
<td>49.8 °C/W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 0, Passed 100V</td>
</tr>
</tbody>
</table>

Typical Supply Current vs. Vdd

<table>
<thead>
<tr>
<th>Vdd (V)</th>
<th>Idd (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>220</td>
</tr>
<tr>
<td>+4.5</td>
<td>220</td>
</tr>
<tr>
<td>+5</td>
<td>220</td>
</tr>
</tbody>
</table>

Adjust Vgg1 to achieve Idd = 220mA

Electrostatic Sensitive Device

Observe Handling Precautions

Outline Drawing

Package Information

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC1082LP4E</td>
<td>RoHS-compliant Low Stress Injection Molded Plastic</td>
<td>100% matte Sn</td>
<td>MSL1</td>
<td>H1082 XXXX</td>
</tr>
</tbody>
</table>

[1] 4-Digit lot number XXXX
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Pin Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 5, 6, 7, 8, 10, 13, 14, 17, 18, 19, 21, 23</td>
<td>N/C</td>
<td>These pins are not connected internally, however all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RF IN</td>
<td>This pin is DC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>4, 15</td>
<td>GND</td>
<td>These pins and package bottom must be connected to RF/DC ground.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vgg</td>
<td>Gate control for amplifier. External bypass capacitors of 1000pF, 100pF and 2.2uF are required.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vref</td>
<td>DC bias of diode biased through external resistor used for temperature compensation of Vdet. See application circuit.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vdet</td>
<td>DC voltage representing RF output power rectified by diode which is biased through an external resistor. See application circuit.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RF OUT</td>
<td>This pin is DC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>24, 22, 20</td>
<td>Vdd1, Vdd2, Vdd3</td>
<td>Drain bias voltage for amplifier. External bypass capacitors of 1000pF, 100pF and 2.2uF are required.</td>
<td></td>
</tr>
</tbody>
</table>
GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Application Circuit

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.

List of Materials for Evaluation PCB EV1HMC1082LP4

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1, J2</td>
<td>PCB Mount SMA RF Connector</td>
</tr>
<tr>
<td>J5 - J12</td>
<td>DC Pin</td>
</tr>
<tr>
<td>C1 - C4</td>
<td>100pF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>C5 - C8</td>
<td>1000pF Capacitor, 0402 Pkg</td>
</tr>
<tr>
<td>C9 - C12</td>
<td>2.2uF Capacitor, 0402 Pkg.</td>
</tr>
<tr>
<td>R1, R2</td>
<td>40.2k Ohm Resistor, 0402 Pkg.</td>
</tr>
<tr>
<td>U1</td>
<td>HMC1082LP4E</td>
</tr>
<tr>
<td>PCB [2]</td>
<td>600-00819-00 Evaluation Board</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering Complete Evaluation PCB