

Commercial Space 10W Average, Silicon SPDT, Reflective Switch, 1GHz to 20GHz Product

FEATURES

- ▶ Wideband frequency range: 1GHz to 20GHz
- ▶ Low insertion loss: 0.8dB typical to 20GHz
- ▶ High Isolation: 52dB typical to 20GHz
- High input linearity
 - ▶ P0.1dB: 44dBm
 - ▶ IP3: >70dBm
 - ▶ IP2: >120dBm
- ▶ High power handling at T_{CASE} = 85°C
 - ▶ Insertion loss path
 - ▶ Average: 40dBm
 - ▶ Pulsed (>100ns pulse width, 15% duty cycle): 43dBm
 - ▶ Peak (≤100ns peak duration, 5% duty cycle): 44dBm
 - ► Hot switching: 37dBm
- D.1dB RF settling time with P_{IN} ≤ 37dBm: 750ns
- ▶ No low frequency spurious
- ▶ Positive control interface: CMOS-/LVTTL-compatible
- ▶ 20-terminal, 3.0mm × 3.0mm LGA package

COMMERCIAL SPACE FEATURES

- Support aerospace applications
- ▶ Wafer diffusion lot traceability
- ▶ Radiation monitors
 - ▶ TID
 - No SEL occurs at effective LET: ≤58MeV-cm²/mg
- ▶ Outgassing characterization

APPLICATIONS

- ▶ Military radios, radars, and electronic counter measures
- Satcom
- ▶ Test and instrumentation
- ► GaN and PIN diode replacement

FUNCTIONAL BLOCK DIAGRAM

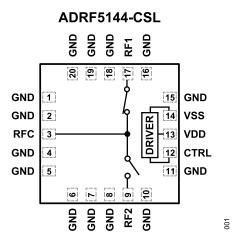


Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5144-CSL is a reflective, single pole double-throw (SPDT) switch manufactured in the silicon process.

The ADRF5144-CSL operates from 1GHz to 20GHz with typical insertion loss of 0.8dB and typical isolation of 52dB. The device has a RF input power handling capability of 40dBm average power and 44dBm peak power for the insertion loss path.

The ADRF5144-CSL draws a low current of $130\mu A$ on the positive supply of +3.3V and $510\mu A$ on negative supply of -3.3V. The device employs complementary metal-oxide semiconductor (CMOS)-/low-voltage transistor to transistor logic (LVTTL)-compatible controls. The ADRF5144-CSL requires no additional driver circuitry, which makes it an ideal alternative to gallium nitride (GaN) and P type intrinsic (PIN) diode-based switches.

The ADRF5144-CSL can also operate with a single positive supply voltage (V_{DD}) applied while the negative supply voltage (V_{SS}) is tied to ground. In this operating condition, the small signal performance is maintained while the switching characteristics, linearity, and power handling performance are derated, see Table 2.

The ADRF5144-CSL comes in a 20-terminal, 3.0mm × 3.0mm, RoHS-compliant, land grid array (LGA) package and can operate from -40°C to +85°C.

Additional application and technical information can be found in the Commercial Space Products Program brochure and the ADRF5144 data sheet.

TABLE OF CONTENTS

Features1	Power Derating Curves6
Commercial Space Features1	<u> </u>
Applications1	Radiation Features7
Functional Block Diagram1	Electrostatic Discharge (ESD) Ratings7
General Description1	ESD Caution7
Specifications3	Pin Configuration and Function Descriptions 8
Single-Supply Operation4	Interface Schematics8
Radiation Test and Limit Specifications5	Typical Performance Characteristics9
Absolute Maximum Ratings6	Outline Dimensions
Thermal Resistance6	Ordering Guide10

REVISION HISTORY

7/2025—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 10

SPECIFICATIONS

 $V_{DD} = 3.3V, \, V_{SS} = -3.3V, \, V_{CTRL} = 0V \,\, or \,\, V_{DD}, \, T_{CASE} = 25^{\circ}C, \, 50\Omega \,\, system, \, unless \,\, otherwise \,\, noted.$

Table 1. Electrical Specifications

Parameter	Symbol	Test Conditions/Comments	Min Typ	Max	Unit
FREQUENCY RANGE	f		1000	20,000	MHz
INSERTION LOSS					
Between RFC and RF1/RF2 (On)		9kHz to 1GHz	0.45		dB
		1GHz to 12GHz	0.65		dB
		12GHz to 20GHz	0.8		dB
		20GHz to 26GHz	1.1		dB
RETURN LOSS					
RFC and RF1/RF2 (On)		9kHz to 1GHz	30		dB
		1GHz to 12GHz	25		dB
		12GHz to 20GHz	20		dB
		20GHz to 26GHz	15		dB
ISOLATION					
Between RFC and RF1/RF2 (Off)		9kHz to 20GHz	52		dB
` '		20GHz to 26GHz	47		dB
Between RF1 and RF2		9kHz to 20GHz	48		dB
		20GHz to 26GHz	43		dB
SWITCHING CHARACTERISTICS					
Rise and Fall Time	t _{RISE} , t _{FALL}	10% to 90% of RF output	135		ns
On and Off Time	t _{ON} , t _{OFF}	50% V _{CTRL} to 90% of RF output	500		ns
RF Settling Time	0147 011	OTTLE I			
0.5dB RF Settling Time		50% V_{CTRL} to 0.5dB of final RF output, RF input power (P_{IN}) \leq 37dBm	550		ns
0.1dB RF Settling Time		50% V _{CTRL} to 0.1dB of final RF output, P _{IN} ≤ 37dBm	750		ns
INPUT LINEARITY		f = 1GHz to 18GHz			
0.1dB Power Compression	P0.1dB		44		dBm
Input Third-Order Intercept	IIP3	Two tone input power = $30dBm$ each tone, Δf =	>70		dBm
mput rima Grasi interespt	0	1MHz			uD
Input Second-Order Intercept	IIP2	Two tone input power = 30dBm each tone, Δf = 1MHz	>120		dBm
SUPPLY CURRENT		VDD and VSS pins			
Positive Supply Current	I _{DD}		130		μA
Negative Supply Current	I _{SS}		510		μA
DIGITAL CONTROL INPUTS		CTRL pin			
Voltage					
Low	V _{INL}		0	0.8	V
High	V _{INH}		1.2	3.3	V
Current					
Low and High	I _{INL} , I _{INH}		<0.1		μA
RECOMMENDED OPERATING CONDITONS					
Positive Supply Voltage	V_{DD}		3.15	3.45	V
Negative Supply Voltage	V _{SS}		-3.45	-3.15	V
Digital Control Input Voltage	V _{CTRL}		0	V_{DD}	V
RF Input Power Wait Time ¹	t _{WAIT}	P _{IN} ≤ 37dBm	0	UU	μs
•	MAIL	37dBm < P _{IN} ≤ 41dBm	1.0		μs
		41dBm < P _{IN} ≤ 42dBm	1.2		μs
		$42dBm < P_{IN} \le 43dBm$	1.5		μs

analog.com Rev. 0 | 3 of 10

SPECIFICATIONS

Table 1. Electrical Specifications (Continued)

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
RF Input Power ²	P _{IN}	f = 1GHz to 18GHz, T _{CASE} = 85°C				
Insertion Loss Path		RF signal applied to the RFC or through connected RF1/RF2				
Average					40	dBm
Pulsed ³		>100ns pulse width, 15% duty cycle			43	dBm
Peak		≤100ns peak duration, 5% duty cycle			44	dBm
Hot Switching		RF signal applied to the RFC			37	dBm
Case Temperature	T _{CASE}		-40		+85	°C

¹ For more details, see the ADRF5144 data sheet.

SINGLE-SUPPLY OPERATION

 V_{DD} = 3.3V, V_{SS} = 0V, V_{CTRL} = 0V or V_{DD} , and T_{CASE} = 25°C, with a 50 Ω system, unless otherwise noted.

Table 2. Single-Supply Operational Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE	f		1000		20,000	MHz
SWITCHING CHARACTERISTICS						
Rise and Fall Time	t _{RISE} , t _{FALL}	10% to 90% of RF output		0.66		μs
On and Off Time	t _{ON} , t _{OFF}	50% V _{CTRL} to 90% of RF output		1.5		μs
0.1dB RF Settling Time		50% V _{CTRL} to 0.1dB of final RF output, P _{IN} ≤ 24dBm		1.8		μs
INPUT LINEARITY		f = 1GHz to 18GHz				
0.1dB Power Compression	P0.1dB			29		dBm
Input Third-Order Intercept	IIP3	Two tone input power = 20dBm each tone, Δf = 1MHz		58		dBm
Input Second-Order Intercept	IIP2	Two tone input power = 20dBm each tone, Δf = 1MHz		109		dBm
RECOMMENDED OPERATING CONDITONS						
RF Input Power Wait Time ¹	t _{WAIT}	P _{IN} ≤ 24dBm		0		μs
		24dBm < P _{IN} ≤ 29.5dBm		2.2		μs
RF Input Power ²	P _{IN}	f = 1GHz to 18GHz, T _{CASE} = 85°C				
Insertion Loss Path		RF signal applied to the RFC or through connected RF1/RF2				
Average					30	dBm
Pulsed ³		>100ns pulse width, 15% duty cycle			30	dBm
Peak		≤100ns peak duration, 5% duty cycle			30	dBm
Hot Switching		RF signal applied to the RFC			24	dBm

¹ For more details, see the ADRF5144 data sheet.

analog.com Rev. 0 | 4 of 10

² For power derating over frequency, see Figure 2 and Figure 3.

³ For different pulsed conditions, contact Analog Devices, Inc., Support.

² For power derating over frequency, see Figure 2 and Figure 3.

³ For different pulsed conditions, contact Analog Devices Support.

SPECIFICATIONS

RADIATION TEST AND LIMIT SPECIFICATIONS

Electrical characteristics at V_{DD} = 3.3V, V_{SS} = 3.3V, and T_A = 25°C, unless otherwise noted. Total ionizing dose (TID) testing characterized to 100krads, and no single event latch-up (SEL) occurs at \leq 58MeV-cm²/mg linear energy transfer (LET).

Table 3. Radiation Test and Limit Specifications

Parameter	Symbol	Min	Тур	Max	Unit
INSERTION LOSS					
RF1					
f _{IN} = 0.65GHz			0.6		dB
f _{IN} = 10GHz			0.8		dB
f _{IN} = 19GHz			1.0		dB
RF2					
f _{IN} = 0.65GHz			0.6		dB
f _{IN} = 10GHz			0.8		dB
f _{IN} = 19GHz			1.0		dB
ISOLATION					
RF1					
$f_{IN} = 0.65GHz$			79		dB
f _{IN} = 10GHz			57		dB
f _{IN} = 19GHz			51		dB
RF2					
$f_{IN} = 0.65GHz$			77		dB
f _{IN} = 10GHz			55		dB
f _{IN} = 19GHz			49		dB
DC CURRENTS					
Positive Supply Current	I _{DD}		150	180	μA
Negative Supply Current	I _{SS}		560	620	μA

analog.com Rev. 0 | 5 of 10

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1 and Table 2.

Table 4. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
Positive	-0.3V to +3.6V
Negative	-3.6V to +0.3V
Digital Control Input Voltage	
Voltage	$-0.3V$ to $V_{DD} + 0.3V$
Current	3mA
RF Input Power, Dual Supply ¹ (V_{DD} = 3.3V, V_{SS} = -3.3V, f = 1GHz to 18GHz, T_{CASE} = 85°C)	
Insertion Loss Path	
Average	40.5dBm
Pulsed	43.5dBm
Peak	44.5dBm
Hot Switching	37.5dBm
RF Input Power, Single Supply ¹ ($V_{DD} = 3.3V$, $V_{SS} = 0V$, $f = 1GHz$ to 18GHz, $T_{CASE} = 85^{\circ}C$)	
Insertion Loss Path	
Average	30.5dBm
Pulsed	30.5dBm
Peak	30.5dBm
Hot Switching	24.5dBm
RF Power Under Unbiased Condition (V _{DD} , V _{SS} = 0V)	
Input at RFC	30dBm
Input at RFx	24dBm
Temperature	
Junction (T _J)	135°C
Storage	-65°C to +150°C
Reflow	260°C

¹ For power derating over frequency, see Figure 2 and Figure 3.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at a time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JC} is the junction to the case bottom (channel to package bottom) thermal resistance.

Table 5. Thermal Resistance

Package Type	θ _{JC} ¹	Unit
CC-20-13	25	°C/W

 $^{^{1}}$ θ_{JC} was determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of 85°C.

POWER DERATING CURVES

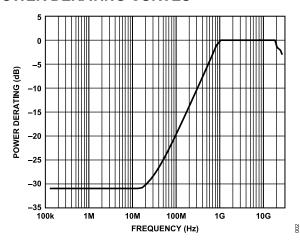


Figure 2. Power Derating vs. Frequency, Low Frequency Detail, T_{CASE} = 85°C

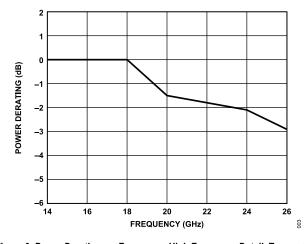


Figure 3. Power Derating vs. Frequency, High Frequency Detail, $T_{CASE} = 85^{\circ}C$

analog.com Rev. 0 | 6 of 10

Data Sheet ADRF5144-CSL

ABSOLUTE MAXIMUM RATINGS

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials must be determined by the user and based on specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 6. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Lost	0.11	%
Collected Volatile Condensable Material	<0.01	%
Water Vapor Recovered	0.07	%

RADIATION FEATURES

Table 7. Radiation Features

Specifications	Value	Unit
Maximum Total Dose Available (Dose Rate = 50rads to 300rads (Si)/sec) ¹	100	krads (Si)
No SEL Occurs at LET ²	≤58	MeV-cm ² /mg

- Guaranteed by device and process characterization. Contact Analog Devices Support for data available up to 100krads.
- ² Limits are characterized at initial qualification and after any design or process changes that may affect the SEL characteristics, but are not production lot tested unless specified by the customer through the purchase order or contract. For more information on single event effect (SEE) test results, contact Analog Devices Support for further data beyond published report on the Analog Devices website.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

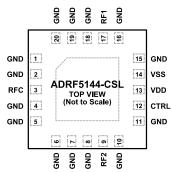
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADRF5144-CSL

Table 8. ADRF5144-CSL, 20-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	±2000 for all pins	2
CDM	±1250 for all pins	C3


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 7 of 10

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RF AND DC GROUND OF THE PCB.

Figure 4. Pin Configuration (Top View)

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 4 to 8, 10, 11, 15, 16, 18 to 20	GND	Ground. The GND pins must be connected to the RF and DC ground of the PCB.
3	RFC	RF Common Port. The RFC pin is DC-coupled to 0V and AC matched to 50Ω . No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See Figure 5 for the interface schematic.
9	RF2	RF Throw Port 2. The RF2 pin is DC-coupled to 0V and AC matched to 50Ω . No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See Figure 5 for the interface schematic.
12	CTRL	Control Input. For the truth table in the ADRF5144 data sheet. See Figure 7 for the interface schematic.
13	VDD	Positive Supply Voltage. See Figure 6 for the interface schematic.
14	VSS	Negative Supply Voltage. See Figure 8 for the interface schematic.
17	RF1	RF Throw Port 1. The RF1 pin is DC-coupled to 0V and AC matched to 50Ω . No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See Figure 5 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.

INTERFACE SCHEMATICS

Figure 5. RF Pins (RFC, RF1, and RF2) Interface Schematic

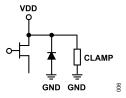


Figure 6. VDD Pin Interface Schematic

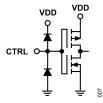


Figure 7. Digital Pin (CTRL) Interface Schematic

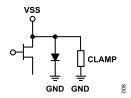


Figure 8. VSS Pin Interface Schematic

analog.com Rev. 0 | 8 of 10

TYPICAL PERFORMANCE CHARACTERISTICS

See the ADRF5144 data sheet for a full set of typical performance characteristics plots.

analog.com Rev. 0 | 9 of 10

OUTLINE DIMENSIONS

Package Drawing Option	Package Type	Package Description
CC-20-13	LGA	20-Terminal Land Grid Array Package

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Quantity	Package Option
ADRF5144BCCZ-CSL	-40°C to +85°C	20-Terminal Land Grid Array [LGA]	Tape, 500	CC-20-13
ADRF5144BCCZ-CSLR7	-40°C to +85°C	20-Terminal Land Grid Array [LGA]	Reel, 500	CC-20-13

¹ Z = RoHS-Compliant Part.

