

ADuM2200/ADuM2201

Dual-Channel Digital Isolators, 5 kV

FEATURES

- ▶ High isolation voltage: 5000 V rms
- ▶ Enhanced system-level ESD performance per IEC 61000-4-x
- ▶ Low power operation
 - ▶ 5 V operation
 - ▶ 1.6 mA per channel maximum at 0 Mbps to 1 Mbps
 - ▶ 3.7 mA per channel maximum at 10 Mbps
 - ▶ 3.3 V operation
 - ▶ 1.4 mA per channel maximum at 0 Mbps to 1 Mbps
 - ▶ 2.4 mA per channel maximum at 10 Mbps
- ▶ 3.3 V/5 V level translation
- ▶ High temperature operation: 105°C and 125°C options
- ▶ High data rate: dc to 10 Mbps (NRZ)
- ▶ Precise timing characteristics
 - ▶ 3 ns maximum pulse width distortion
 - ▶ 3 ns maximum channel-to-channel matching
- ▶ High common-mode transient immunity: >25 kV/µs
- ▶ 16-lead SOIC wide body package version (RW-16)
- ▶ 16-lead SOIC wide body enhanced creepage version (RI-16-2)
- ▶ Safety and regulatory approvals
- ▶ **UL** 1577
 - \triangleright V_{ISO} = 5000 V rms for 1 minute.
 - ▶ IEC/EN/CSA 62368-1
 - ▶ IEC/CSA 60601-1
 - ▶ IEC/CSA 61010-1
 - ► CQC GB4943.1
 - ▶ DIN EN IEC 60747-17 (VDE 0884-17)
 - V_{IORM} = 645 V peak
- Qualified for automotive applications

APPLICATIONS

- ▶ General-purpose, high voltage, multichannel isolation
- ▶ Medical equipment
- Power supplies
- ▶ RS-232/RS-422/RS-485 transceiver isolation
- Hybrid electric vehicles, battery monitors, and motor drives

GENERAL DESCRIPTION

The ADuM2200/ADuM2201¹ are 2-channel digital isolators based on Analog Devices, Inc., *i*Coupler[®] technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics that are superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, *i*Coupler devices remove the design difficulties commonly associated with optocouplers. Typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM2200/ADuM2201 isolators provide two independent isolation channels in two channel configurations with data rates up to 10 Mbps (see the Ordering Guide). Both parts operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems, as well as enabling voltage translation functionality across the isolation barrier. The ADuM2200/ADuM2201 isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

Similar to the ADuM3200/ADuM3201 isolators, the ADuM2200/AD-uM2201 isolators contain various circuit and layout enhancements that provide increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM3200/ADuM3201 or ADuM2200/AD-uM2201 products is strongly determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

Rev. H

¹ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents pending.

TABLE OF CONTENTS

Features1	Maximum Continuous Working Voltage	12
Applications1	ESD Caution	12
General Description1	Pin Configurations and Function Descriptions	13
Functional Block Diagrams3	Typical Performance Characteristics	15
Specifications4	Applications Information	16
Electrical Characteristics—5 V Operation4	PCB Layout	16
Electrical Characteristics—3.3 V Operation 5	Propagation Delay-Related Parameters	16
Electrical Characteristics—Mixed 5 V/3.3 V	DC Correctness and Magnetic Field	
Operation6	Immunity	16
Electrical Characteristics—Mixed 3.3 V/5 V	Power Consumption	
Operation7	Insulation Lifetime	18
Package Characteristics8	Outline Dimensions	
Regulatory Information9	Ordering Guide	19
Insulation and Safety-Related Specifications10	Number of Inputs, Maximum Data Rate,	
DIN EN IEC 60747-17 (VDE 0884-17)	Maximum Propagation, and Maximum	
Insulation Characteristics10	Pulse Width Distortion Options	19
Recommended Operating Conditions 11	Automotive Products	20
Absolute Maximum Ratings12		
REVISION HISTORY		
1/2025—Rev. G to Rev. H		
Changes to Features Section		1
Moved Figure 1 and Figure 2		
Changes to Regulatory Information Section and Table		
Changes to Table 15		
Changed Insulation Characteristics (DIN V VDE V 088		10
EN IEC 60747-17 (VDE 0884-17) Insulation Characte		10
Changes to DIN EN IEC 60747-17 (VDE 0884-17) Insulation Changes	ulation Characteristics Section Table 16, and	10
Figure 3 Caption		10
Changes to Table 19		
Deleted Table 20 and Table 21; Renumbered Sequenti		
Changes to Insulation Lifetime Section		
Deleted Figure 16 to Figure 18; Renumbered Sequenti		
Added Number of Inputs, Maximum Data Rate, Maximum		10
Distortion Options	. •	19
Diotordon Opdono		10

analog.com Rev. H | 2 of 20

FUNCTIONAL BLOCK DIAGRAMS

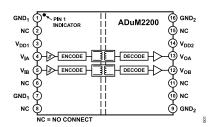


Figure 1. ADuM2200

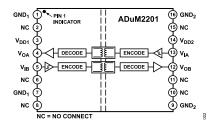


Figure 2. ADuM2201

analog.com Rev. H | 3 of 20

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective grounds. $4.5 \text{ V} \leq \text{V}_{DD1} \leq 5.5 \text{ V}$, $4.5 \text{ V} \leq \text{V}_{DD2} \leq 5.5 \text{ V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at T_{A} = 25°C, V_{DD1} = V_{DD2} = 5.0 V.

Table 1.

			A Grade B Grade						
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS									C _L = 15 pF, CMOS levels
Pulse Width	PW	1000			100			ns	Within PWD limit
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	20		150	20		50	ns	50% input to 50% output
Pulse Width Distortion	PWD			40			3	ns	t _{PLH} - t _{PHL}
Change vs. Temperature						5		ps/°C	
Propagation Delay Skew	t _{PSK}			100			15	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3	ns	
Opposing Directional	t _{PSKOD}			50			15	ns	

Table 2.

			1 Mbps—A Grad	le, B Grade		10 Mbps—B Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
SUPPLY CURRENT (NO LOAD)									
ADuM2200	I _{DD1}		1.3	1.8		3.5	4.6	mA	
	I _{DD2}		1.0	1.6		2.0	2.8	mA	
ADuM2201	I _{DD1}		1.1	1.6		3.1	4.2	mA	
	I _{DD2}		1.3	1.9		3.1	4.0	mA	

Ta	hl	þ	3
ı u	NI	_	v

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
DC SPECIFICATIONS						
Logic High Input Threshold	V _{IH}	0.7 V _{DDx}			V	
Logic Low Input Threshold	V _{IL}			$0.3 V_{DDx}$	V	
Logic High Output Voltages	V _{OH}	V _{DDx} - 0.1	5.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		V _{DDx} - 0.5	4.8		V	$I_{Ox} = -3.2 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 3.2 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq V_{IX} \leq V_{DDX}$
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI (Q)}		0.4	0.8	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO (Q)}		0.5	0.6	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI (D)}		0.19		mA/Mbps	
Dynamic Output Supply Current	I _{DDO (D)}		0.05		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F					10% to 90%
A Grade			10		ns	
B Grade			2.5		ns	
Common-Mode Transient Immunity ²	CM	25	35		kV/µs	$V_{lx} = V_{DDx}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	f _r		1.2		Mbps	

analog.com Rev. H | 4 of 20

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All voltages are relative to their respective grounds. $3.0 \text{ V} \le \text{V}_{\text{DD1}} \le 3.6 \text{ V}, 3.0 \text{ V} \le \text{V}_{\text{DD2}} \le 3.6 \text{ V}.$ All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DD1}} = \text{V}_{\text{DD2}} = 3.3 \text{ V}.$

Table 4.

			A Grad	е		B Grad	de			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions/Comments	
SWITCHING SPECIFICATIONS									C _L = 15 pF, CMOS levels	
Pulse Width	PW	1000			100			ns	Within PWD limit	
Data Rate				1			10	Mbps	Within PWD limit	
Propagation Delay	t _{PHL} , t _{PLH}	20		150	20		60	ns	50% input to 50% output	
Pulse Width Distortion	PWD								t _{PLH} - t _{PHL}	
A Grade and B Grade				40			3	ns		
WA Grade and WB Grade				40			4	ns		
Change vs. Temperature						5		ps/°C		
Propagation Delay Skew	t _{PSK}			100			22	ns	Between any two units	
Channel Matching										
Codirectional	t _{PSKCD}			50			3	ns		
Opposing Directional	t _{PSKOD}			50			22	ns		

Table 5.

		1 Mbps—A Grad	le, B Grade		10 Mbps—B Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT (NO LOAD)								
ADuM2200	I _{DD1}		0.8	1.3		2.2	3.2	mA
	I _{DD2}		0.7	1.0		1.3	1.7	mA
ADuM2201	I _{DD1}		0.7	1.3		1.9	2.5	mA
	I _{DD2}		0.8	1.6		1.9	2.5	mA

Table 6.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
Logic High Input Threshold	V _{IH}	0.7 V _{DDx}			V	
Logic Low Input Threshold	V _{IL}			$0.3 V_{DDx}$	V	
Logic High Output Voltages	V _{OH}	V _{DDx} - 0.1	3.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		V _{DDx} - 0.5	2.8		V	$I_{Ox} = -3.2 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 3.2 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq V_{Ix} \leq V_{DDx}$
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI (Q)}		0.3	0.5	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO (Q)}		0.3	0.5	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI (D)}		0.10		mA/Mbps	
Dynamic Output Supply Current	I _{DDO (D)}		0.03		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F					10% to 90%

analog.com Rev. H | 5 of 20

¹ I_{Ox} is the Channel x output current, where x = A or B, V_{IxH} is the input side logic high, and V_{IxL} is the input side logic low.

² |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DD}. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 6. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
A Grade			10		ns	
B Grade			3		ns	
Common-Mode Transient Immunity ²	CM	25	35		kV/μs	$V_{Ix} = V_{DDx}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	f _r		1.1		Mbps	

¹ I_{Ox} is the Channel x output current, where x = A or B, V_{IxH} is the input side logic high, and V_{IxL} is the input side logic low.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OPERATION

All voltages are relative to their respective grounds. $4.5 \text{ V} \le \text{V}_{DD1} \le 5.5 \text{ V}$, $3.0 \text{ V} \le \text{V}_{DD2} \le 3.6 \text{ V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at T_{A} = 25°C, V_{DD1} = 3.3 V, V_{DD2} = 5.0 V.

Table 7.

			A Grad	le		B Grad	le		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions/ Comments
SWITCHING SPECIFICATIONS									C _L = 15 pF, CMOS levels
Pulse Width	PW	1000			100			ns	Within PWD limit
Data Rate				1			10	Mbps	Within PWD limit
Propagation Delay	t _{PHL} , t _{PLH}	15		150	15		55	ns	50% input to 50% output
Pulse Width Distortion	PWD								t _{PLH} - t _{PHL}
A Grade and B Grade				40			3	ns	
WA Grade and WB Grade				40			4	ns	
Change vs. Temperature						5		ps/°C	
Propagation Delay Skew	t _{PSK}			50			22	ns	Between any two units
Channel Matching									
Codirectional	t _{PSKCD}			50			3	ns	
Opposing Directional	t _{PSKOD}			50			22	ns	

Table 8.

		1 Mbps—A Grad	le, B Grade		10 Mbps—B Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT (NO LOAD)								
ADuM2200	I _{DD1}		1.3	1.8		3.5	4.6	mA
	I _{DD2}		0.7	1.0		1.3	1.7	mA
ADuM2201	I _{DD1}		1.1	1.6		3.1	4.2	mA
	I _{DD2}		0.8	1.6		1.9	2.5	mA

Table 9.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
DC SPECIFICATIONS						
Logic High Input Threshold	V _{IH}	0.7 V _{DDx}			V	
Logic Low Input Threshold	V _{IL}			$0.3 V_{DDx}$	V	
Logic High Output Voltages	V _{OH}	V _{DDx} - 0.1	V_{DDx}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		V _{DDx} - 0.5	V_{DDx} – 0.2		V	$I_{Ox} = -3.2 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 3.2 \text{ mA}, V_{Ix} = V_{IxL}$

analog.com Rev. H | 6 of 20

² |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DD}. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 9. (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
Input Current per Channel	I _I	-10	+0.01	+10	μA	$0 \text{ V} \leq V_{lx} \leq V_{DDx}$
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI (Q)}		0.4	8.0	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO (Q)}		0.3	0.5	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI (D)}		0.19		mA/Mbps	
Dynamic Output Supply Current	I _{DDO (D)}		0.03		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F					10% to 90%
A Grade			10		ns	
B Grade			3		ns	
Common-Mode Transient Immunity ²	CM	25	35		kV/µs	$V_{Ix} = V_{DDx}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	f _r		1.2		Mbps	

¹ I_{OX} is the Channel x output current, where x = A or B, V_{IXH} is the input side logic high, and V_{IXL} is the input side logic low.

ELECTRICAL CHARACTERISTICS—MIXED 3.3 V/5 V OPERATION

All voltages are relative to their respective grounds. $3.0 \text{ V} \le \text{V}_{DD1} \le 3.6 \text{ V}, 4.5 \text{ V} \le \text{V}_{DD2} \le 5.5 \text{ V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at T_{A} = 25°C, V_{DD1} = 5.0 V, V_{DD2} = 3.3 V.

Table 10.

		A Grade				B Grad	de			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions/Comments	
SWITCHING SPECIFICATIONS									C _L = 15 pF, CMOS levels	
Pulse Width	PW	1000			100			ns	Within PWD limit	
Data Rate				1			10	Mbps	Within PWD limit	
Propagation Delay	t _{PHL} , t _{PLH}	15		150	15		55	ns	50% input to 50% output	
Pulse Width Distortion	PWD								t _{PLH} - t _{PHL}	
A Grade and B Grade				40			3	ns		
WA Grade and WB Grade				40			4	ns		
Change vs. Temperature						5		ps/°C		
Propagation Delay Skew	t _{PSK}			50			22	ns	Between any two units	
Channel Matching										
Codirectional	t _{PSKCD}			50			3	ns		
Opposing Directional	t _{PSKOD}			50			22	ns		

Table 11.

			1 Mbps—A Grad	le, B Grade		10 Mbps—B Grade			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
SUPPLY CURRENT (NO LOAD)									
ADuM2200	I _{DD1}		0.8	1.3		2.2	3.2	mA	
	I _{DD2}		1.0	1.6		2.0	2.8	mA	
ADuM2201	I _{DD1}		0.7	1.3		1.9	2.5	mA	
	I _{DD2}		1.3	1.9		3.1	4.0	mA	

analog.com Rev. H | 7 of 20

² |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DD}. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 12.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
DC SPECIFICATIONS						
Logic High Input Threshold	V _{IH}	0.7 V _{DDx}			V	
Logic Low Input Threshold	V_{IL}			$0.3 V_{DDx}$	V	
Logic High Output Voltages	V _{OH}	V _{DDx} - 0.1	V_{DDx}		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
		V _{DDx} - 0.5	$V_{DDx} - 0.2$		V	$I_{Ox} = -3.2 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	V _{OL}		0.0	0.1	V	$I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 3.2 \text{ mA}, V_{Ix} = V_{IxL}$
Input Current per Channel	l _l	-10	+0.01	+10	μA	$0 \text{ V} \leq V_{lx} \leq V_{DDx}$
Supply Current per Channel						
Quiescent Input Supply Current	I _{DDI (Q)}		0.3	0.5	mA	All inputs at logic low
Quiescent Output Supply Current	I _{DDO (Q)}		0.5	0.6	mA	All inputs at logic low
Dynamic Input Supply Current	I _{DDI (D)}		0.10		mA/Mbps	
Dynamic Output Supply Current	I _{DDO (D)}		0.05		mA/Mbps	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F					10% to 90%
A Grade			10		ns	
B Grade			2.5		ns	
Common-Mode Transient Immunity ²	CM	25	35		kV/µs	V _{Ix} = V _{DDx} , V _{CM} = 1000 V, transient magnitude = 800 V
Refresh Rate	f _r		1.1		Mbps	

 I_{Ox} is the Channel x output current, where x = A or B, V_{IxH} is the input side logic high, and V_{IxL} is the input side logic low.

PACKAGE CHARACTERISTICS

Table 13.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input-to-Output) ¹	R _{I-O}		10 ¹²		Ω	
Capacitance (Input-to-Output) ¹	C _{I-O}		2		pF	f = 1 MHz
Input Capacitance ²	C _I		4		pF	
IC Junction-to-Ambient Thermal Resistance	θ_{JA}		45		°C/W	

¹ This device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.

analog.com Rev. H | 8 of 20

² |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DD}. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

² Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM2200/ADuM2201 certification approvals are listed in Table 14. Refer to Table 19 and the Insulation Lifetime section for more information about the recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 14. ADuM2200/ADuM2201 Regulatory Information Table

UL	CSA	CQC	VDE
UL 1577 ¹	RI-16-2 Package	CQC GB4943.1	DIN EN IEC 60747-17 (VDE 0884-17)
Single Protection, 5000 V rms	IEC/EN/CSA 62368-1	RI-16-2 Package	RI-16-2 Package ²
	Basic insulation, 870 V rms	Basic Insulation, 600 V rms	Reinforced insulation, 645 V peak
	Reinforced insulation, 435 V rms	Reinforced insulation, 400 V rms	
	IEC/CSA 60601-1	RW-16 package	RW-16 Package ³
	Reinforced insulation (2 MOPP), 250 V rms	Basic Insulation, 600 V rms	Reinforced insulation, 645 V peak
	IEC/CSA 61010-1	Reinforced insulation, 380 V rms	
	Basic insulation, 600 V rms, overvoltage category IV		
	Reinforced insulation, 300 V rms, overvoltage category II		
	RW-16 Package		
	IEC/EN/CSA 62368-1		
	Basic insulation, 780 V rms		
	Reinforced insulation, 390 V rms		
	IEC/CSA 60601-1		
	Reinforced insulation (2 MOPP), 125 V rms		
	IEC/CSA 61010-1		
	Basic insulation, 600 V rms, overvoltage category III		
	Reinforced insulation, 300 V rms, overvoltage category II		
File E214100	Certificate No. 205078	Certificate No. CQC14001105917	Certificate No. 40011599

¹ In accordance with UL 1577, each ADuM2200/ADuM2201 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec (current leakage detection limit = 10 µA).

analog.com Rev. H | 9 of 20

² In accordance with DIN EN IEC 60747-17 (VDE 0884-17), each ADuM2200/ADuM2201 RI-16-2 is proof tested by applying an insulation test voltage ≥1209 V peak for 1 sec (partial discharge detection limit = 5 pC). The asterisk (*) marking branded on the components designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

³ In accordance with DIN EN IEC 60747-17 (VDE 0884-17), each ADuM2200/ADuM2201 RW-16 is proof tested by applying an insulation test voltage ≥1209 V peak for 1 sec (partial discharge detection limit = 5 pC). The asterisk (*) marking branded on the components designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 15.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		5000	V rms	1-minute duration
Minimum External Air Gap (Clearance) ^{1, 2}	L(I01)			Distance measured from input terminals to output terminals, shortest distance through air along the PCB mounting plane, as an aid to PC board layout
RW-16 Package		7.8	mm	
RI-16-2 Package		8.7	mm	
Minimum External Tracking (Creepage) ¹	L(I02)			Measured from input terminals to output terminals, shortest distance path along body
RW-16 Package		7.8	mm	
RI-16-2 Package		8.7	mm	
Minimum Internal Distance (Internal Clearance)		18	um	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index) ³	CTI	>400	V	DIN IEC 112/VDE 0303, Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

¹ In accordance with IEC 62368-1 / IEC 60601-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 m.

DIN EN IEC 60747-17 (VDE 0884-17) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits. The asterisk (*) marking branded on the components designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

Table 16. ADuM2200/ADuM2201 VDE Insulation Characteristics

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Overvoltage Category per IEC 60664-1				
≤ 150 V rms			I to IV	
≤ 300 V rms			I to IV	
≤ 400 V rms			I to IV	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Repetitive Isolation Voltage		V _{IORM}	645	V peak
Maximum Working Insulation Voltage		V _{IOWM}	456	V rms
Input-to-Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd(m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial discharge < 5 pC	$V_{pd(m)}$	1209	V peak
Input-to-Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.6 = V_{pd(m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd(m)}	1032	V peak
After Input and/or Safety Tests Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd(m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd(m)}	774	V peak
Maximum Transient Isolation Voltage	V _{TEST} = 1.2 × V _{IOTM} , t =1s (100% production)	V _{IOTM}	6000	V peak
Maximum Impulse Voltage	Surge voltage in air, waveform per IEC 61000-4-5	V _{IMP}	6000	V peak
Maximum Surge Isolation Voltage	$V_{TEST} \ge 1.3 \times V_{IMP}$ (sample test), tested in oil, waveform per IEC 61000-4-5	V _{IOSM}	10000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure; see Figure 3			
Maximum Junction Temperature		T _S	150	°C
Total Power Dissipation at 25°C		Ps	2.78	W
Insulation Resistance at T _S	V _{IO} = 500 V	R _S	>10 ⁹	Ω

analog.com Rev. H | 10 of 20

Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.

³ CTI rating for the ADuM2200/ADuM2201 RI-16-2/ADuM2200/ADuM2201 RW 16 is >400 V and a Material Group II isolation group.

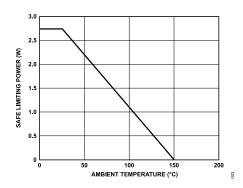


Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN IEC 60747-17 (VDE 0884-17)

RECOMMENDED OPERATING CONDITIONS

Table 17.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A			
A Grade and B Grade		-40	+105	°C
WA Grade and WB Grade		-40	+125	°C
Supply Voltages ¹	V _{DD1} , V _{DD2}	3.0	5.5	V
Input Signal Rise and Fall Times			1.0	ms

¹ All voltages are relative to their respective grounds.

analog.com Rev. H | 11 of 20

ABSOLUTE MAXIMUM RATINGS

Table 18.

Parameter	Rating			
Storage Temperature (T _{ST})	−65°C to +150°C			
Ambient Operating Temperature (T _A)	-40°C to +125°C			
Supply Voltage (V _{DD1} , V _{DD2}) ¹	-0.5 V to +7.0 V			
Input Voltage (V _{IA} , V _{IB}) ^{1, 2}	-0.5 V to V _{DDI} + 0.5 V			
Output Voltage (V _{OA} , V _{OB}) ^{1, 2}	-0.5 V to V _{DDO} + 0.5 V			
Average Output Current per Pin ³				
Side 1 (I _{O1})	-18 mA to +18 mA			
Side 2 (I _{O2})	-22 mA to +22 mA			
Common-Mode Transients ⁴	-100 kV/µs to +100 kV/µs			

- ¹ All voltages are relative to their respective grounds.
- VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. See the PCB Layout section.
- ³ See Figure 3 for maximum rated current values for various temperatures.
- Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum rating can cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other

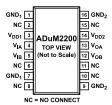
conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

MAXIMUM CONTINUOUS WORKING VOLTAGE

Table 19. Maximum Continuous Working Voltage

Parameter	Max	Unit	Applicable Certification
AC Voltage Bipolar Waveform	645	V peak	Reinforced insulation rating per IEC 60747-17 (VDE 0884-17) ¹

Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. H | 12 of 20

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

- NOTES:

 1. PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED TO EACH OTHER, AND IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

 2. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED TO A COMMON GROUND.

 IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 4. ADuM2200 Pin Configuration

Table 20. ADuM2200 Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 7	GND ₁	Ground 1. Ground reference for Isolator Side 1. Pin 1 and Pin 7 are internally connected to each other, and it is recommended that both pins be connected to a common ground.
2	NC	No Internal Connection.
3	V_{DD1}	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
4	V _{IA}	Logic Input A.
5	V _{IB}	Logic Input B.
6	NC	No Internal Connection.
8	NC	No Internal Connection.
9, 16	GND ₂	Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 16 are internally connected to each other, and it is recommended that both pins be connected to a common ground.
10	NC	No Internal Connection.
11	NC	No Internal Connection.
12	V _{OB}	Logic Output B.
13	V _{OA}	Logic Output A.
14	V_{DD2}	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.
15	NC	No Internal Connection.

Rev. H | 13 of 20 analog.com

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

- NOTES:

 1. PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED TO EACH OTHER, AND IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

 2. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED TO EACH OTHER, AND IT IS RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.

Figure 5. ADuM2201 Pin Configuration

Table 21. ADuM2201 Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 7	GND ₁	Ground 1. Ground reference for Isolator Side 1. Pin 1 and Pin 7 are internally connected to each other, and it is recommended that both pins be connected to a common ground.
2	NC	No Internal Connection.
3	V _{DD1}	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
4	V _{OA}	Logic Output A.
5	V _{IB}	Logic Input B.
6	NC	No Internal Connection.
8	NC	No Internal Connection.
9, 16	GND ₂	Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 16 are internally connected to each other, and it is recommended that both pins be connected to a common ground.
10	NC	No Internal Connection.
11	NC	No Internal Connection.
12	V _{OB}	Logic Output B.
13	V _{IA}	Logic Input A.
14	V_{DD2}	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.
15	NC	No Internal Connection.

Rev. H | 14 of 20 analog.com

TYPICAL PERFORMANCE CHARACTERISTICS

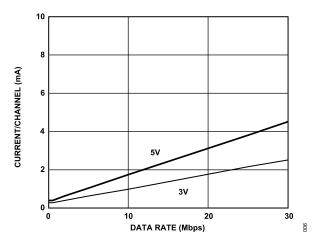


Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation (No Output Load)

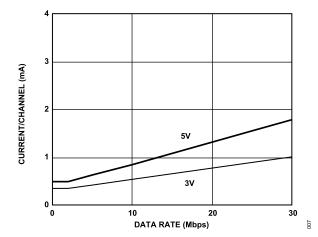


Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation (No Output Load)

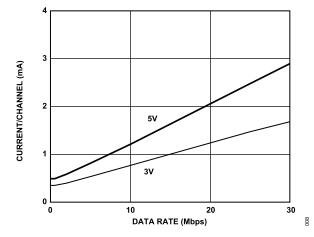


Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation (15 pF Output Load)

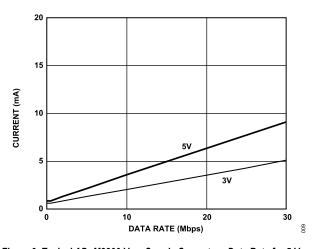


Figure 9. Typical ADuM2200 $V_{\rm DD1}$ Supply Current vs. Data Rate for 5 V and 3.3 V Operation

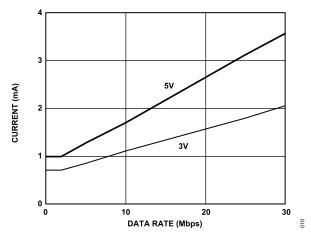


Figure 10. Typical ADuM2200 V_{DD2} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

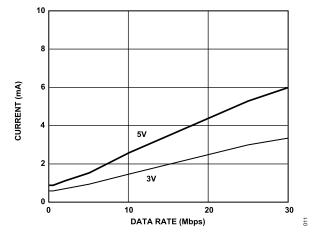


Figure 11. Typical ADuM2201 V_{DD1} or V_{DD2} Supply Current vs. Data Rate for 5 V and 3.3 V Operation

analog.com Rev. H | 15 of 20

APPLICATIONS INFORMATION

PCB LAYOUT

The ADuM2200/ADuM2201 digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 12). Bypass capacitors are most conveniently connected between Pin 1 and Pin 3 for V_{DD1} and between Pin 14 and Pin 16 for V_{DD2} . The capacitor value should be between 0.01 μF and 0.1 μF . The total lead length between both ends of the capacitor and the input power supply pin should not exceed 2 mm. Consider bypassing between Pin 3 and Pin 7 and between Pin 9 and Pin 14 unless the ground pair on each package side is connected close to the package.

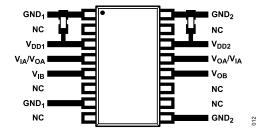


Figure 12. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur affects all pins equally on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the absolute maximum ratings for the device as specified in Table 18, thereby leading to latch-up or permanent damage.

See the AN-1109 Application Note for board layout guidelines.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the length of time it takes for a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

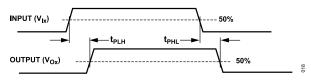


Figure 13. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved.

Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM2200/ADuM2201 component.

Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM2200/ADuM2201 components operated under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than ~1 μ s, a periodic set of refresh pulses indicative of the correct input state is sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately 5 μ s, the input side is assumed to be unpowered or nonfunctional, and the isolator output is forced to a default state by the watchdog timer circuit (see Table 21 and #unique_5/unique_5_Connect_42_ID3703).

The limitation on the magnetic field immunity of the ADuM2200/ADuM2201 is set by the condition in which induced voltage in the transformer receiving coil is large enough to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3.3 V operating condition of the ADuM2200/ADuM2201 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at approximately 0.5 V, thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$V = (-d\beta/dt) \sum \pi r_n^2; n = 1, 2, ..., N$$
 (1)

where:

 β is the magnetic flux density (gauss). r_n is the radius of the nth turn in the receiving coil (cm). N is the number of turns in the receiving coil.

Given the geometry of the receiving coil in the ADuM2200/AD-uM2201 and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 14.

analog.com Rev. H | 16 of 20

APPLICATIONS INFORMATION

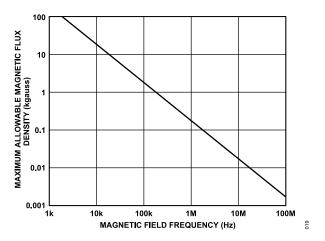


Figure 14. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This voltage is approximately 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM2200/AD-uM2201 transformers. Figure 15 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 15, the ADuM2200/ADuM2201 are immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, a 0.5 kA current placed 5 mm away from the ADuM2200/AD-uM2201 is required to affect the operation of the component.

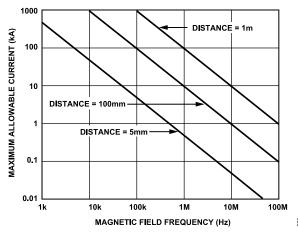


Figure 15. Maximum Allowable Current for Various Current-to-ADuM2200/ ADuM2201 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces can induce error voltages sufficiently large to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM2200/ADuM2201 isolators is a function of the supply voltage, the channel data rate, and the channel output load.

For each input channel, the supply current is given by

$$I_{DDI} = I_{DDI(Q)} f \le 0.5 f_r$$
 (2)

$$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)} f > 0.5f_r$$
(3)

For each output channel, the supply current is given by

$$I_{DDO} = I_{DDO(Q)} f \le 0.5 f_r \tag{4}$$

$$I_{DDO} = (I_{DDO(D)} + (0.5 \times 10^{-3}) \times C_L \times V_{DDO}) \times (2f - f_r) + I_{DDO}$$

$$(5)$$

where:

 $I_{DDI(D)}$, $I_{DDO(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).

 $I_{DDI(Q)}$, $I_{DDO(Q)}$ are the specified input and output quiescent supply currents (mA).

 C_L is the output load capacitance (pF).

 V_{DDO} is the output supply voltage (V).

f is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling).

 f_r is the input stage refresh rate (Mbps).

To calculate the total I_{DD1} and I_{DD2} , the supply currents for each input and output channel corresponding to I_{DD1} and I_{DD2} are calculated and totaled.

Figure 6 and Figure 7 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 8 provides per-channel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 11 provide total I_{DD1} and I_{DD2} as a function of data rate for the ADuM2200/ADuM2201 channel configurations.

analog.com Rev. H | 17 of 20

APPLICATIONS INFORMATION

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM2200/ADuM2201 devices.

Accelerated life testing is performed using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined, allowing calculation of the time to failure at the working voltage of interest. The values shown in Table 19 summarize the maximum continuous working voltages as per IEC 60747-17. Operation at working voltages higher than the service life voltage listed leads to premature insulation failure.

analog.com Rev. H | 18 of 20

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
RW-16	SOIC_W	16-Lead Standard Small Outline Package
RI-16-2	SOIC_IC	16-Lead Standard Small Outline Package, with Increased Creepage

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ^{1, 2, 3}	Temperature Range	Package Description	Package Option	
ADuM2200ARIZ	-40°C to +105°C	16-Lead SOIC_IC	RI-16-2	
ADuM2200ARWZ	-40°C to +105°C	16-Lead SOIC_W	RW-16	
ADuM2200WARWZ	-40°C to +125°C	16-Lead SOIC_W	RW-16	
ADuM2200BRIZ	-40°C to +105°C	16-Lead SOIC_IC	RI-16-2	
ADuM2200BRWZ	−40°C to +105°C	16-Lead SOIC_W	RW-16	
ADuM2200WBRWZ	-40°C to +125°C	16-Lead SOIC_W	RW-16	
ADuM2201ARIZ	-40°C to +105°C	16-Lead SOIC_IC	RI-16-2	
ADuM2201ARWZ	-40°C to +105°C	16-Lead SOIC_W	RW-16	
ADuM2201WARWZ	-40°C to +125°C	16-Lead SOIC_W	RW-16	
ADuM2201BRIZ	-40°C to +105°C	16-Lead SOIC_IC	RI-16-2	
ADuM2201BRWZ	-40°C to +105°C	16-Lead SOIC_W	RW-16	
ADuM2201WBRWZ	-40°C to +125°C	16-Lead SOIC_W	RW-16	

¹ Z = RoHS Compliant Part.

NUMBER OF INPUTS, MAXIMUM DATA RATE, MAXIMUM PROPAGATION, AND MAXIMUM PULSE WIDTH DISTORTION OPTIONS

Model ^{1, 2, 3}	Number of Inputs, V _{DD1} Side	Number of Inputs, V _{DD2} Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)
ADuM2200ARIZ	2	0	1	150	40
ADuM2200ARWZ	2	0	1	150	40
ADuM2200WARWZ	2	0	1	150	40
ADuM2200BRIZ	2	0	10	50	3
ADuM2200BRWZ	2	0	10	50	3
ADuM2200WBRWZ	2	0	10	50	3
ADuM2201ARIZ	1	1	1	150	40
ADuM2201ARWZ	1	1	1	150	40
ADuM2201WARWZ	1	1	1	150	40
ADuM2201BRIZ	1	1	10	50	3
ADuM2201BRWZ	1	1	10	50	3
ADuM2201WBRWZ	1	1	10	50	3

¹ Z = RoHS Compliant Part.

analog.com Rev. H | 19 of 20

² W = Qualified for Automotive Applications.

³ Tape and reel is available. The addition of an -RL suffix designates a 13" (1,000 units) tape and reel option.

² W = Qualified for Automotive Applications.

³ Tape and reel is available. The addition of an -RL suffix designates a 13" (1,000 units) tape and reel option.

OUTLINE DIMENSIONS

AUTOMOTIVE PRODUCTS

The ADuM2200W and ADuM2201W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

