

Commercial Space Product

24GHz to 44GHz, Wideband, Microwave Upconverter

FEATURES

- ▶ Wideband RF output frequency range: 24GHz to 44GHz
- ▶ 2 upconversion modes
 - ▶ Direct conversion from baseband I/Q to RF
 - ▶ Single-sideband upconversion from real IF
- ▶ LO input frequency range: 5.4GHz to 10.25GHz
- ▶ LO quadrupler for up to 41GHz
- ▶ Matched 50Ω single-ended RF output and IF inputs
- \blacktriangleright Option between matched 100Ω differential or 50Ω single-ended LO inputs
- ▶ 100Ω differential baseband inputs
- ▶ Sideband suppression and carrier feedthrough optimization
- ▶ Variable attenuator for transceiver power control
- ▶ Programmable via 4-wire SPI
- ▶ 40-terminal land grid array (LGA) package

COMMERCIAL SPACE FEATURES

- Supports aerospace applications
- ▶ Certificate of Conformance
- Wafer diffusion lot traceability
- Qualification based on flows per NASA PEM-INST-001 and SAE AS6294
- ▶ Burn-in, life test, and deltas analysis
- ► Radiation lot acceptance test (RLAT)
 - ▶ Total ionizing dose (TID)
- Outgassing characterization

APPLICATIONS

- ▶ Low Earth orbit (LEO) and medium Earth orbit (MEO) satellites
- Geosynchronous Earth orbit (GEO) satellites
- Avionics
- ▶ Point to point microwave radios
- ▶ Radars and electronic warfare systems

FUNCTIONAL BLOCK DIAGRAM

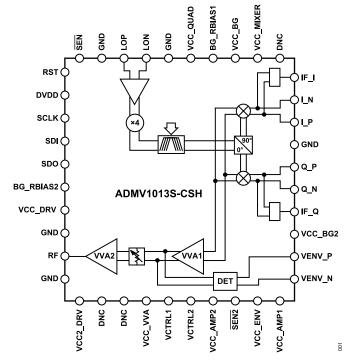


Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADMV1013S-CSH is a wideband, microwave upconverter optimized for point-to-point microwave radio designs operating in the 24GHz to 44GHz RF output frequency range.

The upconverter offers two modes of frequency translation. The device is capable of direct conversion to RF from baseband inphase quadrature (I/Q) input signals, as well as single-sideband upconversion from complex intermediate frequency (IF) inputs. The baseband I/Q input path can be disabled and modulate complex IF signals, anywhere from 0.8GHz to 6.0GHz, can be inserted in the IF path, and can be upconverted to 24GHz to 44GHz while suppressing the unwanted sideband by typically better than 26dBc. The serial port interface (SPI) of the ADMV1013S-CSH allows adjustment of the quadrature phase and mixer gate voltage to allow optimum sideband suppression and local oscillator (LO) nulling.

In addition, the SPI allows powering down the output envelope detector to reduce power consumption.

The ADMV1013S-CSH upconverter comes in a 40-terminal land grid array package (LGA) package. The ADMV1013S-CSH operates over the -40° C to $+85^{\circ}$ C T_{CASE} range.

Additional application and technical information can be found in the Commercial Space Products Program brochure and ADMV1013 data sheet.

Rev. 0

TABLE OF CONTENTS

Features	1	Thermal Resistance	<u>C</u>
Commercial Space Features	. 1		
Applications		•	
Functional Block Diagram			
General Description			10
Specifications		. , , .	
Serial Port Register Timing	6	Pin Configuration and Function Descriptions	11
Burn-in Delta Limit Specifications	.7	Typical Performance Characteristics	13
Radiation Test and Limit Specifications	.8	Outline Dimensions	14
Absolute Maximum Ratings	.9	Ordering Guide	14

REVISION HISTORY

3/2025—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 14

IF and I/Q amplitude = -20dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V, DVDD = VCC_VVA = 1.8V, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid; Register 0x03, Bit 7 (MIXER_IF_EN) = 1; and IF input frequency (f_{IF}) = 3.5GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (V_{CM}) = 0V; Register 0x03, Bit 7 = 0; and Register 0x05, Bits[6:0] (MIXER_VGATE) = 0x051, unless otherwise noted. I/Q baseband frequency (f_{BB}) = 100MHz.

VCTRL1 = VCTRL2. V_{CTRL} is the attenuation voltage at the VCTRL1 and VCTRL2 pins. V_{CTRL} = 1800mV, unless otherwise specified.

Minimum and maximum specifications represent performance at $-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$, unless otherwise noted. Typical specifications represent performance at $T_{A} = 25^{\circ}\text{C}$.

Table 1. Specifications

Parameter	Test Conditions/Comments	Test Level ¹	T_A	Min	Тур	Max	Unit
FREQUENCY RANGES							
RF Output				24		44	GHz
LO Input				5.4		10.25	GHz
LO Quadrupler				21.6		41	GHz
IF Input				0.8		6.0	GHz
Baseband I/Q Input				DC		6.0	GHz
LO AMPLITUDE RANGE				-6	0	+6	dBm
I/Q MODULATOR PERFORMANCE							
Conversion Gain	At maximum gain						
24GHz to 40GHz	f _{BB} ≤ 3.5GHz	1	25°C	18	23		dB
		1	Full	17			dB
	6GHz > f _{BB} > 3.5GHz	III	25°C		21		
40GHz to 44GHz		III	25°C		19		dB
Voltage Variable Attenuator Control Range		II	25°C		35		dB
Single-Sideband Noise Figure	At maximum gain	III	25°C				
24GHz to 40GHz					18		dB
40GHz to 44GHz					19		dB
Output Third-Order Intercept (IP3)	At maximum gain						
24GHz to 40GHz		1	25°C		23		dBm
40GHz to 44GHz		III	25°C		22		dBm
Output 1 dB Compression Point (P1dB)	At maximum gain						
24GHz to 40GHz		1	25°C	10	13		dBm
		1	Full	9			dBm
40GHz to 44GHz		III	25°C		12		dBm
Sideband Rejection	24GHz to 44GHz, at maximum gain						
Uncalibrated		III	25°C		32		dBc
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE							
Conversion Gain	At maximum gain						
24GHz to 40GHz	f _{IF} ≤ 3.5GHz	1	25°C	13	18		dB
		1	Full	11			dB
	6GHz > f _{IF} > 3.5GHz	1	25°C		12		dB
		1	Full	7.5			dB
40GHz to 44GHz		III	25°C		14		dB
Voltage Variable Attenuator Control Range		II	25°C		35		dB
Single-Sideband Noise Figure	At maximum gain	III	25°C				
24GHz to 40GHz					25		dB
40GHz to 44GHz					28		dB

analog.com Rev. 0 | 3 of 14

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Test Level ¹	T_A	Min	Тур	Max	Unit
Output IP3	At maximum gain						
24GHz to 40GHz		1	25°C		23		dBm
40GHz to 44GHz		III	25°C		22		dBm
Output P1dB	At maximum gain						
24GHz to 40GHz	_	1	25°C	10	13		dBm
		1	Full	8			
40GHz to 44GHz		III	25°C		12		dBm
Sideband Rejection	24GHz to 44GHz, at maximum gain						
Uncalibrated	_	III	25°C		26		dBc
Calibrated	Calibrated using the	II	25°C		36		dBc
	LOAMP_PH_ADJ_ Q_FINE and						
	LOAMP_PH_ADJ_I_FINE bits (see the ADMV1013 data sheet						
	for additional register and bit						
	information)						
ENVELOPE DETECTOR PERFORMANCE							
Output Level	For optimum performance	II	25°C				
Minimum					-45		dBm
Maximum					-20		dBm
Envelope Bandwidth	Measured with two tones with a total	II	25°C				
	power output (P _{OUT}) at RF = 10dBm						
3dB	RF frequency (f _{RF}) = 28GHz				350		MHz
10dB	f _{RF} = 28GHz				1		GHz
RETURN LOSS		II	25°C				
RF Output	50Ω single-ended				-8		dB
LO Input	100Ω differential				-12		dB
IF Input	50Ω single-ended				-12		dB
Baseband Input	100Ω differential				-10		dB
Baseband I/Q Input Impedance					100		Ω
LEAKAGE	At maximum gain						
Fundamental LO to RF					-80		dBm
4 × LO to RF							
5.4GHz to 6.8GHz LO	Uncalibrated	III	25°C		-12		dBm
6.8GHz to 10.25GHz LO	Uncalibrated	III	25°C		-20		dBm
5.4GHz to 10.25GHz LO	Calibrated using	II	25°C		-45		dBm
	the MXER_OFF_ADJ_I_P, MXER_OFF_ADJ_I_N,						
	MXER_OFF_ADJ_I_N, MXER_OFF_ADJ_Q_P,						
	MXER_OFF_ADJ_Q_N bits at V _{CTRL}						
	= 1800mV, IF mode (see the						
	ADMV1013 data sheet for additional						
5 101 85	register and bit information)		0500				
5 × LO to RF			25°C		-55 -70		dBm
Fundamental LO to IF		III	25°C		-70		dBm
Fundamental LO to I/Q		II	25°C		-75		dBm

analog.com Rev. 0 | 4 of 14

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Test Level ¹	T_A	Min	Тур	Max	Unit
LOGIC INPUTS		II	25°C				
Input Voltage Range							
High, V _{INH}				DVDD -		1.8	V
				0.4			
Low, V _{INL}				0		0.4	V
Input Current, I _{INH} /I _{INL}					100		μA
Input Capacitance, C _{IN}					3		pF
LOGIC OUTPUTS		II	25°C				
Output Voltage Range							
High, V _{OH}				DVDD -		1.8	V
				0.4			
Low, V _{OL}				0		0.4	V
Output High Current, I _{OH}						500	μA
POWER INTERFACE							
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV,				3.15	3.3	3.45	V
VCC_AMP1, VCC_BG2, VCC_MIXER, VCC_BG, and							
VCC_QUAD							
3.3V Supply Current	V _{CTRL} = 1.8V, no IF, and I/Q or LO input signal		25°C		550		mA
VCC_DRV		1	Full			165	mA
VCC2_DRV		1	Full			105	mA
VCC_AMP2		1	Full			125	mA
VCC_ENV		1	Full			80	mA
VCC_AMP1		1	Full			105	mA
VCC_BG2		1	Full			45	mA
VCC_MIXER		1	Full			145	mA
VCC_BG		1	Full			45	mA
VCC_QUAD		1	Full			80	mA
DVDD and VCC_VVA		1	Full	1.7	1.8	1.9	V
1.8V Supply Current	V _{CTRL} = 1.8V, no IF, and I/Q or LO	1	25°C		3		mA
DVDD	input signal	1	Full			210	
			Full				μA
VCC_VVA					FF0	8	mA
Total Current IF Mode Detector On Power-Up ²			Full		553	760	mA
Total Power Consumption			25°C		1.9	400	W
Power-Down		<u> </u>	25°C		77	136	mW

¹ Refer to Table 7 for an explanation of the test levels.

analog.com Rev. 0 | 5 of 14

 $^{^{2}}$ The total current IF mode detector on power-up is equivalent to the total current drawn at the 1.8V and 3.3V supplies.

SERIAL PORT REGISTER TIMING

Table 2. Serial Port Register Timing

Parameter	Description	Min	Тур	Max	Unit
t _{SDI, SETUP}	Data to clock setup time	10			ns
t _{SDI, HOLD}	Data to clock hold time	10			ns
t _{SCLK, HIGH}	Clock high duration	40 to 60			%
t _{SCLK, LOW}	Clock low duration	40 to 60			%
t _{SCLK} , SEN/SENS2_SETUP	Clock to SEN/SEN2 setup time	30			ns
t _{SCLK, DOT}	Clock to data out transition time			10	ns
t _{SCLK, DOV}	Clock to data out valid time			10	ns
t _{SCLK} , SEN/SEN2_INACTIVE	Clock to SEN/SEN2 inactive	20			ns
t _{SEN/SEN2_INACTIVE}	Inactive SEN/SEN2 (between two operations)	80			ns

Timing Diagram

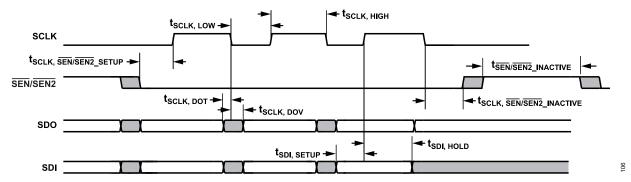


Figure 2. Serial Port Register Timing Diagram

analog.com Rev. 0 | 6 of 14

BURN-IN DELTA LIMIT SPECIFICATIONS

IF and I/Q amplitude = -20dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V, DVDD = VCC_VVA = 1.8V, T_A = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid; Register 0x03, Bit 7 = 1; and $f_{\rm IF}$ = 3.5GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance; $V_{CM} = 0V$; Register 0x03, Bit 7 = 0; and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q $f_{BB} = 1.62GHz$.

VCTRL1 = VCTRL2. V_{CTRL} is the attenuation voltage at the VCTRL1 and VCTRL2 pins. V_{CTRL} = 1800mV, unless otherwise specified. Delta calculation is based on absolute maximum changes.

Table 3. Burn-In Delta Limit Specifications

Parameter ¹	Test Conditions/ Comments	Delta	Unit
I/Q MODULATOR PERFORMANCE			
Conversion Gain	At maximum gain		
At 24GHz		±2	dB
At 28GHz		±2	dB
At 39GHz		±2	dB
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE			
Conversion Gain	At maximum gain		
At 24GHz		±2	dB
At 28GHz		±2	dB
At 39GHz		±2	dB
POWER INTERFACE	V _{CTRL} = 1.8V, no IF, and I/Q or LO input signal		
Total Current IF Mode Detector On Power-Up ²		±55	mA

¹ Devices are serialized during testing.

analog.com Rev. 0 | 7 of 14

² The total current IF mode detector on power-up is equivalent to the total current drawn at the 1.8V and 3.3V supplies.

RADIATION TEST AND LIMIT SPECIFICATIONS

IF and I/Q amplitude = -20dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V, DVDD = VCC_VVA = 1.8V, T_A = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid; Register 0x03, Bit 7 = 1; and $f_{\rm IF}$ = 3.5GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance; V_{CM}) = 0V; Register 0x03, Bit 7 = 0; and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q f_{BB} = 1.62GHz.

VCTRL1 = VCTRL2. V_{CTRL} is the attenuation voltage at the VCTRL1 and VCTRL2 pins. V_{CTRL} = 1800mV, unless otherwise specified. The device is characterized and production tested to 100krads.

Table 4. Radiation Test and Limit Specification

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
I/Q MODULATOR PERFORMANCE					
Conversion Gain	At maximum gain				
At 24GHz		18	23		dB
At 28GHz		18	23		dB
At 39GHz		18	23		dB
Output P1dB	At maximum gain				
At 24GHz		10	13		dBm
At 28GHz		10	13		dBm
At 39GHz		10	13		dBm
Output IP3	At maximum gain, upper sideband				
At 24GHz		20	23		dBm
At 28GHz		20	23		dBm
At 39GHz		20	23		dBm
F SINGLE-SIDEBAND UPCONVERSION PERF	FORMANCE				
Conversion Gain	At maximum gain				
At 24GHz		13	18		dB
At 28GHz		13	18		dB
At 39GHz		13	18		dB
Output P1dB	At maximum gain				
At 24GHz		10	13		dBm
At 28GHz		10	13		dBm
At 39GHz		10	13		dBm
Output IP3	At maximum gain, upper sideband				
At 24GHz		20	23		dBm
At 28GHz		20	23		dBm
At 39GHz		20	23		dBm
POWER INTERFACE					
Total Current IF Mode Detector On Power-Up	V_{CTRL} = 1.8V, no IF, and I/Q or LO input signal	490		760	mA

¹ The total current IF mode detector on power-up is equivalent to the total current drawn at the 1.8V and 3.3V supplies.

analog.com Rev. 0 | 8 of 14

ABSOLUTE MAXIMUM RATINGS

Table 5. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, and VCC_MIXER	3.6V
DVDD, VCC_VVA	2.0V
IF Input Power	5dBm
I/Q Input Power	5dBm
LO Input Power	9dBm
Maximum Power Dissipation ¹	2.9W
Temperature	
Maximum Junction (T _J)	125°C
Lifetime at Maximum T _J ²	1 ×10 ⁶ hours
Operating T _{CASE} Range	-40°C to +85°C
Storage Range	-55°C to +125°C
Lead (Soldering 60 sec)	260°C
Moisture Sensitivity Level (MSL) Rating ²	MSL3

 $^{^{1}}$ The maximum power dissipation is a theoretical number calculated by (T $_{J}$ – 85° C)/0 $_{JC}$ $_{TOP}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

 θ_{JA} and θ_{JC} must only be used to compare the thermal performance of the different packages if all test conditions listed are similar to JEDEC specifications. Instead, Ψ_{JT} and Ψ_{JB} can be used to calculate the junction temperature of the device by using the following equations:

$$T_{I} = (P \times \Psi_{IT}) + T_{TOP} \tag{1}$$

where:

P refers to the total power dissipation in the chip (W). Ψ_{JT} refers to the junction to top thermal characterization number. T_{TOP} refers to the package top temperature (°C) and is measured at the top center of the package.

$$T_{J} = (P \times \Psi_{JB}) + T_{BOARD}$$
 (2)

where:

P refers to the total power dissipation in the chip (W).

 Ψ_{JB} refers to the junction to board thermal characterization number. T_{BOARD} refers to the board temperature measured on the midpoint of the longest side of the package, no more than 1mm from the edge of the package body (°C).

As stated in JEDEC51-12, the previous equations must be used when no heat sink or heat spreader is present. When a heat sink or heat spreader is added, estimating and calculating junction temperature can be achieved using $\theta_{JC\ TOP}$.

Table 6. Thermal Resistance

Package Type ¹	θ_{JA}^2	θ _{JC_TOP} ³	θ_{JB}^{4}	Ψ_{JT}^{5}	Ψ_{JB}^{6}	Unit
CC-40-5	28	13.8	11.1	6.4	13.8	°C/W

- 1 The thermal resistance values specified in Table 6 are simulated based on JEDEC specifications, unless specified otherwise, and must be used in compliance with JESD51-12.
- $^2~\theta_{\text{JA}}$ is the junction to ambient thermal resistance in a natural convection, JEDEC environment.
- ³ θ_{JC} TOP is the junction to case (top) JEDEC thermal resistance.
- 4 θ_{JB} is the junction to board JEDEC thermal resistance.
- 5 Ψ_{JT} is the junction to top JEDEC thermal characterization parameter.
- 6 Ψ_{JB} is the junction to board JEDEC thermal characterization parameter.

EXPLANATION OF TEST LEVELS

Table 7. Explanation of Test Levels

Test Level	Description
I	100% production tested at minimum, room, and maximum operating temperatures.
II	Parameter is guaranteed by design and not production tested.
	Parameter is guaranteed by bench characterization and not production tested.

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials shall be determined by the user and based upon specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and a collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 8. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Loss	0.09	%
Collected Volatile Condensable Material	<0.01	%
Water Vapor Recovered	0.05	%

analog.com Rev. 0 | 9 of 14

² Based on IPC/JEDEC J-STD-20 MSL classifications.

ABSOLUTE MAXIMUM RATINGS

RADIATION FEATURES

Table 9. Radiation Features

Specifications	Value	Unit
Maximum Total Dose Available (Dose Rate = 50rad (Si)/sec to 300rad (Si)/sec) ¹	100	krads (Si)

Guaranteed by device and process characterization. Contact Analog Devices, Inc, Technical Support for data available up to 100krads.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Field induced charged device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

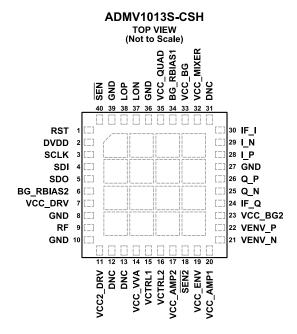
ESD Ratings for ADMV1013S-CSH

Table 10. ADMV1013S-CSH, 40-Terminal LGA

ESD Model Withstand Threshold (V)		Class
НВМ	±1500 ¹	1C
FICDM	±1250 ¹	C3
	±500 ²	C2a

¹ For all pins except the RF pins (RF, IF_Q, IF_I, Q_N, Q_P, I_P, I_N, LON, LOP, VENV_N, and VENV_P).

ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 10 of 14

² For all pins.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.
2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE.

Figure 3. Pin Configuration

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RST	SPI Reset. Connect the RST pin to logic high for normal operation. The SPI logic is 1.8V.
2	DVDD	1.8V SPI Digital Supply.
3	SCLK	SPI Clock Digital Input.
4	SDI	SPI Serial Data Input.
5	SDO	SPI Serial Data Output.
6	BG_RBIAS2	Voltage Gain Amplifier (VGA) Chip Bandgap Circuit, External High Precision Resistor. Place a 1.1kΩ, high precision resistor shunt to ground close to the BG_RBAIS2 pin.
7	VCC_DRV	3.3V Power Supply for the RF Driver. Place a 100pF, 0.01μF, and 10μF capacitor close to the VCC_DRV pin.
8, 10, 27, 36, 39	GND	Grounds.
9	RF	RF Output. The RF pin is DC-coupled internally to GND and matched to 50Ω single ended.
11	VCC2_DRV	3.3V Power Supply for the RF Predriver. Place a 100pF, a 0.01µF, and 10µF capacitor close to this pin.
12, 13, 31	DNC	Do Not Connect. Do not connect to these pins.
14	VCC_VVA	1.8V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to the VCC_VVA pin.
15	VCTRL1	RF Voltage Variable Attenuator 1 (VVA1) Control Voltage. Place a 1kΩ series resistor with the VCTRL1 pin.
16	VCTRL2	RF Voltage Variable Attenuator 2 (VVA2) Control Voltage. Place a 1kΩ series resistor with the VCTRL2 pin.
17	VCC_AMP2	3.3V Power Supply for RF Amplifier 2 (AMP2). Place a 100pF, 0.01µF, and 10µF capacitor close to the VCC_AMP2 pin.
18	SEN2	SPI Serial Enable for the VGA Chip. Connect the SEN2 pin to the SEN pin (Pin 40).
19	VCC_ENV	3.3V Power Supply for the Envelope Detector. Place a 100 pF, a 0.01µF, and a 10µF capacitor close to the VCC_ENV pin.
20	VCC_AMP1	3.3V Power Supply for the RF Amplifier 1 (AMP1). Place a 100pF, 0.01µF, and 10µF capacitor close to the VCC_AMP1 pin.
21	VENV_N	Negative Differential Envelope Detector Output.
22	VENV_P	Positive Differential Envelope Detector Output.
23	VCC_BG2	3.3V Power Supply for the VGA Chip Bandgap Circuit. Place a 100pF, 0.01μF, and 10μF capacitor close to the VCC_BG2 pin.
24, 30	IF_Q, IF_I	IF Single-Ended Complex Inputs. The IF_Q and IF_I pins are internally AC-coupled. When in IF mode, Pin 25 (Q_P), Pin 26 (Q_N), Pin 28 (I_P), and Pin 29 (I_N) must be kept floating.
25, 26	Q_N, Q_P	Differential Baseband Q Inputs. The Q_N and Q_P pins are DC-coupled. Do not connect the Q_N and Q_P pins in IF mode.
28, 29	I_P, I_N	Differential Baseband I Inputs. The I_P and I_N pins are DC-coupled. Do not connect the I_P and I_N pins in IF mode.

analog.com Rev. 0 | 11 of 14

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 11. Pin Function Descriptions (Continued)

Pin No.	Mnemonic	Description	
32	VCC_MIXER	3.3V Power Supply for the Mixer. Place a 100pF, 0.01µF, and 10µF capacitor close to the VCC_MIXER pin.	
33	VCC_BG	3.3V Power Supply for the Mixer Chip Bandgap Circuit. Place a 100pF, 0.01µF, and 10µF capacitor close to the VCC_BG pin.	
34	BG_RBIAS1	Mixer Chip BandGap Circuit, External High Precision Resistor. Place a $1.1k\Omega$, high precision resistor shunt to ground close to the BG_RBIAS1 pin.	
35	VCC_QUAD	3.3V Power Supply for the Quadruppler. Place a 100pF, 0.01µF, and 10µF capacitor close to the VCC_QUAD pin.	
37, 38	LON, LOP	Negative and Positive Differential Local Oscillator Inputs. These pins are DC-coupled internally to ground and matched to 100Ω differential or 50Ω single ended. If using the LO as single ended, terminate the unused LO port with 50Ω impedant ground.	
40	SEN	SPI Serial Enable for the Mixer Chip. Connect the SEN pin to the SEN2 pin (Pin 18).	
	EPAD	Exposed Pad. Solder the exposed pad to a low impedance ground plane.	

analog.com Rev. 0 | 12 of 14

TYPICAL PERFORMANCE CHARACTERISTICS

See the ADMV1013 data sheet for a full set of typical performance characteristics plots.

analog.com Rev. 0 | 13 of 14

OUTLINE DIMENSIONS

Package Drawing Option	Package Type	Package Description
CC-40-5	LGA	40-Terminal Land Grid Array Package

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADMV1013ACCZ-CSH	-40°C to +85°C	40-Terminal LGA (6mm × 6mm × 0.67mm)	Tray, 490	CC-40-5

¹ Z = RoHS Compliant Part.

