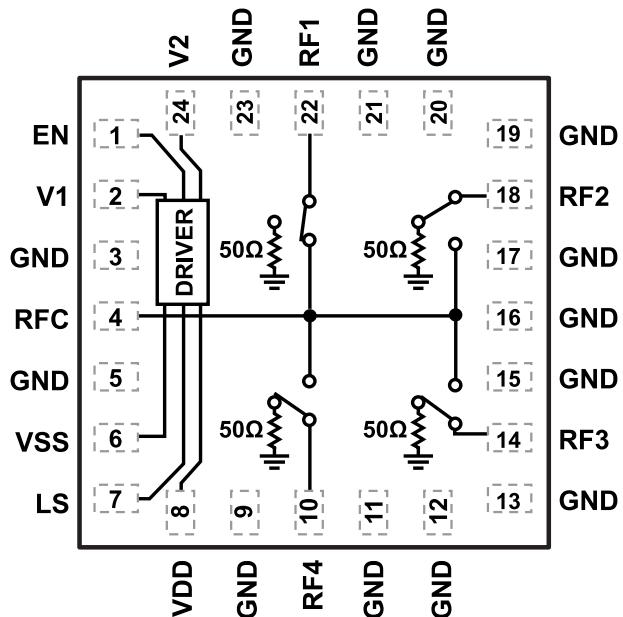


**Commercial Space
Product**
FEATURES


- ▶ Ultrawideband frequency range: 100MHz to 45GHz
- ▶ Nonreflective 50Ω design
- ▶ Low insertion loss
 - ▶ 1.4dB at 18GHz typical
 - ▶ 2.4dB at 40GHz typical
 - ▶ 4.0dB at 45GHz typical
- ▶ High isolation
 - ▶ 41dB at 18GHz typical
 - ▶ 35dB at 40GHz typical
 - ▶ 35dB at 45GHz typical
- ▶ High input linearity
 - ▶ P0.1dB: >30dBm typical
 - ▶ IP3: 52dBm typical
- ▶ High power handling
 - ▶ 30dBm through path
 - ▶ 18dBm terminated path
- ▶ No low frequency spurious
- ▶ ESD ratings
 - ▶ HBM
 - ▶ ±1000V for RFx pins
 - ▶ ±2000V for supply and digital control pins
 - ▶ CDM: ±500V for all pins
- ▶ On and off time (50% V_{CTRL} to 90% of final RF_{OUT}): 20ns
- ▶ RF settling time (50% V_{CTRL} to 0.1dB of final RF_{OUT}): 60ns
- ▶ 3mm × 3mm, 24-terminal LGA package

COMMERCIAL SPACE FEATURES

- ▶ Support aerospace applications
- ▶ Wafer diffusion lot traceability
- ▶ Radiation monitors
 - ▶ Total ionizing dose (TID) benchmark characterization
 - ▶ Single event latch-up (SEL) benchmark characterization
 - ▶ Radiation lot acceptance Test (RLAT) for production TID assurance
- ▶ Outgassing characterization

APPLICATIONS

- ▶ Industrial scanners
- ▶ Test instrumentation
- ▶ Cellular infrastructure mmWave 5G
- ▶ Military radios, radars, and electronic counter measures (ECMs)
- ▶ Microwave radios and very small aperture terminals (VSATs)

Silicon SP4T Switch, Nonreflective, 100MHz to 45GHz
FUNCTIONAL BLOCK DIAGRAM
ADRF5048-CSL

001

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5048-CSL is a nonreflective SP4T switch manufactured in the silicon on insulator (SOI) process.

This device operates from 100MHz to 45GHz with an insertion loss lower than 4.0dB and isolation higher than 35dB. The ADRF5048-CSL has an RF input power handling capability of 30dBm through path, 18dBm terminated path, and 30dBm hot switching at the RF common port.

The ADRF5048-CSL requires a dual-supply voltage of +3.3V and -3.3V. The device employs complimentary metal-oxide semiconductor (CMOS)-/low-voltage transistor to transistor logic (LVTTL) logic-compatible controls.

The ADRF5048-CSL has enable and logic select controls to feature all off state and mirror port selection, respectively.

The ADRF5048-CSL comes in a [24-terminal, 3mm × 3mm, RoHS compliant, land grid array \(LGA\) package](#) and can operate from -40°C to +105°C.

Additional application and technical information can be found in the [Commercial Space Products](#) Program brochure and the ADRF5048 data sheet.

TABLE OF CONTENTS

Features.....	1	Outgas Testing.....	5
Commercial Space Features.....	1	Radiation Features.....	6
Applications.....	1	Electrostatic Discharge (ESD) Ratings.....	6
Functional Block Diagram.....	1	ESD Caution.....	6
General Description.....	1	Pin Configuration and Function Descriptions.....	7
Specifications.....	3	Interface Schematics.....	8
Radiation Test and Limit Specifications.....	4	Typical Performance Characteristics.....	9
Absolute Maximum Ratings.....	5	Outline Dimensions.....	10
Thermal Resistance.....	5	Ordering Guide.....	10
Power Derating Curves.....	5		

REVISION HISTORY**10/2025—Revision 0: Initial Version**

SPECIFICATIONS

$V_{DD} = 3.3V$, $V_{SS} = -3.3V$, $V1 = 0V$ or $3.3V$, $V2 = 0V$ or $3.3V$, $T_A = 25^\circ C$, and it is a 50Ω system, unless otherwise noted. V_{CTRL} is the voltages of the digital control inputs, $V1$ and $V2$.

Table 1. Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE		0.1	45		GHz
INSERTION LOSS					
Between RFC and RF1 to RF4 (On)	100MHz to 18GHz 18GHz to 26GHz 26GHz to 35GHz 35GHz to 40GHz 40GHz to 45GHz	1.4 1.7 2.1 2.4 4.0			dB
ISOLATION					
Between RFC and RF1 to RF4 (Off)	100MHz to 18GHz 18GHz to 26GHz 26GHz to 35GHz 35GHz to 40GHz 40GHz to 45GHz	41 40 36 35 35			dB
RETURN LOSS					
RFC and RF1 to RF4 (On)	100MHz to 18GHz 18GHz to 26GHz 26GHz to 35GHz 35GHz to 40GHz 40GHz to 45GHz	22 17 16 22 9			dB
RF1 to RF4 (Off)	100MHz to 18GHz 18GHz to 26GHz 26GHz to 35GHz 35GHz to 40GHz 40GHz to 45GHz	22 19 16 16 16			dB
SWITCHING					
Rise Time and Fall Time (t_{RISE} , t_{FALL})	90% to 10% of RF output (RF_{OUT})	4			ns
On Time and Off Time (t_{ON} , t_{OFF})	50% V_{CTRL} to 10% to 90% of RF_{OUT}	20			ns
Settling Time 0.1dB	50% V_{CTRL} to 0.1dB of final RF_{OUT}	60			ns
INPUT LINEARITY ¹					
0.1dB Power Compression (P0.1dB)	$f = 0.3GHz$ to 40GHz	>30			dBm
Third-Order Intercept (IP3)	Two-tone input power = 14dBm continuous wave per tone, $f = 1GHz$ to 40GHz, $\Delta f = 1MHz$	52			dBm
SUPPLY CURRENT	VDD and VSS pins				
Positive Supply Current (I_{DD})		150			μA
Negative Supply Current (I_{SS})		520			μA
DIGITAL CONTROL INPUTS					
Voltage					
Low (V_{INL})		0	0.8		V
High (V_{INH})		1.2	3.45		V
Current					
Low (I_{INL})		<1			μA
High (I_{INH})	V1 and V2 EN and LS	<1 33			μA

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RECOMMENDED OPERATING CONDITIONS					
Supply Voltage					
Positive (VDD)		3.15	3.45		V
Negative (VSS)		-3.45	-3.15		V
Digital Control Inputs Voltages (V1, V2)		0	VDD		V
RF Input Power ^{2, 3}	$f = 0.3\text{GHz}$ to 40GHz , $T_{\text{CASE}} = 85^{\circ}\text{C}$, life time RF signal is applied to RFC or through connected RFx RF signal is applied to terminated RFx RF signal is present at RFC while switching between RFx		30	30	dBm
Through Path			18	18	dBm
Terminated Path			30	30	dBm
Hot Switching					
Case Temperature (T_{CASE})		-40	+105		$^{\circ}\text{C}$

¹ For input linearity performance over frequency, see the [ADRF5048](#) data sheet.

² For power derating over frequency, see [Figure 2](#) and [Figure 3](#).

³ For 105°C operation, the power handling degrades from the $T_{\text{CASE}} = 85^{\circ}\text{C}$ specification by 3dB.

RADIATION TEST AND LIMIT SPECIFICATIONS

Electrical characteristics at $VDD = 3.3\text{V}$, $VSS = -3.3\text{V}$, and $T_A = 25^{\circ}\text{C}$, unless otherwise noted. TID testing to 100krads, and no SEL occurs at $\leq 58\text{MeV}\cdot\text{cm}^2/\text{mg}$ linear energy transfer (LET).

Table 2. Radiation Test and Limit Specifications

Parameter	Symbol	Min	Typ	Max	Unit
INSERTION LOSS					
RF1 and RF4					
Input Frequency (f_{IN}) = 0.65GHz		1.1			dB
$f_{\text{IN}} = 15\text{GHz}$		1.5			dB
$f_{\text{IN}} = 33\text{GHz}$		2.1			dB
RF2 and RF3					
$f_{\text{IN}} = 0.65\text{GHz}$		1.1			dB
$f_{\text{IN}} = 15\text{GHz}$		1.5			dB
$f_{\text{IN}} = 33\text{GHz}$		2.2			dB
ISOLATION					
RF1 and RF4					
$f_{\text{IN}} = 0.65\text{GHz}$		74			dB
$f_{\text{IN}} = 15\text{GHz}$		50			dB
$f_{\text{IN}} = 33\text{GHz}$		42			dB
RF2 and RF3					
$f_{\text{IN}} = 0.65\text{GHz}$		73			dB
$f_{\text{IN}} = 15\text{GHz}$		45			dB
$f_{\text{IN}} = 33\text{GHz}$		42			dB
DC CURRENTS					
Positive Supply Current	I_{DD}	235	280		μA
Negative Supply Current	I_{SS}	650	700		μA

ABSOLUTE MAXIMUM RATINGS

Table 3. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
VDD	-0.3V to +3.6V
VSS	-3.6V to +0.3V
Digital Control Inputs Voltage	-0.3V to VDD + 0.3V
RF Input Power (Frequency ¹ = 0.3GHz to 40GHz, T _{CASE} = 85°C ²)	
Through Path	30.5dBm
Terminated Path	18.5dBm
Hot Switching	30.5dBm
Temperature	
Junction	135°C
Storage	-65°C to +150°C
Reflow	260°C

¹ For power derating over frequency, see Figure 2 and Figure 3.

² For 105°C operation, the power handling degrades from the T_{CASE} = 85°C specifications by 3dB.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

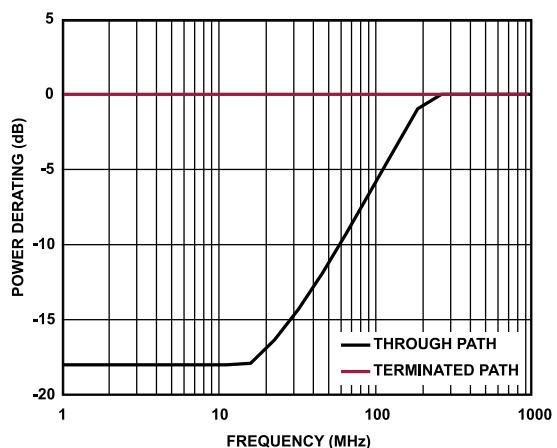
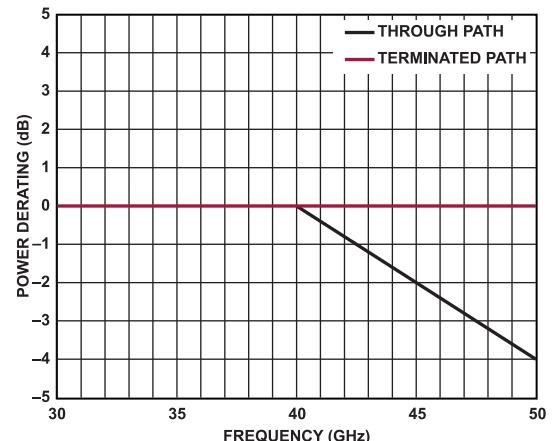


θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

Package Type	θ _{JC} ¹	Unit
CC-24-14		
Through Path	100	°C/W
Terminated Path	800	°C/W

¹ θ_{JC} was determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of 105°C.

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, T_{CASE} = 85°CFigure 3. Power Derating vs. Frequency, High Frequency Detail, T_{CASE} = 85°C

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials must be determined by the user and based on specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 5. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Lost	0.13	%
Collected Volatile Condensable Material	<0.01	%
Water Vapor Recovered	0.08	%

ABSOLUTE MAXIMUM RATINGS

RADIATION FEATURES

Table 6. Radiation Features

Specifications	Value	Unit
Maximum Total Dose Available (Dose Rate = 50rads to 300rads (Si)/sec) ¹	100	krads (Si)
No SEL Occurs at Effective LET ²	≤58	MeV-cm ² /mg

¹ Guaranteed by device and process characterization. Contact [Analog Devices, Inc., Support](#) for data available up to 100krads.

² Limits are characterized at initial qualification and after any design or process changes that may affect the SEL characteristics, but are not production lot tested.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for the ADRF5048-CSL

Table 7. ADRF5048-CSL, 24-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	±1000 for RFx Pins ±2000 for Supply and Digital Control Pins	1C 2
CDM	±500 for All Pins	C2A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

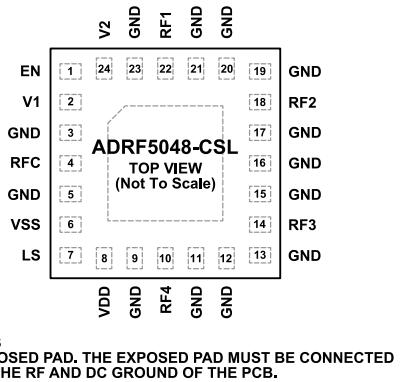


Figure 4. Pin Configuration

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	EN	Enable Input. See the truth table in the ADRF5048 data sheet and Figure 7 for the control interface schematic.
2	V1	Control Input 1. See the truth table in the ADRF5048 data sheet and Figure 6 for the control interface schematic.
3, 5, 9, 11 to 13, 15 to 17, 19 to 21, 23	GND	Ground.
4	RFC	RF Common Port. The RFC pin is DC-coupled to 0V and AC matched to 50Ω. No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See the truth table in the ADRF5048 data sheet and Figure 5 for the interface schematic.
6	VSS	Negative Supply Voltage.
7	LS	Logic Select. See the truth table in the ADRF5048 data sheet and Figure 7 for the control interface schematic.
8	VDD	Positive Supply Voltage.
10	RF4	RF Throw Port 4. The RF4 pin is DC-coupled to 0V and AC matched to 50Ω. No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See the truth table in the ADRF5048 data sheet and Figure 5 for the interface schematic.
14	RF3	RF Throw Port 3. The RF3 pin is DC-coupled to 0V and AC matched to 50Ω. No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See the truth table in the ADRF5048 data sheet and Figure 5 for the interface schematic.
18	RF2	RF Throw Port 2. The RF2 pin is DC-coupled to 0V and AC matched to 50Ω. No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See the truth table in the ADRF5048 data sheet and Figure 5 for the interface schematic.
22	RF1	RF Throw Port 1. The RF1 pin is DC-coupled to 0V and AC matched to 50Ω. No DC blocking capacitor is required when the RF line potential is equal to 0V DC. See the truth table in the ADRF5048 data sheet and Figure 5 for the interface schematic.
24	V2	Control Input 2. See the truth table in the ADRF5048 data sheet and Figure 6 for the control interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.

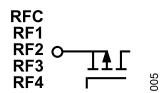

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**INTERFACE SCHEMATICS**

Figure 5. RFx Interface Schematic

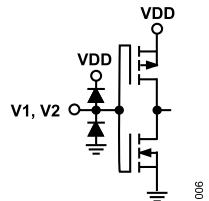


Figure 6. V1 and V2 Control Interface Schematic

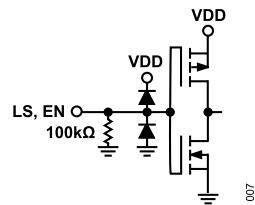


Figure 7. LS and EN Control Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

See the ADRF5048 data sheet for a full set of typical performance characteristics plots.

OUTLINE DIMENSIONS

Package Drawing Option	Package Type	Package Description
CC-24-14	LGA	24-Terminal Land Grid Array Package

For the latest package outline information and land patterns (footprints), go to [Package Index](#).

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADRF5048BCCZ-CSL	-40°C to +105°C	24-Terminal LGA (3mm × 3mm with EPAD)	Tape, 500	CC-24-14
ADRF5048BCCZ-CSLR7	-40°C to +105°C	24-Terminal LGA (3mm × 3mm with EPAD)	Reel, 500	CC-24-14

¹ Z = RoHS Compliant Part.