High Voltage Positive Hot-Swap Controller and Digital Power Monitor with PMBus #### **FEATURES** - ▶ Drop-in replacement to ADM1272 - Controls supply voltages from 16V to 80V (absolute maximum 120V) - ▶ High voltage (80V) IPC-9592 compliant packaging - <500ns response time to short circuit</p> - ▶ FET energy monitoring for adaptable FET SOA protection - ▶ Gate boost mode for fast recovery from OC transients - ▶ Programmable random start mode to stagger power-on - ▶ FET fault detection - Remote temperature sensing with programmable warning and shutdown thresholds - ▶ Programmable 2.5mV to 30mV system current-limit setting range - ▶ ±0.85% accurate current measurement with 12-bit ADC - ▶ I_{LOAD}, V_{IN}, V_{OUT}, temperature, power, and energy telemetry - Programmable start-up current limit - Programmable linear output voltage soft start - 1% accurate UV and OV thresholds - Programmable hot-swap restart function - ▶ 2 programmable GPIO pins - Reports power and energy consumption - ▶ Peak detect registers for current, voltage, and power - PMBus fast mode compliant interface - ▶ 48-lead, 7 mm × 8 mm LFCSP #### **APPLICATIONS** - ▶ 48V/54V data center servers - Power monitoring and control/power budgeting - Central office equipment - ▶ Telecommunication and data communication equipment - Industrial applications #### **GENERAL DESCRIPTION** The ADM1273 is a hot-swap controller that allows a circuit board to be removed from or inserted into a live backplane. It also features current, voltage, and power readback via an integrated 12-bit analog-to-digital converter (ADC), accessed using a PMBus™ interface. This device can withstand up to 120V, which makes it very robust in surviving surges and transients commonly associated with high voltage systems, usually clamped using protection devices such as transient voltage suppressors (TVSs) that can often exceed 100V. The load current, I_{LOAD}, is measured using an internal current sense amplifier that measures the voltage across a sense resistor in the power path via the SENSE+ and SENSE- pins. A default current limit sense voltage of 30mV is set, but this limit can be adjusted down, if required, using a resistor divider network from the VCAP regulator output voltage to the ISET pin. An additional resistor can also be placed from ISET to V_{IN} (or V_{OUT}) to allow the current limit to track inversely with the rail voltage. This resistor allows an approximate system power limit to be used. The ADM1273 limits the current through the sense resistor by controlling the gate voltage of an external N channel field effect transistor (FET) in the power path. The sense voltage, and therefore the load current, is maintained below the preset maximum. The ADM1273 protects the external FET by monitoring and limiting the energy transfer through the FET while the current is being controlled. This energy limit is set by the choice of components connected to the EFAULT pin (for fault protection mode) and the ESTART pin during startup. Therefore, different energy limits can be set for start-up and normal fault conditions. During startup, inrush currents are maintained very low and different areas of the safe operating area (SOA) curve are of interest, whereas during fault conditions, the currents can be much higher. The controller uses the drain to source voltage (V_{DS}) across the FET to set the current profile of the EFAULT and ESTART pins and, therefore, the amount of much energy allowed to be transferred in the FET. This energy limit ensures the MOSFET remains within the SOA limits. Optionally, use a capacitor on the DVDT pin to set the output voltage ramp rate, if required. In case of a short-circuit event, a fast internal overcurrent detector responds in hundreds of ns and signals the gate to shut down. A 1.5A pull-down device ensures a fast FET response. The gate then recovers control within 50µs to ensure minimal disruption during conditions, such as line steps and surges. The ADM1273 features overvoltage (OV) and undervoltage (UV) protection, programmed using external resistor dividers on the UVH, UVL, and OV pins. The use of two pins for undervoltage allows independent accurate rising and falling thresholds. The PWRGD output pin signals when the output voltage is valid and the gate is sufficiently enhanced. Output validity is determined using the PWGIN pin. The 12-bit ADC measures the voltage across the sense resistor, the supply voltage on the SENSE+ pin, the output voltage, and the temperature using an external NPN/PNP device. A PMBus interface allows a controller to read data from the ADC. As many as 16 unique I²C addresses can be selected, depending on how the two ADRx pins are connected. The ADM1273 is available in a custom 48-lead LFCSP (7 mm × 8 mm) with a pinstrap mode that allows the device to be configured for automatic retry or latchoff when an overcurrent (OC) fault occurs. Rev. 0 ## **TABLE OF CONTENTS** | Features | 1 | Warning Limit Setup Commands | 35 | |--|----|---|----| | Applications | 1 | PMBus Direct Format Conversion | 36 | | General Description | 1 | Voltage and Current Conversion Using LSB | | | Functional Block Diagram | 4 | Values | 36 | | Specifications | 5 | Applications Information | 38 | | Power Monitoring Accuracy Specifications. | 9 | General-Purpose Output Pin Behavior | 38 | | Serial Bus Timing Characteristics | 10 | Faults and Warnings | 38 | | Absolute Maximum Ratings | | Generating an Alert | 38 | | Thermal Characteristics | | Handling/Clearing an Alert | | | ESD Caution | 11 | SMBus Alert Response Address | | | Pin Configuration and Function Descriptions. | 12 | Example Use of SMBus ARA | | | Typical Performance Characteristics | | Digital Comparator Mode | 39 | | Theory of Operation | | Register Details | | | Differences from ADM1272 | | Operation Register | | | Powering the ADM1273 | | Clear Faults Register | | | UV and OV | | PMBus Capability Register | | | Hot-Swap Current Sense Inputs | | Output Voltage Overvoltage Warning Limit | | | Current-Limit Modes | | Register | 40 | | Setting the Current Limits (ISET/ISTART) | 21 | Output Voltage Undervoltage Warning Limit | | | Setting a Linear Output Voltage Ramp at | | Register | 41 | | Power-Up (DVDT) | 23 | Output Current Overcurrent Warning Limit | | | Safe Operating Area Protection (ESTART/ | | Register | 41 | | EFAULT) | 24 | Overtemperature Fault Limit Register | | | FET Gate Drive | | Overtemperature Warning Limit Register | | | Fast Response to Severe Overcurrent | | Input Voltage Overvoltage Warning Limit | | | MCB | | Register | 42 | | RND | | Input Voltage Undervoltage Warning Limit | | | Voltage Transients | | Register | 42 | | Surge and Transient Recovery | | Overpower Warning Limit Register | | | Power Good | | Status Byte Register | | | FAULT Pin | | Status Word Register | | | RESTART Pin | | Output Voltage Status Register | | | Hot-Swap Retry | | Output Current Status Register | | | ENABLE Input | | Input Status Register | | | Remote Temperature Sensing | | Temperature Status Register | | | FET Health | | Communication, Memory, and Logic Status | | | Power Monitor | | Register | 45 | | PMBus Interface | | Manufacturer Specific Status Register | | | Device Addressing | | Read Energy Register | | | SMBus Protocol Usage | | Read Input Voltage Register | | | Packet Error Checking | | Read Output Voltage Register | | | Partial Transactions on I ² C Bus | | Read Output Current Register | | | SMBus Message Formats | | Read Temperature 1 Register | | | Group Commands | | Read Power Register | | | Hot-Swap Control Commands | | PMBus Revision Register | | | ADM1273 Information Commands | | Manufacturer ID Register | | | Status Commands | | Manufacturer Model Register | | | GPIO and Alert Pin Setup Commands | | Manufacturer Revision Register | | | Power Monitor Commands | | Manufacturer Date Register | | | - | | | | analog.com Rev. 0 | 2 of 58 ## **TABLE OF CONTENTS** | Programmable Restart Time Register | 49 | Peak Power Register | 54 | |--------------------------------------|----|---------------------------------|----| | Peak Output Current Register | | Read Power (Extended) Register | 55 | | Peak Input Voltage Register | | Read Energy (Extended) Register | 55 | | Peak Output Voltage Register | 50 | Hysteresis Low Level Register | 55 | | Power Monitor Control Register | 50 | Hysteresis High Level Register | 55 | | Power Monitor Configuration Register | 51 | Hysteresis Status Register | 56 | | Alert 1 Configuration Register | 52 | GPIO Pin Status Register | 56 | | Alert 2 Configuration Register | | Start-Up Current Limit Register | 57 | | Peak Temperature Register | | Outline Dimensions | 58 | | Device Configuration Register | 53 | Ordering Guide | 58 | | Power Cycle Register | | Evaluation Boards | 58 | ## **REVISION HISTORY** 8/2025—Revision 0: Initial Version analog.com Rev. 0 | 3 of 58 ## **FUNCTIONAL BLOCK DIAGRAM** Figure 1. Functional Block Diagram analog.com Rev. 0 | 4 of 58 ## **SPECIFICATIONS** $V_{CC} = 16V \text{ to } 80V, V_{CC} \geq V_{SENSE+}, V_{SENSE+} = 16V \text{ to } 80V, V_{\Delta SENSE} = (V_{SENSE+} - V_{SENSE-}) = 0V, T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.}$ Table 1. Specifications | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |--|-------------------------|-------|------|-------|---------|--| | POWER SUPPLY | | | | | | | | Operating Voltage Range ¹ | V _{CC} | 16 | | 80 | V | | | Undervoltage Lockout | V _{CCUV} | 13 | | 16 | V | V _{CC} rising | | Undervoltage Hysteresis | V _{CCUVHYS} | | 70 | 115 | mV | | | Quiescent Current | I _{CC} | | | 6 | mA | GATE on and power monitor running | |
Power-On Reset (POR) | t _{POR} | | 27 | | ms | | | UVL AND UVH PINS | | | | | | | | Input Current | I _{UV} | | 1 | 50 | nA | UVL ≤ 3.6V, when UVL and UVH are tied together | | UVH Threshold | UVH _{TH} | 0.99 | 1.0 | 1.01 | V | UV rising | | UVL Threshold | UVL _{TH} | 0.887 | 0.9 | 0.913 | V | UV falling | | UVx Threshold Hysteresis | UV _{HYST} | | 100 | | mV | When UVL and UVH are tied together | | UVx Glitch Filter | UV _{GF} | 3.5 | | 7.5 | μs | 50mV overdrive | | UVx Propagation Delay | UV _{PD} | | 5 | 8 | μs | UVx low to GATE pull-down active | | OV PIN | | | | | | | | Input Current | I _{OV} | | | 50 | nA | OV ≤ 3.6V | | OV Threshold | OV _{TH} | 0.99 | 1.0 | 1.01 | V | OV rising | | OV Hysteresis Current | I _{OVHYST} | 4.5 | 5.25 | 6 | μA | | | OV Glitch Filter | OV _{GF} | 1.4 | | 3.4 | μs | 50mV overdrive | | OV Propagation Delay | OV _{PD} | | 3 | 4.5 | μs | OV high to GATE pull-down active | | SENSE+ AND SENSE- PINS | | | | | | | | Current-Limit Setting Range | V _{SENSECL} | 2.5 | | 30 | mV | Adjustable using ISET and ISTART pins | | Input Current | I _{SENSEx} | | 130 | 170 | μA | Per individual pin | | Input Imbalance | I _{ΔSENSE} | | | 5 | μA | $I_{\Delta SENSE} = (I_{SENSE+}) - (I_{SENSE-})$ | | VREG PIN | | | | | | | | Internally Regulated Voltage | V_{VREG} | 4.5 | 5 | 5.5 | V | 0μA ≤ I _{VREG} ≤ 100μA; C _{VREG} = 1μF | | VCAP PIN | | | | | | | | Internally Regulated Voltage | V _{VCAP} | 2.68 | 2.7 | 2.72 | V | 0μA ≤ I _{VCAP} ≤ 100μA; C _{VCAP} = 1μF | | ISET PIN | | | | | | | | Reference High Limit ¹ | V _{CLREF_HI} | | 1.2 | | V | $V_{CLREF}^2 = V_{VCAP} - V_{ISET}$; $V_{SENSECL} = 30$ mV; internally clamped with falling V_{ISET} | | Reference Low Limit ¹ | V _{CLREF_LO} | | 100 | | mV | Internally clamped with rising V _{ISET} or V _{ISTART} < 100mV, V _{CLREF} = V _{VCAP} - V _{ISET} ; V _{SENSECI} = 2.5mV | | Gain of Current Sense Amplifier ¹ | AV _{CSAMP} | | 40 | | V/V | TOTAL TIGETS TOLINGEDE TOWN | | Input Current | I _{ISET} | | | 100 | nA | V _{ISET} ≤ V _{VCAP} | | ISTART PIN | ISEI | | | | 1 1 1 1 | - TOET - YOAF | | Reference Select Threshold | V _{ISTARTRSTH} | 1.35 | 1.5 | 1.65 | V | If V _{ISTART} > V _{ISTARTRSTH} , internal 1V reference (V _{CLREF1V}) is used | | Internal Reference ¹ | V _{CLREF1V} | 1.00 | 1 | | V | I TOTAKT TOTAKTROTTI, INC. 18. TO TOTAL TO GENERAL (* GENERAL) TO BEST | | Input Current | I _{ISTART} | | | 100 | nA | V _{ISTART} ≤ V _{VCAP} | | GATE PIN ³ | ISTAIN | | | | | IOTAIXI VOAI | | Gate Drive Voltage | ΔV_{GATE} | | | | | $\Delta V_{GATE} = V_{GATE} - V_{OUT}$ | | · 9 - | OAIE | 10 | 12 | 14 | V | $80V \ge V_{CC} \ge 20V$; $I_{GATE} \le 5\mu A$ | | | | 4.5 | -= | | V | $20V \ge V_{CC} \ge 16V$; $I_{GATE} \le 5\mu A$ | | Gate Pull-Up Current | loateus | -20 | | -30 | μA | $\Delta V_{GATE} = 0V$ | | Gate Recovery Rate | I _{GATEUP} | 20 | 0.12 | 00 | V/µs | Following severe OC shutdown | analog.com Rev. 0 | 5 of 58 ## **SPECIFICATIONS** Table 1. Specifications (Continued) | I _{GATEDN_REG} | 35 | 60 | 75 | μA | $4V > \Delta V_{GATE} \ge 2V$; $V_{ISET} = 1.7V$; $V_{\Delta SENSE} = 30$ mV | |-------------------------|---|---|----------------------|--|--| | | 50 | 70 | 90 | | $\Delta V_{GATE} \ge 4V$; $V_{ISET} = 1.7V$; $V_{\Delta SENSE} = 30 \text{mV}$ | | IGATEDN SLOW | 8 | 15 | 25 | mA | $\Delta V_{GATE} \ge 2V$; $V_{ENABLE} = 0V$ | | I | 1.1 | 1.5 | | Α | ΔV _{GATE} ≥ 10V | | OAILDI_I AOI | | | | | ONIL 1 | | | | 10 | | | C _{VCP} must be 10 times larger than C _{DVDT} + C _{GATETOTAL} | | | | | | | - VOI - STEEDING | | DVDTswc | | 40 | | 0 | $V_{GATF} - V_{DVDT} = 100 \text{mV}; V_{GATF} \le (V_{OUT} + 5 \text{V}); V_{CC} > 20 \text{V}$ | | | | | | | V _{DVDT} - V _{OUT} = 100mV | | | | | | | | | | | | | | $\Delta V_{GATE} = 3V$; $I_{GATE} = 0\mu A$ | | | | | | | - GAIE STOCKE STATE | | V _{SENSECL} | 29.4 | 30 | 30.3 | mV | V _{ISET} < 1V; internally clamped | | | 24.3 | 25 | 25.4 | mV | V _{ISET} = 1.7V | | | 19.3 | 20 | 20.4 | mV | V _{ISET} = 1.9V | | | 14.3 | 15 | 15.4 | mV | V _{ISET} = 2.1V | | | 9.3 | 10 | 10.4 | mV | $V_{ISET} = 2.3V$ | | V _{SENSECL} | 29.4 | 30 | 30.4 | mV | V _{ISTART} = 1.2V; STRT_UP_IOUT_LIM = Code 0x0F | | | 24.4 | 25 | 25.4 | mV | $V_{\rm ISTART}$ = 1V, or $V_{\rm ISTART}$ > 1.65V | | | 19.4 | 20 | 20.4 | mV | $V_{\rm ISTART} = 0.8V$ | | | 14.4 | 15 | 15.4 | mV | $V_{\rm ISTART} = 0.6V$ | | | | 5 | | mV | $V_{\rm ISTART} = 0.2V$ | | V _{CLAMP} | | 2.4 | | mV | V _{ISTART} = 0V or V _{ISET} =2.7V or STRT_UP_IOUT_LIM = 0x00 | | | | 1.1 | | | Circuit breaker trip voltage, V _{CB} = V _{SENSECL} - V _{CBOS} | | 0500 | | | | | 1 0 0 0 OENOEGE OBOO | | VSENSEOC | 43 | 45 | 47 | mV | V _{ISET} < 1V; OC_TRIP_SELECT = 11 (1.5×) | | GLINGLOC | | | | | V _{ISET} < 1V; OC_TRIP_SELECT = 10 (2×, default at power-up) | | | 88 | 90 | | mV | V _{ISET} < 1V; OC_TRIP_SELECT = 01 (3×) | | | 118 | 120 | | mV | V _{ISET} < 1V; OC_TRIP_SELECT = 00 (4×) | | | | | | | V _{ASENSE} step = 40mV to 48mV; OC FILT SELECT = 00 | | | | | | | V _{ASENSE} step = 40mV to 48mV; OC FILT SELECT = 01 | | | | | | | $V_{\Delta SENSE}$ step = 40mV to 48mV; OC_FILT_SELECT =10 | | | | | | 1. | $V_{\Delta SENSE}$ step = 40mV to 48mV; OC_FILT_SELECT = 11 | | tenc | | | | | To gate pull-down current active | | 300 | | 330 | 500 | ns | V_{ASENSE} step = 40mV to 48mV; OC FILT SELECT = 00 (default) | | | | | | | $V_{\Delta SENSE}$ step = 40mV to 48mV; OC_FILT_SELECT = 01 | | | | | | | V_{ASENSE} step = 40mV to 48mV; OC FILT SELECT = 10 | | | | | | | V_{ASENSE} step = 40mV to 48mV; OC_FILT_SELECT = 11 | | | | | | | ADENGE 13, 35 SEES | | I FOTA DE LID | -88 | -100 | -113 | иА | $V_{CC} - V_{OUT} = 100V$; $V_{ISTART} > 1.65V$; $V_{ASENSE} = 25mV$ | | ESTAKTUP | | | | ' | $V_{CC} - V_{OUT} = 100V$, $V_{ISTART} > 1.65V$, $V_{\Delta SENSE} = 25mV$ | | | | | | ' | $V_{CC} - V_{OUT} = 10V$, $V_{ISTART} > 1.65V$, $V_{ASENSE} = 25mV$ | | I FOTA DEDL | | | | 1. | $V_{CC} - V_{OUT} = 0V$, $V_{ISTART} > 1.05V$, $V_{\Delta SENSE} = 25111V$ | | | | | | | ************************************** | | VESTARTH | | | | - | | | V _{ESTARTL} | 35 | 50 | 65 | mV | | | | IGATEDN_SLOW IGATEDN_FAST DVDTSWG DVDTSWVO VSENSECL VCLAMP VCBOS VSENSEOC tsoc IESTARTUP IESTARTUP | SALENTINE 50 16 10 10 10 10 10 10 1 | SATESTICES 50 70 | Sample South Sou | Sample So | analog.com Rev. 0 | 6 of 58 ## **SPECIFICATIONS** Table 1. Specifications (Continued) | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |---|-----------------------|------|------|-------|----------|--| | EFAULT | | | | | | | | Pull-Up Current ⁴ | I _{EFAULTUP} | -88 | -100 | -113 | μA | $V_{CC} - V_{OUT} = 100V$; $V_{ISET} = 0V$; $V_{\Delta SENSE} = 30$ mV | | | | -8.4 | -10 | -11.3 | μA | $V_{CC} - V_{OUT} = 10V$; $V_{ISET} = 0$ V; $V_{\Delta SENSE} = 30$ mV | | | | -0.8 | -1 | -1.2 | μA | $V_{CC} - V_{OUT} = 0V$; $V_{ISET} < 1V$; $V_{\Delta SENSE} = 30$ mV | | Pull-Down Current | I _{EFAULTDN} | 350 | 500 | 680 | nA | Always present on active pin when pull-up currents are not active | | High Threshold | V _{EFAULTH} | 0.98 | 1.0 | 1.02 | V | | | Low Threshold | V _{EFAULTL} | 35 | 50 | 65 | mV | | | Glitch Filter | V _{EFAULTGF} | | 10 | | μs | | | MCB PIN | FEROLIGI | | | | | Mask severe OC shutdown | | Input Current | I _{MCB} | | | 4.4 | μA | MCB ≤ 3.6V (internal 1MΩ pull-down resistor) | | MCB Threshold | V _{MCB_TH} | 0.58 | 0.6 | 0.62 | ۷, | MCB rising | | MCB Threshold Hysteresis | V _{MCB_HYST} | 10 | 25 | 40 | mV | INOS Honig | | MCB masking window |
| 10 | 20 | 40 | 1111 | Must exceed V _{MCB TH} within t _{MCB} of severe over current event | | WOD Masking Window | t _{MCB} | 150 | | | ns | OC_FILT_SELECT = 00 | | | | 600 | | | | OC_FILT_SELECT = 00 | | | | | | | ns | | | | | 4.5 | | | μs | OC_FILT_SELECT = 10 | | VOLUT DIN | | 9.0 | | | μs | OC_FILT_SELECT = 11 | | VOUT PIN | | | | | | | | Input Current | | 20 | | 200 | μA | 1V ≤ VOUT ≤ 80V | | FAULT PIN | | | | | | | | Output Low Voltage | V _{OL_LATCH} | | | 0.4 | V | I _{FAULT} = 1mA | | | | | | 1.5 | V | I _{FAULT} = 5mA | | Leakage Current | | | | 100 | nA | V _{FAULT} ≤ 2V; FAULT output high-Z | | | | | | 1 | μA | V _{FAULT} = 20V; FAULT output high-Z | | ENABLE PIN | | | | | | | | Input High Voltage | V _{IH} | 1.1 | | | V | | | Input Low Voltage | V _{IL} | | | 0.8 | V | | | Glitch Filter | | | 1 | | μs | | | Leakage Current | | | | 100 | nA | V _{ENABLE} ≤ 2V | | • | | | | 1 | μA | V _{ENABLE} = 18V | | RND PIN | | | | | <u> </u> | LIVIDEE | | Pull-Up Current | | -3.6 | -4.2 | -4.9 | μA | V _{RND} = 0.5V | | High Threshold | | 0.93 | 1 | 1.07 | γ. | - RIVD GIGG | | Delay Range ⁵ | | 0.28 | • | 38.9 | ms | RND pin not connected | | Boldy Hango | | 16.6 | | 2274 | ms | C _{RND} = 100nF | | Timeout | | 10.0 | | 3.63 | sec | If pin fails to cycle, power-up continues following this timeout | | | | | | 220 | nF | in pin rails to cycle, power-up continues following this timeout | | Maximum External Capacitance RESTART PIN | | | | 220 | ПГ | | | | ., | | | | ., | | | Input Voltage | V _{IH} | 1.1 | | | V | | | High | | | | | | | | Low | V _{IL} | | | 8.0 | V | | | Glitch Filter | | | 10 | | μs | | | Internal Pull-Up Current | | | -16 | | μA | | | GPIO1/ALERT1/CONV AND GPIO2/
ALERT2 PINS | | | | | | | | Output Low Voltage | V _{OL_GPIO} | | | 0.4 | V | I _{GPIO1} = 1mA | | - | | | | 1.5 | V | I _{GPIO1} = 5mA | analog.com Rev. 0 | 7 of 58 ## **SPECIFICATIONS** Table 1. Specifications (Continued) | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |---|-------------------------|------------|------|-----------|----------|--| | Leakage Current | I _{LKG_GPIO} | | | 100 | nA | V _{GPIO1} ≤ 2V; GPIO output high-Z | | | _ | | | 1 | μA | V _{GPIO1} = 20V; GPIO output high-Z | | Input High Voltage | V _{GPIOIH} | 1.1 | | | V | | | Input Low Voltage | V _{GPIOIL} | | | 0.8 | V | | | Glitch Filter | | | 1 | | μs | | | PWRGD PIN | | | | | | | | Output Low Voltage | V _{OL_PWRGD} | | | 0.4 | V | I _{PWRGD} = 1mA | | | | | | 1.5 | V | I _{PWRGD} = 5mA | | V _{CC} That Guarantees Valid Output | | 1.9 | | | V | I_{SINK} = 100 μ A; $V_{OL\ PWRGD}$ = 0.4V | | Leakage Current | | | | 100 | nA | V _{PWRGD} ≤ 2V; PWRGD output high-Z | | - | | | | 1 | μA | V _{PWRGD} = 20V; PWRGD output high-Z | | PWGIN PIN | | | | | <u> </u> | | | Input Current | I _{PWGIN} | | | 50 | nA | PWGIN ≤ 3.6V | | PWGIN Threshold | V _{PWGIN TH} | 0.99 | 1.0 | 1.01 | V | PWGIN falling | | PWGIN Threshold Hysteresis | V _{PWGIN HYST} | 35 | 60 | 88 | mV | | | Glitch Filter | 1 11011 | | 2 | | μs | Asserting and deasserting of PWRGD pin | | ADC | | | | | <u>'</u> | | | Conversion Time | | | | | | Includes time for power multiplication | | | | | 144 | 160 | μs | One sample of I _{OUT} ; from command received to valid data in register | | | | | 78 | 87 | μs | One sample of V _{IN} ; from command received to valid data in register | | | | | 78 | 87 | μs | One sample of V _{OUT} ; from command received to valid data in register | | ADR0/ADR1 PINS | | | | | I I | υτιςγ το τουσή τουσή στο συστορικό του συστορικό του συστορικό του συστορικό του συστορικό του συστορικό τ | | Address Set to 00 | | 0 | | 0.8 | V | Connect to GND | | Input Current for Address Set to 00 | | -40 | -22 | 0.0 | μA | V _{ADRx} = 0V to 0.8V | | Address Set to 01 | | 135 | 150 | 165 | kΩ | Resistor to GND | | Address Set to 10 | | -1 | 100 | +1 | μA | No connect state; maximum leakage current allowed | | Address Set to 11 | | 2 | | | V | Connect to VCAP or alternative supply within ratings | | Input Current for Address Set to 11 | | - | 3 | 10 | μA | V _{ADRx} = 2.0V to VCAP; must not exceed the maximum allowable | | input outrent for Address oct to 11 | | | J | 10 | μ/ (| current draw from VCAP | | TEMP± PINS | | | | | | External transistor is 2N3904 | | Operating Range | | -55 | | +150 | °C | Limited by external diode | | Accuracy | | | ±1 | ±7 | °C | T _A = T _{DIODE} = -40°C to +125°C | | Resolution | | | 0.25 | | °C | LSB size | | Low Level Output Current Source ⁶ | | | 5 | | μA | | | Medium Level Output Current | | | 30 | | μA | | | Source ⁶ | | | | | FF. 1 | | | High Level Output Current Source ⁶ | | | 105 | | μA | | | Maximum Series Resistance for
External Diode ⁶ | R _{STEMP} | | | 100 | Ω | For <±0.5°C additional error, C _P = 0pF | | Maximum Parallel Capacitance for
External Diode ⁶ | C _{PTEMP} | | | 1 | nF | $R_{STEMP} = 0\Omega$ | | SERIAL BUS DIGITAL INPUTS (SDAI/
SDAO, SCL) | | | | | | | | Input High Voltage | V _{IH} | 1.1 | | | V | | | Input Low Voltage | VIH | 1.1 | | 0.8 | V | | | Output Low Voltage | | | | 0.6 | V | - 4mA | | • | V _{OL} | _40 | | | | I _{OL} = 4mA | | Input Leakage | I _{LEAK_PIN} | -10
-5 | | +10
+5 | μA | Davisa is not newared | | Newsinal Dua Valt | | - 5 | | +5
 | μA | Device is not powered | | Nominal Bus Voltage | V _{DD} | 2.7 | | 5.5 | V | 3V to 5V ± 10% | analog.com Rev. 0 | 8 of 58 ## **SPECIFICATIONS** Table 1. Specifications (Continued) | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |--|------------------|-----|-----|-----|------|--------------------------| | Capacitive Load per Bus Segment | C _{BUS} | | | 400 | pF | | | Capacitance for SDAI, SDAO, or SCL Pin | C _{PIN} | | 5 | | pF | | | Input Glitch Filter, t _{SP} | t _{SP} | 0 | | 50 | ns | | ¹ Tolerances included in the total sense voltage tolerances. ## **POWER MONITORING ACCURACY SPECIFICATIONS** V_{CC} = 16V to 80V, $V_{CC} \ge V_{SENSE+}$, V_{SENSE+} = 16V to 80V, $V_{\Delta SENSE}$ = ($V_{SENSE+} - V_{SENSE-}$), T_J = -40°C to +125°C, unless otherwise noted. Table 2. | Parameter | Min | Тур | Max | Unit | Test Conditions/Comments | |------------------------------|-----|-----|-------|------|---| | CURRENT SENSE ABSOLUTE ERROR | | | | | 128-sample averaging (unless otherwise noted) | | | | | ±1.2 | % | $V_{\Delta SENSE} = 30 \text{mV}$ | | | | | ±0.85 | % | $V_{\Delta SENSE}$ = 30mV, T_J = 25°C to 85°C | | | | | ±1.5 | % | $V_{\Delta SENSE} = 25mV$ | | | | | ±1.0 | % | $V_{\Delta SENSE}$ = 25mV, T_J = 25°C to 85°C | | | | | ±1.8 | % | $V_{\Delta SENSE} = 20 \text{mV}$ | | | | | ±1.25 | % | $V_{\Delta SENSE}$ = 20mV, T_J = 25°C to 85°C | | | | | ±1.85 | % | V _{∆SENSE} = 20mV, 16-sample averaging | | | | | ±1.9 | % | V _{∆SENSE} = 20mV, 1-sample averaging | | | | | ±2.4 | % | $V_{\Delta SENSE} = 15mV$ | | | | | ±1.7 | % | $V_{\Delta SENSE}$ = 15mV, T_J = 25°C to 85°C | | | | | ±3.6 | % | $V_{\Delta SENSE} = 10 \text{mV}$ | | | | | ±2.6 | % | $V_{\Delta SENSE}$ = 10mV, T_J = 25°C to 85°C | | | | | ±7 | % | $V_{\Delta SENSE} = 5mV$ | | | | | ±5 | % | $V_{\Delta SENSE}$ = 5mV, T_J = 25°C to 85°C | | | | | ±14.1 | % | $V_{\Delta SENSE} = 2.5 \text{mV}$ | | | | | ±10 | % | $V_{\Delta SENSE}$ = 2.5mV, T_J = 25°C to 85°C | | SENSE+/VOUT ABSOLUTE ERROR | | | ±0.4 | % | V _{SENSE+} /V _{OUT} = 40V to 80V | | POWER ABSOLUTE ERROR | | | ±1.9 | % | $V_{\Delta SENSE} = 20$ mV, $V_{CC} = 54$ V | | | | | ±1.3 | % | $V_{\Delta SENSE}$ = 20mV, V_{CC} = 54V, T_J = 25°C to 85°C | analog.com Rev. 0 | 9 of 58 ² V_{CLREF} is the active current-limit reference. V_{CLREF} = V_{SENSECL} × AV_{CSAMP}, where V_{SENSECL} is the current limit at the SENSE± pins. ³ Maximum voltage on the gate with respect to VOUT is always clamped to ≤14V. $^{^4}$ Pull-up current is (V_{CC} – VOUT – V_{TH})/R, where V_{TH} is approximately 1V and R = 1M Ω (±10%). ⁵ Guaranteed by design, but not production tested. ⁶ Sampled during initial release to ensure compliance, but not subject to production testing. ## **SPECIFICATIONS** ## **SERIAL BUS TIMING CHARACTERISTICS** Table 3. | Parameter | Description | Min | Тур | Max | Unit | Tes | |---------------------|--------------------------|-----|-----|-----|------|-----| | f _{SCLK} | Clock frequency | | | 400 | kHz | | | t _{BUF} | Bus free time | 1.3 | | | μs | | | t _{HD;STA} | Start hold time | 0.6 | | | μs | | | t _{SU;STA} | Start setup time | 0.6 | | | μs | | | t _{SU;STO} | Stop setup time | 0.6 | | | μs | | | t _{HD;DAT} | SDAO/SDAI hold time | 300 | | 900 | ns | | | t _{SU;DAT} | SDAO/SDAI setup time | 100 | | | ns | | | t_{LOW} | SCL low time | 1.3 | | | μs | | | t _{HIGH} | SCL high time | 0.6 | | | μs | | | t_R^1 | SCL, SDAO/SDAI rise time | 20 | | 300 | ns | | | t_{F} | SCL, SDAO/SDAI fall time | 20 | | 300 | ns | | | | SCL, SDAO low timeout | | 25 | | ms | | $^{^{1} \}quad t_{R} = (V_{IL(MAX)} - 0.15) \text{ to } (2.1 + 0.15) \text{ and } t_{F} = 0.9 \\ V_{DD} \text{ to } (V_{IL(MAX)} - 0.15); \text{ where } V_{IH3V3} = 2.1 \\ V_{DD} = 3.3 =$ Figure 2. Serial Bus Timing Diagram analog.com Rev. 0 | 10 of 58 ## **ABSOLUTE MAXIMUM RATINGS** Table 4. Absolute Maximum Ratings | Parameter | Rating | |--|--| | V _{CC} , SENSE± to GND | -0.3V to +120V | | V _{ΔSENSE} (SENSE+ - SENSE-) | -1V to +1V | | VOUT to GND | -5V to +120V | | VCP to GND | -0.3V to (VOUT + 12V) or (V _{CC} + 15V), whichever is lower | | GATE (Internal Supply Only) ¹ to GND | (VOUT - 0.3V) to (VCP + 0.3V) | | DVDT to GND | (VOUT - 0.3V) to (GATE + 0.3V) | | UVH, UVL, OV,
MCB to GND | -0.3V to +6.5V | | ISTART, ISET, VCAP to GND | -0.3V to +4V | | ESTART, EFAULT, TEMP+ to GND | -0.3V to VCAP + 0.3V | | VREG (Internal Supply Only) to GND | -0.3V to +5.5V | | FAULT, RESTART to GND | -0.3V to +20V | | PWGIN, SCL, SDAO, SDAI, ADR0,
ADR1 to GND | -0.3V to +6.5V | | RND to GND | -0.3V to VCAP + 0.3V | | ENABLE, GPIO1/ALERT1/CONV,
GPIO2/ALERT2, PWRGD to GND | -0.3V to +20V | | TEMP- Pin to GND (Internally Connected to GND) | OV | | Continuous Current into Any Pin | ±10mA | | Storage Temperature Range | -65°C to +125°C | | Operating Temperature Range | -40°C to +105°C | | Lead Temperature, Soldering (10 sec) | 300°C | | Junction Temperature | 125°C | The GATE pin has internal clamping circuits to prevent the GATE pin voltage from exceeding the maximum ratings of a MOSFET with a gate to source voltage (V_{GSMAX}) = 20V and internal process limits. Applying a voltage source to this pin externally may cause irreversible damage. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. #### THERMAL CHARACTERISTICS Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance. Table 5. Thermal Resistance | Package Type | θ_{JA} | θ_{JC} | Unit | |-----------------------|---------------|---------------|------| | CP-48-18 ¹ | | | | | Still Air | 50 | 0.5 | °C/W | | 2m/sec Air Flow | 40 | 1 | °C/W | ¹ The thermal resistance values are based on JEDEC 2S2P test conditions. ## **ESD CAUTION** ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. analog.com Rev. 0 | 11 of 58 ## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS #### **NOTES** - 1. NC = NO CONNECT. THE NC PINS ARE NOT REQUIRED TO BE CONNECTED, BUT DO HAVE INTERNAL CONNECTIONS. THEY SHARE THE SAME ELECTRICAL NODE INTERNALLY TO THE EPVCC PAD AND CAN THEREFORE BE USED AS A THERMAL EXIT ROUTE FROM EPVCC ON THE SAME OUTER LAYER AND SAME ELECTRICAL CONNECTION AS EPVCC. - 2. DNC = DO NOT CONNECT. THE DNC PINS MUST NOT BE CONNECTED TO ANY ELECTRICAL SIGNAL, GND, OR SUPPLY VOLTAGE. ANY CONNECT COPPER MUST BE ELECTRICALLY ISOLATED AND APPROPRIATELY SPACED FROM OTHER NODES, WHICH ALLOWS COMPLIANCE WITH IPC-9592 RECOMMENDATIONS FOR 80V. - 3. EXPOSED PAD. ALWAYS CONNECT TO GND. THE EXPOSED PAD IS LOCATED ON THE UNDERSIDE OF THE LFCSP PACKAGE AND IS THE LARGER OF THE TWO PADS. SOLDER THE EXPOSED PAD TO THE PCB FOR OPTIMAL THERMAL DISSIPATION. - 4. EXPOSED PAD. INTERNALLY CONNECTED TO V_{CC} . THE EXPOSED PAD IS LOCATED ON THE UNDERSIDE OF THE LFCSP PACKAGE AND IS THE SMALLER OF THE TWO PADS. SOLDER THE EXPOSED PAD TO THE PCB FOR OPTIMAL THERMAL DISSIPATION. ALWAYS ELECTRICALLY CONNECT EPVCC TO THE SAME POTENTIAL AS V_{CC} . MOST OF THE DEVICE POWER IS DISSIPATED THROUGH THIS PAD; THEREFORE, CONSIDER A STRONG THERMAL CONNECTION TO AVAILABLE COPPER. Figure 3. Pin Configuration Table 6. Pin Function Descriptions | Pin No. | Mnemonic | Description | |---------|----------|---| | 1 | ISET | Current-Limit Setting. This pin allows the current-limit threshold to be programmed. The default limit of 30mV is set when this pin is connected directly to 0V. To achieve a user defined sense voltage, the current limit can be adjusted using a resistor divider from VCAP. An external reference can also be used. The voltage used internally to set the current limit is the voltage between VCAP and ISET. An optional additional resistor from ISET to V _{IN} (or V _{OUT}) can be used to allow the current limit to inversely track V _{IN} (or V _{OUT}), providing an approximate system power limit. | | 2 | ISTART | Start-Up Current limit. This pin allows a separate start-up current limit to be set for power-up modes. When powering up into large capacitive loads, it is desirable to keep the inrush current low and constant to minimize the SOA stress in the MOSFET. The ESTART pin limits the energy when using this mode. The ISTART pin sets the start-up current limit by | analog.com Rev. 0 | 12 of 58 003 ## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Table 6. Pin Function Descriptions (Continued) | 1 V threshold is used (26mV). The start-up current limit is only active prior to PVRGDIN being valid. The start-up current limit is only active prior to PVRGDIN being valid. The start-up current limit is used to be received from the hardware setting over PMBus with the STRT UP. DIOT. LIM register. The starts current limit is 15TAT prior not and so be used as a backup protection feature, but it must be set to a current limit higher if the expected DVDT involve that a subject of 10 Feb. 20 F | Pin No. | Mnemonic | Description | | |---|---------|-------------------|--|--| | regulation. This pin can be used as a reference to program the ISET pin voltage. To guarantee accuracy specificat do not load the VCAP pin by more than 100µA. FET Energy Tracking During Power-Up. This pin approximates the energy in the FET during power-up. The user or place a component network between the ESTART pin and ground that allows the pin voltage to be proportional to to predicted MOSFET junction temperature. If the voltage on the pin exceeds a threst of V(1), the FET is deemed to running too close to its SOA and is turned off. This setting assumes lower current limits and greater SOA capability. Energy Tracking During Normal Operation. This pin approximates the energy in the FET when faults occur do normal operation. The user can place a component network between the EFAULT pin and ground that allows the p voltage to be proportional to the predicted MOSFET junction temperature. If the voltage on the pic exceeds a threst (110), the FET is deemed to be running too close to its SOA and is turned of. This setting assumes higher current I and lesser SOA capability. Considerations
must be made if varying ISET with Y _{th} Y _{OUT} when assuming constant or limits. 6 ENABLE Enable Input. This pin is a digital logic input. This input must be high to allow the ADM1273 hot-swap controller to it a power-up sequence. If this pin is held low, the ADM1273 is prevented from powering up. 7, 8 ADR0, ADR1 PMBus Address. These pins can be teed to GND, teed to VCAP, left floating, or teed low through a resistor for a total unique PMBus device addresses (see the Device Addressing section). 9 SCL Serial Clock Pin, SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset if slow for Z5ms. 10 SDAI PMBus Serial Data Data Input. The serial data is split into an input and an output for easy use with isolators. The PMBus interface is reset if SDAO is to who ro Z5ms. 11 SAAO PMBus Serial Data Cupput. The serial data is split into an input and an output for easy use with isolators. The PMB | | | using a divider from the VCAP pin, V _{SENSECL} = V _{ISTART} /AV _{CSAMP} , or if pulled up to VCAP with a 10kΩ resistor, an internal 1 V threshold is used (25mV). The start-up current limit is only active prior to PWGDIN being valid. The start-up current limit can also be lowered from the hardware setting over PMBus with the STRT_UP_IOUT_LIM register. The start-up current limit = V _{ISTART} × (STRT_UP_IOUT_LIM + 1)/(16 × AV _{CSAMP}). When using the DVDT pin to set the output voltage ramp, the ISTART pin can also be used as a backup protection feature, but it must be set to a current limit higher than the expected DVDT inrush. | | | place a component network between the ESTART pin and ground that allows the pin volage to be proportional to be predicted MOSFET junction temperature. If the voltage on the pin exceeds a threshold (1V), the FET is deemed to running too close to its SOA and is turned off. This setting assumes lower current limits and greater SOA capability. FET Energy Tracking During Normal Operation. This pin approximates the energy in the FET when faults occur du normal operation. This pin approximates the energy in the FET when faults occur du normal operation. This user can place a component network between the FEALUT pin and ground that allows the p voltage to be proportional to the predicted MOSFET junction temperature. If the voltage on the pin exceeds a three (1V), the FET is deemed to be running too close to its SOA and is turned off. This setting assumes higher current i and lesser SOA capability. Considerations must be made if varying ISET with V _{ty} V _{OUT} when assuming constant to limits. 6 ENABLE Enable Input. This pin is a digital logic input. This input must be high to allow the ADM1273 hot-swap controller to I a power-up sequence. If this pin is held low, the ADM1273 is prevented from powering up. 7, 8 ADRO, ADR1 PMBus Address. These pins can be tied to GND, tied to VCAP, left floating, or tied dow through a resistor for a total unique PMBus device addresses (see the Device Addressing section.) 9 SCL Serial Clock Pin. SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset if SOAO is to whor 25ms. 10 SDAI PMBus Serial Data Input. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SOAO is to whor 25ms. 12 MCB Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold | 3 | VCAP | Internal Regulated 2.7V Supply. Place a capacitor with a value of 1µF or greater on this pin to maintain optimal voltage regulation. This pin can be used as a reference to program the ISET pin voltage. To guarantee accuracy specifications, do not load the VCAP pin by more than 100µA. | | | FET Energy Tracking During Normal Operation. This pin approximates the energy in the FET when faults occur du normal operation. The user can place a component network between the EFALV in and ground that allows the p voltage to be proportional to the precided MOSETF junction temperature. If the voltage on the pin exceeds a threst (1V), the FET is deemed to be running too close to its SOA and is turned off. This setting assumes higher current I and lesser SOA capability. Considerations must be made if varying ISET with V _n VO _{LUT} when assuming constant or limits. 6 ENABLE Enable Input. This pin is a digital logic input. This input must be high to allow the ADM1273 hot-swap controller to I a power-up sequence. If this pin is held low, the ADM1273 is prevented from powering up. 7, 8 ADR0, ADR1 PMBus Address. These pins can be tied to GND, tied to VCAP, left floating, or tied low through a resistor for a total unique PMBus device addresses (see the Device Addressing section). 9 SCL Serial Clock Pin. SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset if is low for 25ms. 10 SDAI PMBus Serial Data Dutput. The serial data is split into an input and an output for easy use with isolators. PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SDAO is low for 25ms. 11 MCB Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage preturns below this threshold. 12 General-Purpose Digital Input/Output 2 (GPIO2). Altert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. 13 GPIO1/ALERT1/CONV General-Purpose Digital Input/Output 1 (GPIO1). Altert (ALERT2), This pin can be configured to generate an alert signal when one or more fault or warning condition detected. 14 GPIO1/ALERT3, This pin can be configured to generate | 4 | ESTART | FET Energy Tracking During Power-Up. This pin approximates the energy in the FET during power-up. The user can place a component network between the ESTART pin and ground that allows the pin voltage to be proportional to the predicted MOSFET junction temperature. If the voltage on the pin exceeds a threshold (1V), the FET is deemed to be | | | a power-up sequence. If this pin is held low, the ADM1273 is prevented from powering up. PMBus Address. These pins can be tied to GND, tied to VCAP, left floating, or tied low through a resistor for a total unique PMBus device addresses (see the Device Addressing section). SCL Serial Clock Pin. SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset it is low for 25ms. PMBus Serial Data Dutput. The serial data is split into an input and an output for easy use with isolators. PMBus Serial Data Dutput. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SDAO is low for 25ms. MCB Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULTTEATT threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up c | 5 | EFAULT | FET Energy Tracking During Normal Operation. This pin approximates the energy in the FET when faults occur during normal operation. The user can place a component network between the EFAULT pin and ground that allows the pin voltage to be proportional to the predicted MOSFET junction temperature. If the voltage on the pin exceeds a threshold (1V), the FET is deemed to be running too close to its SOA and is turned off. This setting assumes higher current limits and lesser SOA capability. Considerations must be made if varying ISET with V _{IN} /V _{OUT} when assuming constant current | | | unique PMBus device addresses (see the Device Addressing section). SCL Serial Clock Pin. SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset in is low for 25ms. PMBus Serial Data Input. The serial data is split into an input and an output for easy use with isolators. PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SDAO is low for 25ms. MCB MCB MASK Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state
of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. GPIO1/ALERT1/CONV General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se | 6 | ENABLE | Enable Input. This pin is a digital logic input. This input must be high to allow the ADM1273 hot-swap controller to begin a power-up sequence. If this pin is held low, the ADM1273 is prevented from powering up. | | | is low for 25ms. PMBus Serial Data Input. The serial data is split into an input and an output for easy use with isolators. PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SDAO is low for 25ms. MCB Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT FAULT FAIRT threshold, an overtemperature fault, or a FET health fault. RESTART Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time car adjusted from 0. Isec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates | 7, 8 | ADR0, ADR1 | , | | | PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. The PMB interface is reset if SDAO is low for 25ms. Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault result the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Set the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input thre | 9 | SCL | Serial Clock Pin. SCL is an open-drain input. It requires an external pull-up resistor. The PMBus interface is reset if SC is low for 25ms. | | | interface is reset if SDAO is low for 25ms. Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. GPIO1/ALERT1/CONV General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time car adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of | 10 | SDAI | PMBus Serial Data Input. The serial data is split into an input and an output for easy use with isolators. | | | function returns immediately after the voltage returns below this threshold. GPIO2/ALERT2 General-Purpose Digital Input/Output 2 (GPIO2). Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT FAULT FAULT FAULT FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. Th device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time car adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | 11 | SDAO | PMBus Serial Data Output. The serial data is split into an input and an output for easy use with isolators. The PMBus interface is reset if SDAO is low for 25ms. | | | Alert (ALERTZ). This pin can be configured to generate an alert signal when one or more fault or warning condition
detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERTT). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | 12 | MCB | Mask Circuit Breaker. When the voltage on this pin is greater than the threshold, the SOC shutdown is disabled. The function returns immediately after the voltage returns below this threshold. | | | detected. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit. GPIO1/ALERT1/CONV General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resure the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. RESTART Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Set the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | 13 | GPIO2/ALERT2 | General-Purpose Digital Input/Output 2 (GPIO2). | | | GPIO1/ALERT1/CONV General-Purpose Digital Input/Output 1 (GPIO1). Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Set the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. PWGIN Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | | | Alert (ALERT2). This pin can be configured to generate an alert signal when one or more fault or warning conditions are detected. It is also possible to read the state of this pin on the PMBus. | | | Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning condition detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-good threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | | | This pin defaults to an alert output at power-up. There is no internal pull-up circuit. | | | detected. Conversion (CONV). This pin can be used as an input signal to control when a power monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. Th device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | 14 | GPIO1/ALERT1/CONV | | | | begins. It is also possible to read the state of this pin on the PMBus. This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. FAULT Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resu the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-good threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unt output voltage is above the threshold set by PWGIN. | | | Alert (ALERT1). This pin can be configured to generate an alert signal when one or more fault or warning conditions are detected. | | | FAULT FESTART FAULT | | | Conversion (CONV). This pin can be used as an input signal to control when a power
monitor ADC sampling cycle begins. It is also possible to read the state of this pin on the PMBus. | | | the EFAULT/ESTART threshold, an overtemperature fault, or a FET health fault. Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. Th device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. Se the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time car adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted untoutput voltage is above the threshold set by PWGIN. | | | This pin defaults to an alert output at power-up. There is no internal pull-up circuit on this pin. | | | device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time car adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted untoutput voltage is above the threshold set by PWGIN. | 15 | FAULT | Fault. This pin asserts low and latches when a fault occurs. The faults that can trigger this pin are an OC fault resulting in | | | PWRGD Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, an ADM1273 hot-swap is enabled with the gate fully enhanced. PWGIN Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-g threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted untoutput voltage is above the threshold set by PWGIN. | 16 | RESTART | Falling Edge Triggered Automatic Restart. The gate remains off for 10sec by default, and then powers back on. The device has an internal weak pull-up circuit to VCAP. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. The default time for this function is 10sec. However, this time can be adjusted from 0.1sec to 25.6sec by writing to the RESTART_TIME register. | | | threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted unto output voltage is above the threshold set by PWGIN. | 17 | PWRGD | Power-Good Signal. This pin indicates that the supply is within tolerance (PWGIN input), no faults are detected, and the | | | | 18 | PWGIN | Power-Good Input Threshold. This pin sets the power-good input threshold. The user can set an accurate power-good threshold with a resistor divider from the source of the FET (VOUT). The PWRGD output signal is not asserted until the output voltage is above the threshold set by PWGIN. | | | IO GIOUIIU. | 19 | GND | Ground. | | analog.com Rev. 0 | 13 of 58 ## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Table 6. Pin Function Descriptions (Continued) | Pin No. | Mnemonic | Description | | |-------------------------------|----------|--|--| | 20, 21, 24, 25, 36,
37, 40 | NC | No Connect. The NC pins are not required to be connected, but do have internal connections. They share the same electrical node internally to the EPVCC pad and can therefore be used as a thermal exit route from EPVCC on the san outer layer and same electrical connection as EPVCC. | | | 22, 23, 26 to 28, 33
to 35 | DNC | Do Not Connect. The DNC pins must not be connected to any electrical signal, GND, or supply voltage. Any connect copper must be electrically isolated and appropriately spaced from other nodes, which allows compliance with IPC-9592 recommendations for 80V. | | | 29 | VCP | Internal Charge Pump Voltage Reservoir Capacitor. Connect a capacitor to VOUT to store energy required in the fast gate recovery mode. Ensure that the size of C_{VCP} is at least 10 times that of the parasitic gate capacitance. If C_{VCP} is greater than 500nF, add additional delays to the initial power-on delay. See the FET Gate Drive section. | | | 30 | DVDT | Output Voltage Ramp Rate Setting. The DVDT pin sets a linear output voltage ramp rate. During power-up events, this pin is internally connected to the GATE pin. This internal connection allows the output voltage ramp to be predominately determined by I_{GATEUP} and I_{CDVDT} . When the power-up is complete, the DVDT pin is disconnected from the GATE pin and connected to VOUT to prevent impeding the GATE shutdown time. A I_{CDVDT} resistor must be used in series with the capacitor to limit pin currents during fast transients on VOUT. Use a high voltage capacitor. | | | 31 | VOUT | Output Voltage. Connect this pin directly to the source of the MOSFET (output voltage). The GATE pin is referenced from this node and pull-down currents flow through this pin. PCB routing must be sized accordingly to allow all GATE shutdown currents. This pin is also used to read back the output voltage using the internal ADC. It also enables V _{DS} monitoring across the MOSFET to feed back to the SOA protection scheme. | | | 32 | GATE | Gate Driver. This pin is the high-side gate drive of an external N channel FET. This pin is driven by the FET drive controller, which uses a charge pump to provide a pull-up current to charge the FET gate pin. The FET drive controller regulates to a maximum load current by regulating the GATE pin. GATE is held to the VOUT pin when the supply is below the UVLO threshold. | | | 38 | SENSE- | Negative Current Sense Input. A sense resistor between the SENSE+ pin and the SENSE- pin sets the analog current limit. The hot-swap operation of the ADM1273 controls the external FET gate to maintain the sense voltage (V _{SENSE+} – V _{SENSE-}). This pin also connects to the FET drain pin. | | | 39 | SENSE+ | Positive Current Sense Input. This pin connects to the main supply input. A sense resistor between the SENSE+ pin and the SENSE- pin sets the analog current limit. The hot-swap operation of the ADM1273 controls the external FET gate to maintain the sense voltage (V _{SENSE+} - V _{SENSE-}). This pin also measures the supply input voltage using the ADC. | | | 41 | Vcc | Positive Supply Input. An undervoltage lockout (UVLO) circuit resets the device when a low supply voltage is detected. GATE is held low when the supply is below UVLO. During normal operation, the voltage on this pin must remain greater than or equal to SENSE+ to ensure that specifications are adhered to. No sequencing is required. | | | 42 | VREG | Internal Regulated 5V Supply. Place a capacitor with a value of $1\mu F$ or greater on this pin to maintain optimal regulation. Do not load this pin externally. | | | 43 | TEMP- | Temperature Input GND. Connect this pin directly to the low side of the NPN device. | | | 44 | TEMP+ | Temperature Input. An external NPN device can be placed close to the MOSFETs and connected back to this pin to report the temperature. The voltage at the TEMP+ pin is measured by the ADC. | | | 45 | UVH | Undervoltage Rising Input. An external resistor divider is used from the supply to this pin to allow an internal comparator to detect whether the supply is under the UVH limit. | | | 46 | UVL | Undervoltage Falling Input. An external resistor divider is used from the supply to this pin to allow an internal comparator to detect whether the supply is under the UVL limit. | | | 47 | OV | Overvoltage Input. An external resistor divider is used from the supply to this pin to allow an internal comparator to detect whether the supply is above the OV limit. | | | 48 | RND | Random Delay. A capacitor on this pin sets the minimum and maximum power-up delay time range. With no capacitor on this pin, the system delay is from 0.43ms to 27.5ms. With a maximum of 220nF, the delay can be from 54.3ms to 3.0sec. This delay is active only after V _{CC} comes out of UVLO and, therefore, is only present at each power cycle. | | | | EPGND | Exposed Pad. Always connect to GND. The exposed pad is located on the underside of the LFCSP package and is the larger of the two pads. Solder the exposed pad to the PCB for optimal thermal dissipation. | | | | EPVCC | Exposed Pad. Internally connected to V_{CC} . The exposed pad is located on the underside of the LFCSP package and is the smaller of the two pads. Solder the exposed pad to the PCB for optimal thermal dissipation. Always electrically connect EPVCC to the same potential as V_{CC} . Most of the device power is dissipated through this pad; therefore, consider a strong thermal connection to available copper. | | analog.com Rev. 0 | 14 of 58 ##
TYPICAL PERFORMANCE CHARACTERISTICS Figure 4. Supply Current (I_{CC}) vs. Temperature Figure 5. Supply Current (I_{CC}) vs. V_{CC} Figure 6. GATE Slow Pull-Down Current (I_{GATEDN_SLOW}) vs. Temperature Figure 7. GATE Slow Pull-Down Current (IGATEDN_SLOW) vs. V_{CC} Figure 8. GATE Regulation Pull-Down Current (I_{GATEDN_REG}) vs. Temperature Figure 9. GATE Regulation Pull-Down Current ($I_{GATEDN\ REG}$) vs. V_{CC} analog.com Rev. 0 | 15 of 58 ## **TYPICAL PERFORMANCE CHARACTERISTICS** Figure 10. GATE Pull-Up Current (IGATEUP) vs. Temperature Figure 11. GATE Pull-Up Current (I_{GATEUP}) vs. V_{CC} Figure 12. ΔV_{GATE} (5 μA Load) vs. Temperature Figure 13. ΔV_{GATE} (5 μA Load) vs. V_{CC} Figure 14. UVx Threshold Hysteresis vs. Temperature Figure 15. OV Hysteresis Current vs. Temperature analog.com Rev. 0 | 16 of 58 ## **TYPICAL PERFORMANCE CHARACTERISTICS** Figure 16. PWGIN Threshold vs. Temperature Figure 17. PWGIN Threshold Hysteresis vs. Temperature Figure 18. ΔV_{GATE} Response to Severe Overcurrent Event (GATE Fast Pull-Down) Figure 19. PWRGD Output Low Voltage (Vol. PWRGD) vs. IoL Figure 20. PWRGD Output Low Voltage ($V_{\text{OL_PWRGD}}$) vs. Temperature Figure 21. GPIOx and Fault Pin V_{OL} vs. Temperature analog.com Rev. 0 | 17 of 58 ## TYPICAL PERFORMANCE CHARACTERISTICS Figure 22. $V_{\Delta SENSE}$ vs. Temperature, V_{ISET} with 1Ω Sense Resistor Figure 23. $V_{\Delta SENSE}$ vs. Temperature, V_{ISTART} with 1Ω Sense Resistor Figure 24. VCP Load Regulation Figure 25. VCP Voltage vs. Temperature Figure 26. VCP vs. V_{CC} Figure 27. VREG Voltage vs. Temperature analog.com Rev. 0 | 18 of 58 ## **TYPICAL PERFORMANCE CHARACTERISTICS** Figure 28. VREG Voltage vs. V_{CC} Figure 29. VCAP Voltage vs. Temperature Figure 30. VCAP Voltage vs. $V_{\rm CC}$ Figure 31. VOUT Current vs. Voltage Figure 32. $V_{\Delta SENSE}$ vs. Temperature at ISET = 0 analog.com Rev. 0 | 19 of 58 #### THEORY OF OPERATION When circuit boards are inserted into a live backplane, discharged supply bypass capacitors draw large transient currents from the backplane power bus as they charge. These transient currents can cause permanent damage to connector pins, as well as dips on the backplane supply that can reset other boards in the system. The ADM1273 is designed to manage the powering on and off of a system in a controlled manner, allowing a board to be removed from, or inserted into, a live backplane by protecting it from excess currents. After power-up is complete, the ADM1273 continues to protect the system from faults. These faults include overcurrent, short circuit, overvoltage, undervoltage, and transient disturbances on the backplane, and some FET fault issues. The ADM1273 is usually placed on a system/board that is removable. However, it also can be placed on the backplane in some cases. The ADM1273 also has the capability of measuring and reporting power and energy telemetry. #### **DIFFERENCES FROM ADM1272** The ADM1273 is a drop-in replacement to the ADM1272 with some minor differences: - ▶ The values returned by the MFR_MODEL and MFR_REVISION commands are different. - ▶ A new command, STATUS_CML, has been added to provide details on communication, memory, and logic faults. - ► The ADM1273 PMBus interface is reset if SCL or SDAO are low for 25ms. - ► These specification limits are different: OV Glitch Filter (OV_{GF}), Circuit Breaker Offset (V_{CBOS}), and PWGIN Threshold Hysteresis (V_{PWGIN HYST}). ## **POWERING THE ADM1273** A supply voltage from 16V to 80V is required to power the ADM1273 via the V_{CC} pin. An internal regulator provides a 5V rail, which is presented on the VREG pin, to supply the digital section of the ADM1273 (for internal use only), and must be decoupled according to the VREG pin description in Table 6. The V_{CC} pin provides the majority of the bias current for the device; however, some bias currents are supplied through the SENSE± pins. Both the V_{CC} and SENSE+ pins can be connected to the same voltage node, but in most applications, it is recommended to connect an RC filter to the V_{CC} pin to avoid resets due to very fast transients on the input rail (see Figure 33). Choose the values of these components such that a time constant is provided that can filter any expected glitches. However, use a resistor that is small enough to keep voltage drops caused by quiescent current to a minimum. Do not place a supply decoupling capacitor on the rail before the FET, unless a series resistor is used to limit the inrush current. Figure 33. Reinforced Transient Glitch Protection Using an RC Network #### **UV AND OV** The ADM1273 monitors the supply voltage for UV and OV conditions. The OV pin is connected to the input of an internal voltage comparator, and its voltage level is internally compared with a 1V voltage reference. The user can program the value of the OV hysteresis by varying the top resistor of the resistor divider on the pin. This impedance in combination with the $5\mu A$ OV hysteresis current (current turned on after OV triggers) sets the OV hysteresis voltage. $$OV_{RISING} = OV_{THRESHOLD} \times \frac{R_{TOP} + R_{BOTTOM}}{R_{BOTTOM}}$$ $$OV_{FALLING} \approx OV_{RISING} - \left(R_{TOP} \times 5\mu A\right)$$ (1) The UV detector is split into two separate pins, UVH and UVL. The voltage on the UVH pin is compared internally to a 1V reference, whereas the UVL pin is compared to a 0.9V reference. Therefore, if the pins are tied together, the UV hysteresis is 100mV. The hysteresis can be adjusted by placing a resistor between UVL and UVH. Figure 1 shows the voltage monitoring input connection. An external resistor network divides the supply voltage for monitoring. An undervoltage event is detected when the voltage connected to the UVL pin falls below 0.9V, and the gate is shut down using the 10mA pull-down device. The fault is cleared after the UVH pin rises above 1.0V. Similarly, when an overvoltage event occurs and the voltage on the OV pin exceeds 1V, the gate is shut down using the 10mA pull-down device. For the maximum rating on the UVx and OV pins, see Table 4. If transients are expected on the main input line, use external protection circuitry to protect the inputs and to allow these pin voltages to exceed their rating. analog.com Rev. 0 | 20 of 58 #### THEORY OF OPERATION #### **HOT-SWAP CURRENT SENSE INPUTS** The load current is monitored by measuring the voltage drop across an external sense resistor, R_{SENSE} . An internal current sense amplifier provides a gain of 40 to the voltage drop detected across R_{SENSE} . The result is compared to an internal reference and used by the hot-swap control logic to detect when an overcurrent condition occurs. Figure 34. Hot-Swap Current Sense Amplifier The SENSE± inputs can be connected to multiple parallel sense resistors. The way the sense points of these resistors are combined has a significant effect on the accuracy of the voltage drop detected by the ADM1273. To achieve better accuracy, averaging resistors can be used to sum the voltages from the nodes of each sense resistor, as shown in Figure 35. A typical value for the averaging resistors is $10\Omega,$ enough to be significantly greater than the trace resistance. The input current to each sense pin is matched to within $5\mu A.$ This matching ensures that the same offset is observed by both sense inputs, reducing differential errors. Figure 35. Connection of Multiple Sense Resistors to the SENSE± Pins #### **CURRENT-LIMIT MODES** The ADM1273 features dual current limits, one for startup (ISTART) and one for normal operation (ISET). At startup, the ISTART pin determines the current limit used during power-up. This dual current limit allows users to program an independent current limit at startup, specific to the conditions of the start-up profile and expectations. After startup is complete, the system switches to the main current limit determined by ISET. The conditions that must be satisfied for this switch to occur are as follows: - ▶ The system is not in current limit. - $(V_{IN} V_{OUT}) < 2V.$ - ► The gate voltage is fully enhanced (V_{GS} > 10V). The system remains at the normal current limit (ISET) unless there is an interruption triggered by an OV, UV, or manual shutdown (enable, restart, or PMBus command) and this interruption results in $V_{DS} > 2V$ and inactive PWRGD. If this interruption occurs, the system resets to ISTART and assumes a full system restart. For this reset to happen, a shutdown must be signaled with enough time to allow the gate to disable the FETs and the output to discharge. However, the system remains in ISET current limit following an OC fault to allow a recovery attempt. If the system cannot recover, a latchoff occurs and ISTART assumes control at the next startup. ## SETTING THE CURRENT LIMITS (ISET/ISTART) The current limit is typically determined by selecting a sense resistor to match the current sense voltage limit on the controller for the desired load current. However, as currents become larger, the sense resistor requirements become smaller, and resolution can be difficult to achieve when selecting the appropriate sense resistor or combination thereof. The ADM1273 provides adjustable current sense voltage limits to manage this issue. The device allows the user to program the required current sense voltage limits independently up to 30mV. The recommended range is 2.5mV to 30mV, although tolerances and errors increase as V_{SENSECL} decreases. In conjunction with the sense resistor, the current-limit reference voltage determines the load current level to which the ADM1273 limits the current during an overcurrent event. This reference voltage is compared to the amplified current sense voltage to determine whether the limit is reached. The active current-limit reference voltage input to the internal comparator is clamped to a minimum level of 100mV (that
is, V_{SENSECL} = 2.5mV) to prevent current limits being set too low, which may result in zero current flow across all conditions. The current limit set by the ISET/ISTART pins is the current at which the ADM1273 tries to regulate when the load requires more current. This current limit, defined by the reference to the current control loop, is the regulation current limit or I_{REG} ($V_{SENSECL}$ at the sense voltage). Another current-limit threshold just below I_{REG} that alerts the ADM1273 when the current limit is reached and is active, is the analog.com Rev. 0 | 21 of 58 #### THEORY OF OPERATION circuit breaker current limit or I_{CB} (V_{CB} at sense voltage). V_{CB} can be expressed at the sense pins (in mV) as follows: $$V_{CB} = V_{SENSECL} - V_{CBOS}$$ (2) where V_{CBOS} is the circuit breaker offset and is listed in Table 1 as 1.1mV (typical). ## **ISTART** The ISTART pin sets the start-up current limit in start-up mode using a divider from the VCAP pin, or if pulled up to VCAP with a $10k\Omega$ resistor, an internal 1V threshold is used (25mV). The VCAP pin has a 2.7V internal regulated voltage that can be used as a reference to set a voltage at the ISTART pin. Assuming that V_{ISTART} equals the voltage on the ISTART pin, size the resistor divider to set the ISTART voltage as follows: $$V_{ISTART} = V_{SENSECL} \times 40 \tag{3}$$ where $V_{SENSECL}$ is the current sense voltage limit. The default value of 25mV is achieved by connecting the ISTART pin directly to the VCAP pin (or $V_{\rm ISTART} > 1.65V$). This connection configures the device to use an internal 1V reference, which equates to 25mV at the sense inputs (see Figure 36). Figure 36. Fixed 25mV ISTART Current Sense Limit To program the sense voltage from 10mV to 30mV, a resistor divider sets the reference voltage on the ISTART pin (see Figure 37). When using the DVDT pin to set the output voltage ramp, set the ISTART pin high enough to prevent the inrush current from reaching the current limit. Figure 37. Adjustable 5mV to 30mV Current Sense Limit The start-up current limit can be programmed via the ISTART pin or reduced via the PMBus register, STRT_UP_IOUT_LIM (Register 0xF6). If both are configured, the lowest current limit is selected as the active current limit. The clamp level in both cases is a 2.5mV $V_{\Lambda SENSE}$ current limit. The start-up current limit PMBus register is set to the maximum value at power-on reset; therefore, the ADM1273 uses the ISTART pin setting by default. If configuring the start-up current limit with the PMBus register, the start-up current limit is set as a fraction of the effective ISTART current limit. There are four register bits so that the start-up current limit can be set from 1/16th to 16/16th of the normal current limit. The effective ISTART voltage can be calculated as $$V_{ISTARTEFF} = V_{ISTART} \times \left(\frac{STRT_UP_IOUT_LIM + 1}{16}\right) \tag{4}$$ The start-up circuit breaker and current limits can then be calculated from this effective ISTART voltage. ## **ISET** The ISET pin sets the system current limit during normal operation using a divider from the VCAP pin or pulled down to GND. The ISET pin differs from ISTART in that the resulting current-limit reference voltage is not the voltage presented on the pin, but the difference between VCAP and ISET. This relationship is presented as follows: $$V_{VCAP} - V_{ISET} = V_{SENSECL} \times 40 \tag{5}$$ where $V_{SENSECL}$ is the current sense voltage limit. This configuration allows a third optional resistor (from ISET to V_{IN}) to be used to allow the current limit to inversely track the input voltage. This feature is useful to avoid overdesigning the system current limit and allows the maximum current demand to output load at low V_{IN} , which results in an unnecessarily high current limit for maximum V_{IN} . The high current limit may even exceed input power limitations. analog.com Rev. 0 | 22 of 58 #### THEORY OF OPERATION The default value of 30mV is achieved by pulling the ISET pin directly to GND (or $V_{\rm ISET}$ < 1.5V). Although the ISET pin may be at 0V, the internal buffered ISET voltage does not drop below 1.5V. This configuration clamps the current-limit reference voltage to 1.2V ($V_{\rm VCAP} - V_{\rm ISET}$), which equates to 30mV at the sense inputs (see Figure 38). For information about the protection of the FET SOA, see the Safe Operating Area Protection (ESTART/EFAULT) section. Figure 38. Fixed 30mV ISET Current Sense Limit Figure 39. Programming the Variable Current Sense Limit (R3 for Power Limit Setting) ## SETTING A LINEAR OUTPUT VOLTAGE RAMP AT POWER-UP (DVDT) The most common method of power-up in a typical application is to configure a single linear voltage ramp on the output, which allows a constant inrush current into the load capacitance. This method has the advantage of setting slow ramp times, which result in low inrush currents. This method is often required to limit supply inrush demand and to prevent high capacitive loads from stressing the FET SOA. This design allows a linear monotonic power-up event without the restrictions of the system current limit or fault timer. A power-up ramp is set such that the inrush is low enough not to reach the active circuit breaker current limit, which allows the power-up to continue without any closed-loop interaction but still uses the active current limit to protect against fault conditions. A capacitor on the DVDT pin sets the dv/dt ramp rate of the output voltage. However, the parasitic FET gate capacitances also contribute to the total gate capacitance and must be considered. The DVDT pin is internally connected to the GATE pin only during start-up mode. When the startup is complete, the DVDT pin is disconnected from the GATE pin and connected internally to VOUT. This configuration prevents unnecessary capacitive loading of GATE, which can slow shutdown responses to faults and impede recovery from transient conditions. The DVDT pin is reconnected to GATE prior to any subsequent start-up events. To ensure that the inrush current does not approach or exceed the active current-limit level, the output voltage ramp can be set by selecting the appropriate value for C_{DVDT}, as follows: $$C_{DVDT} = (I_{GATEUP} | I_{INRUSH}) \times C_{LOAD}$$ (6) where C_{DVDT} is the total gate capacitance (including FET parasitics). I_{GATEUP} is the specified gate pull-up current. C_{LOAD} is the load capacitance. Add margin and tolerance as necessary to ensure a robust design. Subtract any parasitic gate drain capacitance, C_{GD} , of the MOSFETs from the total to determine the additional external capacitance required. Next, the power-up ramp time can be approximated by $$t_{RAMP} = (V_{IN} \times C_{LOAD}) I_{INRUSH} = (V_{IN} \times C_{DVDT}) I_{GATEUP} \tag{7}$$ Check the SOA of the MOSFET for conditions and the duration of this power-up ramp. For more information about protection of the FET SOA during start-up faults, see the information about the protection of the FET SOA, see the Safe Operating Area Protection (ESTART/EFAULT) section. The diagram in Figure 40 shows a typical hot-swap power-up with a DVDT capacitor configured for a linear output voltage ramp. The ISTART current limit can also be used to provide a constant current instead of using the DVDT pin. However, if linear output voltage ramps are preferred, use of the DVDT function is recommended with an ISTART level above any expected inrush current profiles as protection. Loads can often require dynamic currents, which may result in nonlinear profiles when using a constant current control at startup. In addition, if very low current limits are required (in comparison to the main current limit), using a closed-loop system may result in wide tolerance and/or current limits below the recommended range of V_{SENSE}. analog.com Rev. 0 | 23 of 58 #### THEORY OF OPERATION When configuring with the ISTART pin, calculate the circuit breaker (CB) level using the following equation: $$Start - Up \quad CB = \frac{\left(\frac{V_{ISTART}}{40} - 1.1 \text{mV}\right)}{\frac{R_{SENSE}}{R_{SENSE}}} \tag{8}$$ To prevent the start-up current limit from being triggered during a normal slew rate controlled power-up, set the circuit breaker level above the maximum expected inrush current. Figure 40. Linear Voltage Ramp Power-Up ## SAFE OPERATING AREA PROTECTION (ESTART/EFAULT) The ADM1273 features a MOSFET protection scheme that offers increased flexibility for managing various system conditions while still protecting the FET from SOA stress. Traditional timer schemes use a single fault timer to protect the FET when regulating current or when current limits are exceeded. This approach requires the timers to be set to worst case conditions like short circuits, which limits the robustness of the solution to various system conditions/faults. For short circuits, the SOA requires the setting of a short timer because the FET V_{DS} is very high. However, for a load fault that results in only a few volts across the FET V_{DS} , because the timer is optimized for worst case conditions, the timer setting remains very short. If a transient fault occurs, resulting in a momentary active current limit but only a few volts of V_{DS} , the system is likely to shut down quickly even though the FET SOA is not exceeded because V_{DS} is low and can operate longer. This condition is problematic during common scenarios such as input line steps and disturbances. To accommodate these conditions and ensure there are no unnecessary shutdowns, the ADM1273 monitors and uses the FET V_{DS} to optimize how long the FET is allowed to remain in regulation. The ESTART and EFAULT pins control this regulation time for start-up mode and normal mode, respectively. Each pin programs an independent setting for each mode of operation to allow SOA protection to be optimized for its respective current limit. As the system
transitions from one mode to another, the ADM1273 retains any potential recent SOA stress history by copying the same voltage from the ESTART pin to the EFAULT pin at transitions and vice versa. The assumption is that, although there is a significant level of V_{DS} across the FET, its drain current, ID, is being held constant (at the limit); thus, the FET power is proportional to V_{DS}. The SOA curve of the FET indicates the amount the FET can dissipate, for a given time, before the junction temperature reaches its maximum and SOA is breached. A current source (I_{VDS}) equivalent to $1\mu A$ per 1V V_{DS} is sourced from EFAULT/ESTART. Through analysis and manipulations of the SOA curves, for a given fixed current, an RC configuration from EFAULT/ESTART to GND can provide a solution to ensure the voltage on the pin reaches 1V before the SOA is exceeded. This configuration presents a profile on the EFAULT/ESTART pin that is representative of the FET junction temperature. Upon reaching 1V, the device deems the FET to be at the SOA limit and latches it off and sets the IOUT OC FAULT bit. This solution results in fault on times that are proportional to V_{DS} and allows low V_{DS} faults to recover without latching off, while ensuring high V_{DS} faults are latched off immediately. Although the EFAULT and ESTART pins provide the same function for their respective operation mode, there is one subtle difference: the ESTART pin enables I_{VDS} only when the current exceeds I_{CB} , whereas the EFAULT I_{VDS} is solely dependent on V_{DS} . A pull-down current of 500nA discharges the RC network, which allows a single capacitor on each pin to be used at the expense of being able to use less of the SOA. When the current control loop is near regulation, this 500nA pull-down current is disabled and a 1µA pull-up current enabled. The 1µA current ensures that the EFAULT and ESTART pins run current even if there is a very small V_{DS} , thus allowing the system to power down if this condition lasts for an extended period. If conditions prevent the pins from reaching 1V while at a low V_{DS} (where the SOA may indicate dc), there is an internal 100ms limit, after which the system returns a fault and latches off. This backup limit prevents overheating in a steady state in the MOSFET and only sets the HS_INLIM_FAULT bit but does not set the IOUT_OC_FAULT bit. The 100ms timer runs when V_{GS} is <10V and the current is in regulation. #### FET GATE DRIVE The ADM1273 is designed to control a high-side gate drive of an external N channel FET. The GATE pin is driven by the FET drive controller, which uses a charge pump to provide a pull-up current to charge the FET gate pin. The FET drive controller regulates to a maximum load current by regulating the GATE pin. GATE is held to the VOUT pin when the supply is below the UVLO limit. The GATE pin features a G_M amplifier output that sources and sinks the GATE node to regulate the current. When a shutdown is requested, the GATE pin uses a 10mA pull-down device to disable analog.com Rev. 0 | 24 of 58 #### THEORY OF OPERATION the FET and this pull-down device remains active when the FET is disabled The charge pump used on the GATE pin is capable of driving V_{GS} to >10V, but it is clamped to less than 14V above VOUT. These clamps ensure that the maximum V_{GS} rating of the FET is not exceeded. ## **FAST RESPONSE TO SEVERE OVERCURRENT** The ADM1273 features a separate high bandwidth current sense amplifier that detects a severe overcurrent indicative of a short-circuit condition. A fast response time allows the ADM1273 to handle events of this type that may otherwise cause catastrophic damage if not detected and prevented quickly. The fast response circuit ensures that the ADM1273 can detect an overcurrent event at approximately 150% to 400% (default 200%) of the normal current limit set by the ISET pin, and can respond to and control the current within 1µs in most cases. There are four severe overcurrent threshold options and four severe overcurrent glitch filter options selectable via the PMBus registers as follows: ► Thresholds: 150%, 200%, 300%, 400% ► Glitch filters: 500ns, 1µs, 5µs, 10µs After the glitch filter expires, the GATE pin of the ADM1273 is pulled down with ~1.5A for a maximum duration of $10\mu s$. Following a severe OC shutdown, by default, the device attempts to regain control of the FET one time. To expedite recovery after sudden shutdown events, a gate boost circuit is enabled to bring the gate voltage back to the FET V_{TH} threshold within ~50 μs . After the current sense amplifier detects 2mV at the sense pins, this circuit is disabled and the normal gate drive resumes. #### **MCB** The MCB pin (mask circuit breaker) is designed to mask the severe overcurrent (SOC) circuit, when enabled. If the voltage on this pin exceeds the threshold, the SOC detector is disabled for the duration, which disables the GATE fast pull-down circuit while the pin is high. All other protection features, including current limit regulation, remain intact. For masking, MCB needs to be high for the entire 10µs long GATE fast pull-down window that starts after the SOC glitch filter expires. No masking occurs if MCB goes high during the fast pull-down. If MCB goes low during the 10µs window, the fast pull-down occurs for the time remaining in the window. Even when masked, the SEVERE_OC_FAULT bit will be set. #### **RND** The RND pin allows the user to insert a random delay into the start-up routine, which allows staggered distribution of power-up on multiple systems, when commanded simultaneously. Allow this pin to float when not in use. There is a maximum timeout feature of 3sec to prevent faulty capacitors from impeding a startup. Table 7. Typical Delay Time with External Capacitor | RND Capacitor | Minimum Time | Maximum Time | |---------------|--------------|------------------------| | None (~10pF) | 0.43ms | 27.5ms | | 4.7nF | 1.58ms | 101ms | | 10nF | 2.88ms | 184ms | | 22nF | 5.82ms | 372ms | | 47nF | 11.9ms | 764ms | | 100nF | 24.9ms | 1.59sec | | 220nF | 54.3ms | 3.0sec ^{1, 2} | - The discharge time is fixed; capacitors larger than 220nF may not be fully discharged during the discharge cycle. Therefore, the delay time is not proportional to the capacitance for capacitors larger than this value. - Limited by internal timeout of 3sec to prevent faulty capacitors on the RND pin from impeding a startup. #### **VOLTAGE TRANSIENTS** System backplanes are subject to transients. Transients commonly occur following a fast shutdown on a system running high currents. The source inductance results in a fast dv/dt on the input and the load inductance may result in a negative voltage transient at VOUT. It is critical to use appropriately rated TVS diodes on the input and Schottky diodes on the output. The ADM1273 can tolerate 120V at the input pins and -5V at the VOUT pin. ## SURGE AND TRANSIENT RECOVERY Surges, line steps, and backplane disturbances are sometimes unavoidable in a system chassis backplane. Usually such events result in a fast dv/dt on the input supply, which in turn causes a sudden inrush current demand on the positive edge. This sudden inrush current is almost identical to a current spike seen during an output fault condition and is therefore always difficult to differentiate and manage without resulting in a system reset. The ADM1273 uses a number of features designed to address this issue. Many existing solutions rely on masking the severe overcurrent feature and allowing the inrush current to pass. The ADM1273 features an MCB pin for just that function. However, using the MCB pin is not the preferred course of action because it often results in very high currents flowing uninterrupted in the system, which can lead to other issues. The primary features to address such power line disturbances are as follows: - ▶ Fast recovery allows the inrush current to trigger the severe overcurrent and shuts down the FET quickly to limit the high peak currents from flowing in the system. However, after shutdown, recover the current control quickly so that the output load capacitors do not discharge with the load demand. This recovery is achieved via a gate drive boost circuit designed to deliver extra charge into GATE until the FET is reenabled. - Isolated DVDT capacitor that controls the gate ramp voltage is disconnected during this recovery, allowing the FET to recover faster. analog.com Rev. 0 | 25 of 58 #### THEORY OF OPERATION - No current foldback. If the load is demanding full current during this event, the current limit cannot be reduced without impeding recovery. Instead, the FET on time is managed to ensure SOA protection. - ▶ EFAULT function. This feature replaces the typical timer function. It can be optimized to allow the FET to remain on for longer with lower V_{DS} faults, which is typical in these scenarios. The combination of these features allows the ADM1273 to maintain the output voltage and prevent system resets during these transients events, while still protecting the MOSFETs. ## **POWER GOOD** The power-good (PWRGD) output indicates whether the output voltage is above a user-defined threshold and can, therefore, be considered good. A resistor divider on the PWGIN pin sets an accurate power-good threshold on the output voltage. The PWRGD pin is an open-drain output that pulls low when the voltage at the PWGIN pin is lower than 1.0V (power bad). When the voltage at the PWGIN pin is above this threshold plus a fixed hysteresis of 60mV, the output power is considered to be good. However, PWRGD asserts only when the following conditions are met: - ▶ PWGIN is above the rising threshold voltage. - ► Hot-swap is enabled, that is, the ENABLE pin is high and the UVx and OV pins are within range. - ► There is no active fault condition, that is, the FAULT pin is cleared following any fault condition. - ▶ The MOSFET is fully enhanced (V_{GS} >
10V). After these conditions are met, the open-drain pull-down current is disabled, allowing PWRGD to be pulled high. PWRGD is guaranteed to be in a valid state for $V_{CC} \ge 1.9V$. An external pull-up circuit is required. If the gate voltage drops below 10V (that is, no longer meets MOSFET fully enhanced condition), PWRGD still remains asserted for 100ms. If the condition persists for longer than 100ms, PWRGD is deasserted and an FET health fault is signaled. If any of the other conditions for PWRGD are no longer met, PWRGD is deasserted immediately. Additional hysteresis can be added by simply placing a resistor from PWRGD to PWGIN. The PWRGD polarity can be changed through the PMBus. ## **FAULT PIN** The FAULT pin asserts when one of the following faults causes the hot-swap to shut down: - ▶ FET health fault - Overcurrent fault #### Overtemperature fault The FAULT pin is latched, and it can only be cleared by a rising edge on the ENABLE pin, a PMBus OPERATION on command from the off state, or a POWER_CYCLE command, assuming no faults are still active. The fault registers are not cleared by the ENABLE pin or the POWER_CYCLE command; they can only be cleared by a PMBus OPERATION off to on command or a CLEAR FAULTS command. Figure 41. FAULT Pin Operation ## **RESTART PIN** The RESTART pin is a falling edge triggered input that allows the user to command a 10sec automatic restart. When this input is set low, the gate turns off for 10sec, and then powers back up. The pin is falling edge triggered; therefore, holding RESTART low for more than 10sec generates only one restart. This pin has an internal pull-up current of approximately 16µA, allowing it to be driven by an open-drain pull-down output or a push/pull output. The input threshold is ~1V. The restart function can also be triggered from a PMBus command. In all cases, the restart time can be programmed from 0.1sec to 25sec on the PMBus, but defaults back to 10sec after the device POR. This pin is also used to configure the desired retry scheme. See the Hot-Swap Retry section for additional details. #### **HOT-SWAP RETRY** The ADM1273 can be configured to latch off or autoretry mode. The default is latchoff mode. To configure autoretry, connect the FAULT pin to RESTART. As FAULT goes low, the restart command triggers. This cycle continues unless interrupted or the device is disabled. #### **ENABLE INPUT** The ADM1273 provides a dedicated ENABLE digital input pin. The ENABLE pin allows the ADM1273 to remain off by using a hardware signal, even when the voltage on the UV pin is greater than 1.0V and the voltage on the OV pin is less than 1.0V. Although analog.com Rev. 0 | 26 of 58 #### THEORY OF OPERATION the UV pin can be used to provide a digital enable signal, using the ENABLE pin for this purpose means that the ability to monitor for undervoltage conditions is not lost. In addition to the conditions for the UVx and OV pins, the ADM1273 ENABLE input pin must be asserted for the device to begin a power-up sequence. ## REMOTE TEMPERATURE SENSING The ADM1273 provides the capability to measure temperature at a remote location with a single discrete NPN or PNP transistor. The temperature measurements are enabled by setting TEMP1_EN bit in the PMON_CONFIG register and can be read back over the PMBus interface. Warning and fault thresholds can also be set on the temperature measurement. Exceeding a fault threshold causes the controller to turn off the pass MOSFET, deassert the PWRGD pin, and assert the FAULT pin. The external transistor is typically placed close to the main pass MOSFETs to provide an additional level of protection. The controller can then monitor and respond to an elevated MOSFET operating temperature. It is not possible to measure temperature at more than one location on the board. Place the transistor close to the MOSFET for best accuracy. If the transistor is placed on the opposite side of the PCB, use multiple vias to ensure the optimum transfer of heat from the MOSFET to the transistor. ## **Temperature Measurement Method** A simple method of measuring temperature is to exploit the negative temperature coefficient of a diode by measuring the base emitter voltage (V_{BE}) of a transistor operated at constant current. However, this technique requires calibration to null the effect of the absolute value of V_{BE} , which varies from device to device. The technique used in the ADM1273 is to measure the change in V_{BE} when the device is operated at three different currents. The use of a third current allows automatic cancellation of resistances in series with the external temperature sensor. The temperature sensor takes control of the ADC for 64µs (typical) every 6ms. It takes 12ms to obtain a new temperature measurement from the ADC. ## **Remote Sensing Diode** The ADM1273 is designed to work with discrete transistors. The transistor can be either a PNP or NPN connected as a diode (base shorted to the collector). If an NPN transistor is used, the collector and base are connected to the TEMP+ pin and the emitter to TEMP-. If a PNP transistor is used, the collector and base are connected to TEMP- and the emitter to TEMP+. The best accuracy is obtained by choosing devices according to the following criteria: - Base emitter voltage greater than 0.25V at 6μA, at the highest operating temperature. - Base emitter voltage less than 0.95V at 100μA, at the lowest operating temperature. - Base resistance less than 100Ω. - Small variation in transistor current gain, h_{FE} (50 to 150), that indicates tight control of V_{BF} characteristics. Transistors, such as the 2N3904, 2N3906, or equivalent in SOT-23 packages are suitable devices to use. ## **Noise Filtering** For temperature sensors operating in noisy environments, the industry-standard practice is to place a capacitor across the temperature pins to mitigate the effects of noise. However, large capacitances affect the accuracy of the temperature measurement, leading to a recommended maximum capacitor value of 1000pF. Although this capacitor reduces the noise, it does not eliminate it, making the use of the sensor in a noisy environment difficult. The ADM1273 has a major advantage over other devices for eliminating the effects of noise on the external sensor. The series resistance cancellation feature allows a filter to be constructed between the external temperature sensor and the device. The effect of any filter resistance seen in series with the remote sensor is automatically canceled from the temperature result. The construction of a filter allows the ADM1273 and the remote temperature sensor to operate in noisy environments. Figure 42 shows a low-pass filter using 100Ω resistors and a 1nF capacitor. This filtering reduces both common-mode noise and differential noise. Figure 42. Filter Between Remote Sensor and ADM1273 #### **FET HEALTH** The ADM1273 provides a comprehensive method of detecting a faulty pass MOSFET. When a faulty FET is detected, the following events occur simultaneously: - PWRGD is deasserted. - ► FAULT is asserted and latched low. - ▶ FET health PMBus status bits are asserted and latched. This detection feature ensures that any downstream DC-DC converters are disabled, limiting the power dissipation in any faulty or overheating FETs until the user clears the fault, which can be critical to avoid any catastrophic events due to faulty FETs. A gate to source or gate to drain short is a common type of FET failure. This type of failure is detected by the ADM1273 at any time analog.com Rev. 0 | 27 of 58 ### THEORY OF OPERATION during operation if V_{GS} falls below 10V for more than 100ms. During startup, FET health fault is set if PWRGD is not asserted within 500ms of enabling the MOSFET. A less common failure is a drain to source short. This normally occurs due to a board manufacturing defect such as a solder short. This type of failure is detected during the initial power-on reset cycle after power-up or after a 10sec autoretry attempt if V_{DS} is below 3.2V. There is also an option to disable FET health detection via the PMBus. #### **POWER MONITOR** The ADM1273 features an integrated ADC that accurately measures the current sense voltage, the input voltage, and optionally, the output voltage and temperature at an external transistor. The measured input voltage and current being delivered to the load are multiplied together to give a power value that can be read back. Each power value is also added to an energy accumulator that can be read back to allow an external device to calculate the energy consumption of the load. The ADM1273 reports the measured current, input voltage, output voltage, and temperature. The PEAK_IOUT, PEAK_VIN, PEAK_VOUT, PEAK_PIN, and PEAK_TEMPERATURE commands can be used to read the highest readings since the value was last cleared. An averaging function is provided for voltage, current, and power that allows a number of samples to be averaged together by the ADM1273. This function reduces the need for postprocessing of sampled data by the host processor. The number of samples that can be averaged is 2^N , where N is in the range of 0 to 7. The power monitor current sense amplifier is bipolar and measures both positive and negative currents. The power monitor amplifier has an input range of ±25mV. The two basic modes of operation for the power monitor are single-shot and continuous. In single-shot mode, the ADC samples the input voltage and current a number of times, depending on the averaging value selected by the user. The ADM1273 returns a single value corresponding to the average voltage and current measured. When configured for continuous mode, the power monitor continuously samples the voltage and current, making the most recent sample available to be read. The single-shot mode can be triggered in a number of ways. The simplest method is by selecting the single-shot mode using the PMON_CONFIG command and writing to
the convert bit using the PMON_CONTROL command. The convert bit can also be written as part of a PMBus group command. Using a group command allows multiple devices to be written to as part of the same I²C bus transaction, with all devices executing the command when the stop condition appears on the bus. In this way, several devices can be triggered to sample at the same time. Each time current sense and input voltage measurements are taken, a power calculation is performed, multiplying the two measurements together. This result can be read from the device using the READ PIN command, returning the input power. At the same time, the calculated power value is added to a power accumulator register that may increment a rollover counter if the value exceeds the maximum accumulator value. The power accumulator register also increments a power sample counter. The power accumulator and power sample counter are read using the same READ_EIN command to ensure that the accumulated value and sample count are from the same point in time. The bus host reading the data assigns a time stamp when the data is read. By calculating the time difference between consecutive uses of READ_EIN and determining the delta in power consumed, it is possible for the host to determine the total energy consumed over that period. analog.com Rev. 0 | 28 of 58 #### **PMBUS INTERFACE** The I²C bus is a common, simple serial bus used by many devices to communicate. It defines the electrical specifications, the bus timing, the physical layer, and some basic protocol rules. SMBus is based on I²C and provides a more robust and fault tolerant bus. Functions such as bus timeout and packet error checking (PEC) are added to help achieve this robustness, together with more specific definitions of the bus messages used to read and write data to devices on the bus. PMBus is layered on top of SMBus and, in turn, on I²C. Using the SMBus defined bus messages, PMBus defines a set of standard commands that can be used to control a device that is part of a power chain. The ADM1273 command set is based on the *PMBus™ Power* System Management Protocol Specification, Part I and Part II, Revision 1.2. This version of the standard is intended to provide a common set of commands for communicating with DC-DC type devices. However, many of the standard PMBus commands can be mapped directly to the functions of a hot-swap controller. Part I and Part II of the PMBus standard describe the basic commands and their use in a typical PMBus setup. The following sections describe how the PMBus standard and the ADM1273 specific commands are used. #### **DEVICE ADDRESSING** The PMBus device address is seven bits in size. There are no default addresses for any of the models; any device can be programmed to any of 16 possible addresses. Two quad-level ADRx pins map to the 16 possible device addresses. Table 8. ADRx Pin Connections | ADRx State | ADRx Pin Connection | |------------|--------------------------| | Low | Connect to GND | | Resistor | 150kΩ resistor to GND | | High-Z | No connection (floating) | | High | Connect to VCAP | Table 9. PMBus Address Decode (7-Bit Address) | ADR1 State | ADR0 State | Device Address (Hex) | | |------------|------------|----------------------|--| | Low | Low | 0x10 | | | Low | Resistor | 0x11 | | | Low | High-Z | 0x12 | | | Low | High | 0x13 | | | Resistor | Low | 0x14 | | | Resistor | Resistor | 0x15 | | | Resistor | High-Z | 0x16 | | | Resistor | High | 0x17 | | | High-Z | Low | 0x18 | | | High-Z | Resistor | 0x19 | | | High-Z | High-Z | 0x1A | | | High-Z | High | 0x1B | | | High | Low | 0x1C | | Table 9. PMBus Address Decode (7-Bit Address) (Continued) | ADR1 State | ADR0 State | Device Address (Hex) | |------------|------------|----------------------| | High | Resistor | 0x1D | | High | High-Z | 0x1E | | High | High | 0x1F | #### **SMBUS PROTOCOL USAGE** All I²C transactions on the ADM1273 are performed using SMBus defined bus protocols. The following SMBus protocols are implemented by the ADM1273: - Send byte - ▶ Receive byte - ▶ Write byte - Read byte - ▶ Write word - Read word - Block read ## PACKET ERROR CHECKING The ADM1273 PMBus interface supports the use of the PEC byte that is defined in the SMBus standard. The PEC byte is transmitted by the ADM1273 during a read transaction or sent by the bus host to the ADM1273 during a write transaction. The ADM1273 supports the use of PEC with all the SMBus protocols that it implements. The use of the PEC byte is optional. The bus host can decide whether to use the PEC byte with the ADM1273 on a message by message basis. There is no need to enable or disable PEC in the ADM1273. The PEC byte is used by the bus host or the ADM1273 to detect errors during a bus transaction, depending on whether the transaction is a read or a write. If the host determines that the PEC byte read during a read transaction is incorrect, it can decide to repeat the read if necessary. If the ADM1273 determines that the PEC byte sent during a write transaction is incorrect, it ignores the command (does not execute it) and sets a status flag. Within a group command, the host can choose whether to send a PEC byte as part of the message to the ADM1273. ## PARTIAL TRANSACTIONS ON I2C BUS If there is a partial transaction on the I^2C bus (for example, spurious data is interpreted as a start command), the ADM1273 I^2C bus does not lock up, because it assumes it is in the middle of an I^2C transaction. A new start command is recognized even in the middle of another transaction. analog.com Rev. 0 | 29 of 58 #### **PMBUS INTERFACE** #### SMBUS MESSAGE FORMATS Figure 43 to Figure 51 show all the SMBus protocols supported by the ADM1273, along with the PEC variant. In these figures, unshaded cells indicate that the bus host is actively driving the bus; shaded cells indicate that the ADM1273 is driving the bus. Figure 43 to Figure 51 use the following abbreviations: ☐ TARGET TO CONTROLLER ☐ TARGET TO CONTROLLER - S is the start condition. - ▶ Sr is the repeated start condition. - ▶ P is the stop condition. - ▶ R is the read bit. - ▶ A is the acknowledge bit (0). - $ightharpoonup \overline{A}$ is the acknowledge bit (1). A, the acknowledge bit, is typically active low (Logic 0) when the transmitted byte is successfully received by a device. However, when the receiving device is the bus controller, the acknowledge bit for the last byte read is a Logic 1, indicated by \overline{A} . Figure 43. Send Byte and Send Byte with PEC Figure 44. Receive Byte and Receive Byte with PEC Figure 45. Write Byte and Write Byte with PEC Figure 46. Read Byte and Read Byte with PEC Figure 47. Write Word and Write Word with PEC analog.com Rev. 0 | 30 of 58 046 047 045 ## **PMBUS INTERFACE** Figure 48. Read Word and Read Word with PEC Figure 49. Block Read and Block Read with PEC Figure 50. Group Command Figure 51. Group Command with PEC ☐ CONTROLLER TO TARGET ☐ TARGET TO CONTROLLER analog.com Rev. 0 | 31 of 58 051 #### **PMBUS INTERFACE** #### **GROUP COMMANDS** The PMBus standard defines what are known as group commands. Group commands are single bus transactions that send commands or data to more than one device at the same time. Each device is addressed separately, using its own address; there is no special group command address. A group command transaction can contain only write commands that send data to a device. It is not possible to use a group command to read data from devices. From an I²C protocol point of view, a normal write command consists of the following: - ▶ I²C start condition. - ► Target address bits and a write bit (followed by an acknowledge from the target device). - ▶ One or more data bytes (each of which is followed by an acknowledge from the target device). - ▶ I²C stop condition to end the transaction. A group command differs from a nongroup command in that, after the data is written to one target device, a repeated start condition is placed on the bus followed by the address of the next target device and data. This process continues until all of the devices are written to, at which point the stop condition is placed on the bus by the controller device. The format of a group command and a group command with PEC is shown in Figure 50 and Figure 51, respectively. Each device that is written to as part of the group command does not immediately execute the command written. The device must wait until the stop condition appears on the bus. At that point, all devices execute their commands at the same time. Using a group command, it is possible, for example, to turn multiple PMBus devices on or off simultaneously. In the case of the ADM1273, it is also possible to issue a power monitor command that initiates a conversion, causing multiple ADM1273 devices to sample together at the same time. ## **HOT-SWAP CONTROL COMMANDS** #### **OPERATION Command** The GATE pin that drives the FET is controlled by a dedicated hot-swap state machine. The UVx and OV input pins, the EFAULT, ESTART, PWGIN, and ENABLE pins, and the current sense all feed into the state machine, and they control when and with which pull-down current the gate is turned off. It is also possible to control the hot-swap GATE output using commands over the PMBus interface. Use the OPERATION command to request the hot-swap output to turn on. However, if the UVx pin indicates that the input supply is less than required, the hot-swap output is not turned on, even if the OPERATION command requests that the output be enabled. If the OPERATION command is used to disable the hot-swap output, the GATE pin is held low, even if all hot-swap state machine control inputs indicate that it can be enabled. The default state of Bit 7 (also named the on bit) of the OPER-ATION command is 1; therefore, the hot-swap output is always enabled when the ADM1273 emerges from UVLO. If the on bit is never changed, the UVx input or the ENABLE/ENABLE input is the hot-swap on/off control signal. If the on
bit is set to 0 while the UVx signal is high, the hot-swap output is turned off. If the UVx signal is low or if the OV signal is high, the hot-swap output is already off and the status of the on bit has no effect. If the on bit is set to 1, the hot-swap output is requested to turn on. If the UVx signal is low or if the OV signal is high, setting the on bit to 1 has no effect, and the hot-swap output remains off. It is possible to determine at any time whether the hot-swap output is enabled using the STATUS_BYTE or the STATUS_WORD command (see the Status Commands section). The OPERATION command can also clear any latched faults in the status registers. To clear latched faults, set the on bit to 0 and then reset it to 1. This action also clears the latched FAULT pin. ## **DEVICE_CONFIG Command** The DEVICE_CONFIG command configures certain settings within the ADM1273, for example, enabling or disabling FET health detection, general-purpose input/output (GPIO) pin configuration, and modifying the duration of the severe overcurrent settings. ## **POWER_CYCLE Command** Use the POWER_CYCLE command to request that the ADM1273 be turned off for 10.1sec (default) and then turned back on. This command is useful if the processor that controls the ADM1273 is also powered off when the ADM1273 is turned off. This command allows the processor to request that the ADM1273 turn off and on again as part of a single command. #### **ADM1273 INFORMATION COMMANDS** #### **CAPABILITY Command** The host processors can use the CAPABILITY command to determine the I²C bus features that are supported by the ADM1273. The features that are reported include the maximum bus speed, whether the device supports the PEC byte, and the SMBus alert reporting function. ## PMBUS_REVISION Command The PMBUS_REVISION command reports the version of Part I and Part II of the PMBus standard. analog.com Rev. 0 | 32 of 58 #### **PMBUS INTERFACE** ## MFR_ID, MFR_MODEL, and MFR_REVISION Commands The MFR_ID, MFR_MODEL, and MFR_REVISION commands return ASCII strings that can be used to facilitate detection and identification of the ADM1273 on the bus. These commands are read using the SMBus block read message type. This message type requires that the ADM1273 return a byte count corresponding to the length of the string data that is to be read back. ## **STATUS COMMANDS** The ADM1273 provides a number of status bits to report faults and warnings from the hot-swap controller and the power monitor. These status bits are located in six different registers arranged in a hierarchy. The STATUS_BYTE and STATUS_WORD commands provide 8 bits and 16 bits of high level information, respectively. The STATUS_BYTE and STATUS_WORD commands contain the most important status bits, as well as pointer bits that indicate whether any of the five other status registers must be read for more detailed status information. In the ADM1273, a particular distinction is made between faults and warnings. A fault is always generated by the hot-swap controller and is typically defined by hardware component values. Events that can generate a fault are - Overcurrent condition that causes the hot-swap timer to time out - Overvoltage condition on the OV pin - Undervoltage condition on the UV pin - Overtemperature condition - ▶ FET health issue detected When a fault occurs, the hot-swap controller always takes an action, usually to turn off the GATE pin, which is driving the FET. The FAULT pin is asserted, and the PWRGD pin is deasserted. A fault can also generate an SMBus alert on the GPIO2/ALERT2 pin. All warnings in the ADM1273 are generated by the power monitor, which samples the voltage, current, and temperature and then compares these measurements to the threshold values set by the various limit commands. A warning has no effect on the hot-swap controller, but it may generate an SMBus alert on one or both of the GPIOx/ALERTx output pins. When a status bit is set, it always means that the status condition—fault or warning—is active or was active at some point in the past. When a fault or warning bit is set, it is latched until it is explicitly cleared using either the OPERATION or the CLEAR_FAULTS command. Some other status bits are live, that is, they always reflect a status condition and are never latched. ## STATUS_BYTE and STATUS_WORD Commands The STATUS_BYTE and STATUS_WORD commands obtain a snapshot of the overall device status. These commands indicate whether it is necessary to read more detailed information using the other status commands. The low byte of the word returned by the STATUS_WORD command is the same byte returned by the STATUS_BYTE command. The high byte of the word returned by the STATUS_WORD command provides a number of bits that determine which of the other status commands must be issued to obtain all active status bits. The status bits for FET health and power good are also found in the high byte of STATUS_WORD. ## STATUS_INPUT Command The STATUS_INPUT command returns a number of bits relating to voltage faults and warnings on the input supply as well as the overpower warning. ## STATUS_VOUT Command The STATUS_VOUT command returns a number of bits relating to voltage warnings on the output supply. ## STATUS_IOUT Command The STATUS_IOUT command returns a number of bits relating to current faults and warnings on the output supply. #### STATUS TEMPERATURE Command The STATUS_TEMPERATURE command returns a number of bits relating to temperature faults and warnings at the external transistor. ## STATUS_CML Command The STATUS_CML command returns a number of bits relating to I²C/PMBus faults and trim memory CRC/ECC faults. ## STATUS_MFR_SPECIFIC Command The STATUS_MFR_SPECIFIC command is a standard PMBus command, but the contents of the byte returned are specific to the ADM1273. ## **CLEAR_FAULTS Command** The CLEAR_FAULTS command clears fault and warnings bits when they are set. Fault and warnings bits are latched when they are set. In this way, a host can read the bits any time after the fault or warning condition occurs and determine which problem actually occurred. analog.com Rev. 0 | 33 of 58 #### **PMBUS INTERFACE** If the CLEAR_FAULTS command is issued and the fault or warning condition is no longer active, the status bit is cleared. If the condition is still active—for example, if an input voltage is below the undervoltage threshold of the UVx pin—the CLEAR_FAULTS command attempts to clear the status bit, but that status bit is immediately set again. #### **GPIO AND ALERT PIN SETUP COMMANDS** Two multipurpose pins are provided on the ADM1273: GPIO1/ALERT1/CONV and GPIO2/ALERT2. These pins can be configured over the PMBus in one of three output modes, as follows: - ▶ General-purpose digital output - Output for generating an SMBus alert when one or more fault/ warning status bits become active in the PMBus status registers - ▶ Digital comparator In digital comparator mode, the current, voltage, power, and temperature warning thresholds are compared to the values read or calculated by the ADM1273. The comparison result sets the output high or low according to whether the value is greater or less than the warning threshold that is set. For an example of how to configure these pins to generate an SMBus alert and how to respond and clear the condition, see the Example Use of SMBus ARA section. ## ALERT1_CONFIG and ALERT2_CONFIG Commands Using combinations of bit masks, the ALERT1_CONFIG and ALERT2_CONFIG commands select the status bits that, when set, generate an SMBus alert signal to a processor, or control the digital comparator mode. Pin 14 and Pin 13 (GPIO1/ALERT1/CONV and GPIO2/ALERT2) must be configured in SMBus alert or digital comparator mode in the DEVICE_CONFIG register. When Pin 13 or Pin 14 is configured in GPO mode, the pin is under software control. If this mode is set, the SMBus alert masking bits are ignored. #### **POWER MONITOR COMMANDS** The ADM1273 provides a high accuracy, 12-bit current, voltage, and temperature power monitor. The power monitor can be configured in a number of different modes of operation and can run in either continuous mode or single-shot mode with different sample averaging options. The power monitor can measure the following quantities: - ▶ Input voltage (V_{IN}) - ▶ Output voltage (V_{OUT}) - ▶ Output current (I_{OUT}) - External temperature The following quantities are then calculated: - ► Input power (P_{IN}) - ▶ Input energy (E_{IN}) ## **PMON_CONFIG Command** The power monitor can run in a variety of modes. The PMON CONFIG command sets up the power monitor. The settings that can be configured are as follows: - ▶ Single-shot or continuous sampling - ► V_{IN}/V_{OUT}/temperature sampling enable/disable - ▶ Current and voltage sample averaging - Power sample averaging - ▶ Simultaneous sampling enable/disable - ▶ Temperature sensor filter enable/disable Modifying the power monitor settings while the power monitor is sampling is not recommended. To ensure correct operation of the device and to avoid any potential spurious data or the generation of status alerts, stop the power monitor before any of these settings are changed. ## **PMON_CONTROL Command** Power monitor sampling can be initiated via hardware or via software using the PMON_CONTROL command. This command can be used with single-shot or continuous mode. ## READ_VIN, READ_VOUT, and READ_IOUT Commands The ADM1273 power monitor always measures the voltage developed across the sense resistor to provide a current measurement. The input voltage measurement from the SENSE+ pin is also enabled by default. The output voltage present on the VOUT pin is available if enabled with the PMON CONFIG command. ## READ_TEMPERATURE_1 Command Temperature measurement at an external transistor can also be enabled with the PMON_CONFIG command. If enabled, the temperature sensor takes over the ADC for $64\mu s$ every 6ms and returns a measurement every 12ms. ## READ_PIN, READ_PIN_EXT, READ_EIN, and
READ_EIN_EXT Commands The 12-bit input voltage (V_{IN}) and 12-bit current (I_{OUT}) measurement values are multiplied by the ADM1273 to obtain the input power value. This multiplication is accomplished by using fixed point arithmetic, and produces a 24-bit value. It is assumed that the numbers are in the 12.0 format, meaning that there is no fractional analog.com Rev. 0 | 34 of 58 #### **PMBUS INTERFACE** part. Note that only positive I_{OUT} values are used to avoid returning a negative power. This 24-bit value can be read from the ADM1273 using the READ_PIN_EXT command, where the most significant bit (MSB) is always a zero because PIN_EXT is a twos complement binary value that is always positive. The 16 most significant bits of the 24-bit value are used as the value for P_{IN} . The MSB of the 16-bit P_{IN} word is always zero, because P_{IN} is a twos complement binary value that is always positive. Each time a power calculation is completed, the 24-bit power value is added to a 24-bit energy accumulator register. This is a twos complement representation as well; therefore, the MSB is always zero. Each time this energy accumulator register rolls over from 0x7FFFFF to 0x000000, a 16-bit rollover counter is incremented. The rollover counter is straight binary, with a maximum value of 0xFFFF before it rolls over. A 24-bit straight binary power sample counter is also incremented by 1 each time a power value is calculated and added to the energy accumulator. These registers can be read back using one of two commands, depending on the level of accuracy required for the energy accumulator and the desire to limit the frequency of reads from the ADM1273. A bus host can read these values, and by calculating the delta in the energy accumulated, the delta in the number of samples, and the time delta since the last read, the host can calculate the average power since the last read, as well as the energy consumed since then. The time delta is calculated by the bus host based on when it sends its commands to read from the device, and is not provided by the ADM1273. To avoid loss of data, the bus host must read at a rate that ensures the rollover counter does not wrap around more than once, and if the counter does wrap around, that the next value read for P_{IN} is less than the previous one. The READ_EIN command returns the top 16 bits of the energy accumulator, the lower 8 bits of the rollover counter, and the full 24 bits of the sample counter. The READ_EIN_EXT command returns the full 24 bits of the energy accumulator, the full 16 bits of the rollover counter, and the full 24 bits of the sample counter. The use of the longer rollover counter means that the time interval between reads of the device can be increased from seconds to minutes without losing any data. # PEAK_IOUT, PEAK_VIN, PEAK_VOUT, PEAK_PIN, and PEAK_TEMPERATURE Commands In addition to the standard PMBus commands for reading voltage and current, the ADM1273 provides commands that can report the maximum peak voltage, current, power, or temperature value since the peak value was last cleared. The peak values are updated only after the power monitor samples and averages the current and voltage measurements. Individual peak values are cleared by writing a 0 value with the corresponding command. #### WARNING LIMIT SETUP COMMANDS The ADM1273 power monitor can monitor a number of different warning conditions simultaneously and report any current, voltage, power, or temperature values that exceed the user defined thresholds using the status commands. All comparisons performed by the power monitor require the measured value to be strictly greater or less than the threshold value. At power-up, all threshold limits are set to either minimum scale (for undervoltage or undercurrent conditions) or to maximum scale (for overvoltage, overcurrent, overpower, or overtemperature conditions). This requirement effectively disables the generation of any status warnings by default; warning bits are not set in the status registers until the user explicitly sets the threshold values. ## VIN_OV_WARN_LIMIT and VIN_UV_WARN_LIMIT Commands The VIN_OV_WARN_LIMIT and VIN_UV_WARN_LIMIT commands set the OV and UV thresholds on the input voltage, as measured at the SENSE+ pin. ## VOUT_OV_WARN_LIMIT and VOUT_UV_WARN_LIMIT Commands The VOUT_OV_WARN_LIMIT and VOUT_UV_WARN_LIMIT commands set the OV and UVx thresholds on the output voltage, as measured at the VOUT pin. #### **IOUT OC WARN LIMIT Command** The IOUT_OC_WARN_LIMIT command sets the OC threshold for the current flowing through the sense resistor. ## **OT_WARN_LIMIT Command** The OT_WARN_LIMIT command sets the overtemperature threshold for the temperature measured at the external transistor. analog.com Rev. 0 | 35 of 58 #### **PMBUS INTERFACE** ## PIN_OP_WARN_LIMIT Command The PIN_OP_WARN_LIMIT command sets the overpower threshold for the power delivered to the load. #### PMBUS DIRECT FORMAT CONVERSION The ADM1273 uses the PMBus direct format to represent real-world quantities such as voltage, current, and power values. A direct format number takes the form of a 2-byte, twos complement, binary integer value. It is possible to convert between direct format value and real-world quantities using the following equations. Equation 9 converts from real-world quantities to PMBus direct values, and Equation 10 converts PMBus direct format values to real-world values. $$Y = (mX + b) \times 10^R \tag{9}$$ $$X = 1/m \times (Y \times 10^{-R} - b) \tag{10}$$ where: Y is the value in PMBus direct format. *m* is the slope coefficient, a 2-byte, twos complement integer. *X* is the real-world value. b is the offset, a 2-byte, twos complement integer. *R* is a scaling exponent, a 1-byte, twos complement integer. The same equations are used for voltage, current, power, and temperature conversions. The only difference is the values of the m, b, and R coefficients that are used. Table 10 lists all the coefficients required for the ADM1273. ## Example 1 IOUT_OC_WARN_LIMIT requires a current-limit value expressed in direct format. If the required current limit is 10A, R_{SENSE} = 1m Ω and IRANGE is 15mV. Using Equation 9, and expressing X in units of amperes, $$Y = ((1326 \times 10) + 20,480) \times 10^{-1}$$ Y = 3374 Writing a value of 3374 with the IOUT_OC_WARN_LIMIT command sets an overcurrent warning at 10A. ## Example 2 The READ_IOUT command returns a direct format value of 4000 representing the current flowing through the sense resistor. To convert this value to the current, use Equation 10, with R_{SENSE} = $1m\Omega$ and IRANGE = 30mV. $$X = 1/663 \times (4000 \times 10^{1} - 20.480)$$ X = 29.44A This means that, when READ_IOUT returns a value of 4000, 29.44A is flowing in the sense resistor. Note that the same calculations that are used to convert power values also apply to the energy accumulator value returned by the READ_EIN command because the energy accumulator is a summation of multiple power values. The READ_PIN_EXT and READ_EIN_EXT commands return 24-bit extended precision versions of the 16-bit values returned by READ_PIN and READ_EIN. The direct format values must be divided by 256 prior to being converted with the coefficients shown in Table 10. ## Example 3 The PIN_OP_WARN_LIMIT command requires a power limit value expressed in direct format. If the required power limit is 1200W and IRANGE and VRANGE are 30mV and 60V, respectively, using Equation 9, $$Y = (17561 \times 1200) \times 10^{-3}$$ Y = 21,073 Writing a value of 21,073 with the PIN_OP_WARN_LIMIT command sets an overpower warning at 1200W. ## VOLTAGE AND CURRENT CONVERSION USING LSB VALUES The direct format voltage and current values returned by the READ_VIN, READ_VOUT, and READ_IOUT commands and the corresponding peak versions are the data output directly by the ADM1273 ADC. Because the voltages and currents are 12-bit ADC output codes, they can also be converted to real-world values when there is knowledge of the size of the LSB on the ADC. The m, b, and R coefficients defined for the PMBus conversion are required to be whole integers by the standard and have therefore been rounded slightly. Using this alternative method, with the exact LSB values, can provide somewhat more accurate numerical conversions. ## **Converting ADC Code to Current** To convert an ADC code to current in amperes, use Equation 11 and Equation 12. $$V_{ASENSE} = LSB_{CURRENT} \times (I_{ADC} - 2048) \tag{11}$$ where: $V_{\Delta SENSE} = (V_{SENSE+}) - (V_{SENSE-}).$ $LSB_{CURRENT}$ = 7.53µV with the 15mV range and 15.06µV with the 30mV range. I_{ADC} is the 12-bit ADC code. $$I_{OUT} = V_{ASENSE} | R_{SENSE}$$ (12) where: I_{OUT} is the measured current value in amperes. *R*_{SENSE} is the value of the sense resistor in ohms. analog.com Rev. 0 | 36 of 58 #### **PMBUS INTERFACE** For example, for a 30mV range, Code 4000 results in $V_{\Delta SENSE}$ = 29.397mV ## **Converting ADC Code to Voltage** To convert an ADC code to voltage, use the following formula: $$V_M = LSB_{VOLTAGE} \times V_{ADC} \tag{13}$$ where: V_M is the measured value in volts. $LSB_{VOLTAGE}$ = 14.77mV with the 0V to 60V range and 24.62mV with the 0V to 100V range. V_{ADC} is the 12-bit ADC code. For example, for a 100V range, Code 4000 results in V_M = 98.48V. ## **Converting ADC Code to Power** To convert an ADC code to power in watts, use the following formula: $$P_{M} = LSB_{POWFR} \times P_{ADC}/R_{SENSF} \tag{14}$$ where: P_M is the measured value in watts. LSB_{POWER} is shown in Table 10 as the power for the LSB coefficient, and expressed in the order of 10^{-6} . P_{ADC} is the 16-bit ADC code. For example, for a 0V to 100V range and a 0V to 30mV range, Code 10000 results in $P_{\rm M}$ = 949.2W. ## **Converting Current to 12-Bit Value** To convert a current in amperes to a 12-bit value, use Equation 15 and Equation 16 (round the result
to the nearest integer). $$V_{ASENSE} = I_A \times R_{SENSE} \tag{15}$$ where $V_{\Delta SENSE} = (V_{SENSE+}) - (V_{SENSE-}).$ I_A is the current value in amperes. *R*_{SENSE} is the value of the sense resistor in ohms. $$I_{CODE} = 2048 + (V_{\Delta SENSE} | LSB_{CURRENT})$$ (16) where: I_{CODE} is the 12-bit ADC code. $LSB_{CURRENT}$ = 7.53 μ V with the 0V to 15mV range and 15.06 μ V with the 0V to 30mV range. ## **Converting Voltage to 12-Bit Value** To convert a voltage to a 12-bit value, use the following formula (round the result to the nearest integer): $$V_{CODE} = V_A / LSB_{VOLTAGE}$$ (17) where: V_{CODE} is the 12-bit ADC code. $LSB_{VOLTAGE}$ = 14.77mV with the 0V to 60V range and 24.62mV with the 0V to 100V range. ## **Converting Power to 16-Bit Value** To convert power to a 16-bit value, use the following formula (round the result to the nearest integer): $$P_{CODE} = P_A \times R_{SENSE} / LSB_{POWER} \tag{18}$$ where: P_{CODE} is the 16-bit ADC code. P_A is the power value in watts. *R*_{SENSE} is the value of the sense resistor in ohms. LSB_{POWER} is shown in Table 10 as the power for the LSB coefficient, and expressed in the order of 10^{-6} . Table 10. Required Coefficients for Voltage, Current, Power, and Temperature Conversion (R_{SENSE} is in $m\Omega$) | | Vo | Voltage Cu | | rent | | Po | Power | | | |-------------|--------------------|---------------------|------------------------------|-----------------------------|---------------------------------------|--|---------------------------------------|--|----------------| | Coefficient | 0V to 60V
Range | 0V to 100V
Range | 0V to 15mV
Range | 0V to 30mV
Range | 0V to 15mV and
0V to 60V
Ranges | 0V to 15mV and
0V to 100V
Ranges | 0V to 30mV and
0V to 60V
Ranges | 0V to 30mV and
0V to 100V
Ranges | Temperature | | m | 6770 | 4062 | 1326 ×
R _{SENSE} | 663 ×
R _{SENSE} | 3512 × R _{SENSE} | 21071 × R _{SENSE} | 17561 × R _{SENSE} | 10535 × R _{SENSE} | 42 | | b | 0 | 0 | 20480 | 20480 | 0 | 0 | 0 | 0 | 31871 | | R | -2 | -2 | -1 | -1 | -2 | -3 | -3 | -3 | -1 | | _SB | 14.77 | 24.62 | 7.53 | 15.06 | 28.47 | 47.46 | 56.94 | 94.92 | Not applicable | analog.com Rev. 0 | 37 of 58 #### **APPLICATIONS INFORMATION** #### **GENERAL-PURPOSE OUTPUT PIN BEHAVIOR** The ADM1273 provides a flexible alert system, whereby one or more fault/warning conditions can be indicated on an external device. #### **FAULTS AND WARNINGS** A PMBus fault on the ADM1273 is typically generated due to an analog event (the exception being a temperature fault) and causes a change in state in the hot-swap output, turning it off. The defined fault sources are as follows: - ▶ Undervoltage (UV) event detected on the UVx pin. - Overvoltage (OV) event detected on the OV pin. - Overcurrent (OC) event that causes a hot-swap timeout. - Overtemperature (OT) event detected at the external transistor. - ▶ Fault detected with the pass MOSFET. Faults are continuously monitored, and, as long as power is applied to the device, they cannot be disabled. When a fault occurs, a corresponding status bit is set in one or more STATUS_xxx registers. A value of 1 in a status register bit field always indicates a fault or warning condition. Fault and warning bits in the status registers are latched when set to 1. To clear a latched bit to 0—provided that the fault condition is no longer active—use the CLEAR_FAULTS command or use the OPERATION command to turn the hot-swap output off and then on again. A warning is less severe than a fault and never causes a change in the state of the hot-swap controller. The sources of a warning are defined as follows: - ► CML: a communications error occurred on the I²C bus. - ► HS_INLIM_FAULT: the circuit breaker threshold was tripped and EFAULT/ESTART started ramping, but did not necessarily shut the system down. - ▶ I_{OUT} OC warning from the ADC. - V_{IN} UV warning from the ADC. - V_{IN} OV warning from the ADC. - ▶ V_{OUT} UV warning from the ADC. - ▶ V_{OUT} OV warning from the ADC. - ▶ P_{IN} overpower (OP) warning from the V_{IN} × I_{OUT} calculation. - ▶ OT warning from the ADC. - ▶ Hysteretic output warning from the ADC. #### **GENERATING AN ALERT** A host device can periodically poll the ADM1273 using the status commands to determine whether a fault/warning is active. However, this polling is very inefficient in terms of software and processor resources. The ADM1273 has two output pins (GPIO1/ALERT1/CONV and GPIO2/ALERT2) that generate interrupts to a host processor. By default at power-up, the open-drain GPIO1/ALERT1/CONV and GPIO2/ALERT2 outputs are high impedance; therefore, the pins can be pulled high through a resistor. The GPIO1/ALERT1/ CONV and GPIO2/ALERT2 pins are disabled by default on the ADM1273. Any one or more of the faults and warnings listed in the Faults and Warnings section can be enabled and cause an alert, making the corresponding GPIO1/ALERT1/CONV or GPIO2/ALERT2 pin active. By default, the active state of the GPIO1/ALERT1/CONV and GPIO2/ALERT2 pins are low. For example, to use GPIO2/ALERT2 to monitor the V_{OUT} UV warning from the ADC, the followings steps must be performed: - Set a threshold level with the VOUT_UV_WARN_LIMIT command. - Set the VOUT_UV_WARN_EN2 bit in the ALERT2_ CONFIG register. - Start the power monitor sampling on V_{OUT} (ensure the power monitor is configured to sample V_{OUT} in the PMON_CONFIG register). If a V_{OUT} sample is taken that is below the configured V_{OUT} UV value, the GPIO2/ALERT2 pin is pulled low, signaling an interrupt to a processor. #### HANDLING/CLEARING AN ALERT When faults/warnings are configured on the GPIO1/ALERT1/CONV or GPIO2/ALERT2 pins, the pin becomes active to signal an interrupt to the processor. (The pin is active low, unless inversion is enabled.) The GPIO1/ALERT1/CONV or GPIO2/ALERT2 signal performs the functions of an SMBus alert. Note that the GPIO1/ALERT1/CONV and GPIO2/ALERT2 pins can become active independently but they are always made inactive together. A processor can respond to the interrupt in one of two ways, depending on whether there is a single device or multiple devices on the bus. ### Single Device on Bus When there is only one device on the bus, the processor simply reads the status bytes and issues a CLEAR_FAULTS command to clear all the status bits, which causes the deassertion of the GPIO1/ALERT1/CONV or GPIO2/ALERT2 line. If there is a persistent fault (for example, an undervoltage on the input), the status bits remain set after the CLEAR_FAULTS command is executed because the fault has not been removed. However, the GPIO1/ALERT1/CONV or GPIO2/ALERT2 line is not pulled low unless a new fault or warning becomes active. If the cause of the SMBus alert is a power monitor generated warning and the power monitor is running continuously, the next sample generates a new SMBus alert after the CLEAR_FAULTS command is issued. analog.com Rev. 0 | 38 of 58 #### **APPLICATIONS INFORMATION** ## **Multiple Devices on Bus** When there are multiple devices on the bus, the processor issues an SMBus alert response address (ARA) command to find out which device asserted the SMBus alert line. The processor reads the status bytes from that device and issues a CLEAR_FAULTS command. #### **SMBUS ALERT RESPONSE ADDRESS** The SMBus ARA is a special address that can be used by the bus host to locate any devices that must communicate with the bus host. A host typically uses a hardware interrupt pin to monitor the SMBus alert pins of multiple devices. When the host interrupt occurs, the host issues a message on the bus using the SMBus receive byte or receive byte with PEC protocol. The special address used by the host is 0x0C. Any devices that have an SMB alert signal return their own 7-bit address as the seven MSBs of the data byte. The LSB value is not used and can be either 1 or 0. The host reads the device address from the received data byte and proceeds to handle the alert condition. More than one device can have an active SMB alert signal and attempt to communicate with the host. In this case, the device with the lowest address dominates the bus and succeeds in transmitting its address to the host. The device that succeeds disables its SMBus alert signal. If the host sees that the SMBus alert signal is still low, it continues to read addresses until all devices that must communicate have transmitted their addresses. #### **EXAMPLE USE OF SMBUS ARA** The full sequence of steps that occurs when an SMBus alert is generated and cleared is as follows: A fault or warning is enabled using the ALERT2_CONFIG command, and the corresponding status bit for the fault or warning - changes from 0 to 1, indicating that the fault or warning has just become active. - 2. The GPIO2/ALERT2 pin becomes active (set low) to signal that an SMBus alert is active. - **3.** The host processor issues an SMBus ARA command to determine which device has an active alert. - **4.** If there are no other active alerts from devices with lower I²C addresses, this device makes the GPIO2/ALERT2 pin inactive (set high) during the no acknowledge bit period after it sends its address to the host processor. - If the GPIO2/ALERT2 pin stays low, the host processor must continue to issue SMBus ARA commands to devices to determine the addresses of all devices that require a status check. - 6. The ADM1273 continues to operate with the GPIO2/ALERT2 pin inactive and the contents of the status bytes unchanged until the host reads the status bytes and clears them, or until a new fault occurs. If a status bit for a fault/warning that is enabled on the GPIO2/ALERT2 pin and that was not already active (equal to 1) changes from 0 to 1, a new alert is generated, causing the GPIO2/ALERT2 pin to become active again. ### **DIGITAL COMPARATOR MODE** The GPIO1/ALERT1/CONV and GPIO2/ALERT2 pins
can be configured to indicate if a user defined threshold for voltage, current, power, or temperature is exceeded. In this mode, the output pin is live and is not latched when a warning threshold is exceeded. In effect, the pin acts as a digital comparator, where the threshold is set using the warning limit threshold commands. The ALERTx_CONFIG command is used, similar to the SMBus alert configuration, to select the specific warning threshold to be monitored on the GPIO1/ALERT1/CONV or GPIO2/ALERT2 pins. analog.com Rev. 0 | 39 of 58 ### **REGISTER DETAILS** #### **OPERATION REGISTER** Address: 0x01, Reset: 0x80, Name: OPERATION This command requests the hot-swap turn on and turn off. When turning the hot-swap on, it clears status bits for any faults or warnings that are not active. Table 11. Bit Descriptions for OPERATION | Bits | Bit Name | Settings | Description | Reset | Access | |-------|----------|----------|---------------------------|-------|----------| | 7 | ON | | Hot-swap enable. | 0x1 | RW | | | | 0 | Hot-swap output disabled. | | | | | | 1 | Hot-swap output enabled. | | | | [6:0] | RESERVED | | Always reads as 0000000. | 0x00 | RESERVED | ### **CLEAR FAULTS REGISTER** Address: 0x03, Reset: 0x, Name: CLEAR FAULTS This command clears fault and warning bits in all the status registers. Any faults that are still active are not cleared, and remain set. Any warnings and the OT_FAULT bit that are generated by the power monitor are cleared, but can be asserted again if still active following the next power monitor conversion cycle. This command does not require any data. #### PMBUS CAPABILITY REGISTER Address: 0x19, Reset: 0xB0, Name: CAPABILITY This command allows the host system to determine the SMBus interface capabilities of the device. Table 12. Bit Descriptions for CAPABILITY | Bits | Bit Name | Settings | Description | Reset | Access | |-------|------------------|----------|--|-------|----------| | 7 | PEC_SUPPORT | | Packet error correction (PEC) support. | 0x1 | R | | | | 1 | Always reads as 1. PEC is supported. | | | | [6:5] | MAX_BUS_SPEED | | Maximum bus interface speed. | 0x1 | R | | | | 01 | Always reads as 01. Maximum supported bus speed is 400kHz. | | | | 4 | SMBALERT_SUPPORT | | SMBus alert support. | 0x1 | R | | | | 1 | Always reads as 1. Device supports SMBus alert and alert response address (ARA). | | | | [3:0] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | ## **OUTPUT VOLTAGE OVERVOLTAGE WARNING LIMIT REGISTER** Address: 0x42, Reset: 0x0FFF, Name: VOUT_OV_WARN_LIMIT This command sets the overvoltage warning limit for the voltage measured on the VOUT pin. Table 13. Bit Descriptions for VOUT_OV_WARN_LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | VOUT_OV_WARN_LIMIT | | Overvoltage warning threshold for the VOUT pin measurement, expressed in direct format. | 0xFFF | RW | analog.com Rev. 0 | 40 of 58 #### **REGISTER DETAILS** #### **OUTPUT VOLTAGE UNDERVOLTAGE WARNING LIMIT REGISTER** Address: 0x43, Reset: 0x0000, Name: VOUT UV WARN LIMIT This command sets the undervoltage warning limit for the voltage measured on the VOUT pin. #### Table 14. Bit Descriptions for VOUT UV WARN LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | VOUT_UV_WARN_LIMIT | | Undervoltage warning threshold for the VOUT pin measurement, expressed in direct format. | 0x000 | RW | ### **OUTPUT CURRENT OVERCURRENT WARNING LIMIT REGISTER** Address: 0x4A, Reset: 0x0FFF, Name: IOUT_OC_WARN_LIMIT This command sets the overcurrent warning limit for the current measured between the SENSE+ and the SENSE- pins. ### Table 15. Bit Descriptions for IOUT_OC_WARN_LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | IOUT_OC_WARN_LIMIT | | Overcurrent warning threshold for the $\ensuremath{I_{OUT}}$ measurement, expressed in direct format. | 0xFFF | RW | #### **OVERTEMPERATURE FAULT LIMIT REGISTER** Address: 0x4F, Reset: 0x0FFF, Name: OT_FAULT_LIMIT This command sets the overtemperature fault limit for the temperature measured between the TEMP+ and TEMP- pins. ## Table 16. Bit Descriptions for OT_FAULT_LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|----------------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | OT_FAULT_LIMIT | | Over-temperature fault threshold for the measurement between the TEMP+ and TEMP- pins, expressed in direct format. | 0xFFF | RW | #### **OVERTEMPERATURE WARNING LIMIT REGISTER** Address: 0x51, Reset: 0x0FFF, Name: OT_WARN_LIMIT This command sets the over-temperature warning limit for the temperature measured on the TEMP+ and TEMP- pins. ### Table 17. Bit Descriptions for OT WARN LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|---------------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | OT_WARN_LIMIT | | Overtemperature warning threshold for the measurement between TEMP+/TEMP-pins, expressed in direct format. | 0xFFF | RW | analog.com Rev. 0 | 41 of 58 #### **REGISTER DETAILS** #### INPUT VOLTAGE OVERVOLTAGE WARNING LIMIT REGISTER Address: 0x57, Reset: 0x0FFF, Name: VIN_OV_WARN_LIMIT This command sets the overvoltage warning limit for the V_{IN} voltage, measured on the SENSE+ pin. ### Table 18. Bit Descriptions for VIN_OV_WARN_LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-------------------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | VIN_OV_WARN_LIMIT | | Overvoltage warning threshold for the $\rm V_{IN}$ voltage, measured on the SENSE+ pin. Expressed in direct format. | 0xFFF | RW | #### INPUT VOLTAGE UNDERVOLTAGE WARNING LIMIT REGISTER Address: 0x58, Reset: 0x0000, Name: VIN_UV_WARN_LIMIT This command sets the undervoltage warning limit for the V_{IN} voltage, measured on the SENSE+ pin. ### Table 19. Bit Descriptions for VIN_UV_WARN_LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-------------------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | VIN_UV_WARN_LIMIT | | Undervoltage warning threshold for the V_{IN} voltage, measured on the SENSE+ pin. Expressed in direct format. | 0x000 | RW | #### **OVERPOWER WARNING LIMIT REGISTER** Address: 0x6B, Reset: 0x7FFF, Name: PIN OP WARN LIMIT This command sets the overpower warning limit for the power calculated based on $V_{IN} \times I_{OUT}$. Table 20. Bit Descriptions for PIN OP WARN LIMIT | Bits | Bit Name | Settings | Description | Reset | Access | |--------|-------------------|----------|--|--------|----------| | 15 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | [14:0] | PIN_OP_WARN_LIMIT | | Overpower warning threshold for the $V_{\text{IN}} \times I_{\text{OUT}}$ power calculation, expressed in direct format. | 0x7FFF | RW | #### STATUS BYTE REGISTER Address: 0x78, Reset: 0x00, Name: STATUS_BYTE This command provides status information for critical faults and certain top level status commands in the device. STATUS_BYTE is also the lower byte returned by STATUS_WORD. A bit set to 1 indicates a fault or warning occurred. Table 21. Bit Descriptions for STATUS BYTE | Bits | Bit Name | Settings | Description | Reset | Access | |------|---------------|----------|--|-------|----------| | 7 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 6 | HOTSWAP_OFF | | Hot-swap gate is off. This bit is live. | 0x0 | R | | | | 0 | The hot-swap gate drive output is enabled. | | | | | | 1 | The hot-swap gate drive output is disabled, and the GATE pin is pulled down. This can be due to, for example, an overcurrent fault that causes the device to latch off, an undervoltage condition on the UV pin, or the use of the OPERATION command to turn the output off. | | | | 5 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 4 | IOUT_OC_FAULT | | I _{OUT} overcurrent fault. This bit is latched. | 0x0 | R | | | | 0 | No overcurrent output fault detected. | | | analog.com Rev. 0 | 42 of 58 ## **REGISTER DETAILS** Table 21. Bit Descriptions for STATUS BYTE (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |------|------------------|----------
---|-------|--------| | | | 1 | The hot-swap controller determined that the FET may be overheating due to trying to current limit, causing the hot-swap gate drive to shut down. | | | | 3 | VIN_UV_FAULT | | V _{IN} fault. This bit is latched. | 0x0 | R | | | | 0 | No undervoltage input fault detected on the UVL/UVH pins. | | | | | | 1 | An undervoltage input fault was detected on the UVL/UVH pins. | | | | 2 | TEMP_FAULT | | Temperature fault or warning. This bit is live. | 0x0 | R | | | | 0 | There are no active status bits to be read by STATUS_TEMPERATURE. | | | | | | 1 | There are one or more active status bits to be read by STATUS_TEMPERATURE. | | | | 1 | CML_FAULT | | Communication, memory, or logic fault. This bit is latched. | 0x0 | R | | | | 0 | No error detected on the I ² C/PMBus interface or in trim memory CRC/ECC. | | | | | | 1 | An error is detected on the I ² C/PMBus interface or in trim memory CRC/ECC. Communication errors detected include an unsupported command, invalid PEC byte, and incorrectly structured message. | | | | 0 | NONEABOVE_STATUS | | None of the above. This bit is live, that is, the status of this bit is in real time. | 0x0 | R | | | | 0 | No other active status bit reported by any other status command. | | | | | | 1 | Active status bits are waiting to be read by one or more status commands. | | | ## STATUS WORD REGISTER Address: 0x79, Reset: 0x0000, Name: STATUS_WORD This command provides status information for critical faults and all top level status commands in the device. The lower byte is also returned by STATUS_BYTE. Table 22. Bit Descriptions for STATUS_WORD | Bits | Bit Name | Settings | Description | Reset | Access | |--------|------------------|----------|---|-------|----------| | 15 | VOUT_STATUS | | V _{OUT} warning. This bit is live. | 0x0 | R | | | | 0 | There are no active status bits to be read by STATUS_VOUT. | | | | | | 1 | There are one or more active status bits to be read by STATUS_VOUT. | | | | 14 | IOUT_STATUS | | I _{OUT} fault or warning. This bit is live. | 0x0 | R | | | | 0 | There are no active status bits to be read by STATUS_IOUT. | | | | | | 1 | There are one or more active status bits to be read by STATUS_IOUT. | | | | 13 | INPUT_STATUS | | Input warning. This bit is live. | 0x0 | R | | | | 0 | There are no active status bits to be read by STATUS_INPUT. | | | | | | 1 | There are one or more active status bits to be read by STATUS_INPUT. | | | | 12 | MFR_STATUS | | Manufacture specific fault or warning. This bit is live. | 0x0 | R | | | | 0 | There are no active status bits to be read by STATUS_MFR_SPECIFIC. | | | | | | 1 | There are one or more active status bits to be read by STATUS_MFR_SPECIFIC. | | | | 11 | PGB_STATUS | | Power is not good. This bit is live. | 0x0 | R | | | | 0 | Output power is good. The voltage on the PWGIN pin is above the threshold and V_{GS} is higher than 10 V. | | | | | | 1 | Output power is bad. The voltage on the PWGIN pin is below the threshold. | | | | [10:9] | RESERVED | | Always reads as 00. | 0x0 | RESERVED | | 8 | FET_HEALTH_FAULT | | FET health fault. This bit is latched. | 0x0 | R | | | | 0 | No FET faults are detected. | | | | | | 1 | A fault condition is detected on the FET. | | | | 7 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 6 | HOTSWAP_OFF | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | | 5 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 4 | IOUT_OC_FAULT | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | analog.com Rev. 0 | 43 of 58 ## **REGISTER DETAILS** Table 22. Bit Descriptions for STATUS_WORD (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |------|------------------|----------|--|-------|--------| | 3 | VIN_UV_FAULT | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | | 2 | TEMP_FAULT | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | | 1 | CML_FAULT | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | | 0 | NONEABOVE_STATUS | | Duplicate of corresponding bit in STATUS_BYTE. | 0x0 | R | ## **OUTPUT VOLTAGE STATUS REGISTER** Address: 0x7A, Reset: 0x00, Name: STATUS_VOUT This command provides status information for warnings related to $\ensuremath{\text{V}_{\text{OUT}}}.$ Table 23. Bit Descriptions for STATUS VOUT | Bits | Bit Name | Settings | Description | Reset | Access | |-------|--------------|----------|---|-------|----------| | 7 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 6 | VOUT_OV_WARN | | V _{OUT} overvoltage warning. | 0x0 | R | | | | 0 | No overvoltage condition on the output supply detected by the power monitor. | | | | | | 1 | An overvoltage condition on the output supply was detected by the power monitor. This bit is latched. | | | | 5 | VOUT_UV_WARN | | V _{OUT} UV warning. | 0x0 | R | | | | 0 | No undervoltage condition on the output supply detected by the power monitor. | | | | | | 1 | An undervoltage condition on the output supply is detected by the power monitor. This bit is latched. | | | | [4:0] | RESERVED | | Always reads as 00000. | 0x00 | RESERVED | ## **OUTPUT CURRENT STATUS REGISTER** Address: 0x7B, Reset: 0x00, Name: STATUS_IOUT This command provides status information for faults and warnings related to I_{OUT} . Table 24. Bit Descriptions for STATUS_IOUT | Bits | Bit Name | Settings | Description | Reset | Access | |-------|---------------|----------|--|-------|----------| | 7 | IOUT_OC_FAULT | | I _{OUT} overcurent fault. | 0x0 | R | | | | 0 | No overcurrent output fault detected. | | | | | | 1 | The hot-swap controller detects an overcurrent condition and the limit set by the components on the EFAULT or ESTART pin is exceeded, causing the hot-swap gate drive to shut down. This bit is latched. | | | | 6 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 5 | IOUT_OC_WARN | | I _{OUT} overcurrent warning. | 0x0 | R | | | | 0 | No overcurrent condition on the output supply detected by the power monitor using the IOUT_OC_WARN_LIMIT command. | | | | | | 1 | An overcurrent condition is detected by the power monitor using the IOUT_OC_WARN_LIMIT command. This bit is latched. | | | | [4:0] | RESERVED | | Always reads as 00000. | 0x00 | RESERVED | analog.com Rev. 0 | 44 of 58 ### **REGISTER DETAILS** ### **INPUT STATUS REGISTER** Address: 0x7C, Reset: 0x00, Name: STATUS INPUT This command provides status information for faults and warnings related to V_{IN} and P_{IN} . Table 25. Bit Descriptions for STATUS_INPUT | Bits | Bit Name | Settings | Description | Reset | Access | |-------|--------------|----------|---|-------|----------| | 7 | VIN_OV_FAULT | | V _{IN} overvoltage fault. | 0x0 | R | | | | 0 | No overvoltage detected on the OV pin. | | | | | | 1 | An overvoltage was detected on the OV pin. This bit is latched. | | | | 6 | VIN_OV_WARN | | V _{IN} overvoltage warning fault. | 0x0 | R | | | | 0 | No overvoltage condition on the input supply detected by the power monitor. | | | | | | 1 | An overvoltage condition on the input supply was detected by the power monitor. This bit is latched. | | | | 5 | VIN_UV_WARN | | V _{IN} undervoltage warning. | 0x0 | R | | บ | | 0 | No undervoltage condition on the input supply detected by the power monitor. | | | | | | 1 | An undervoltage condition on the input supply was detected by the power monitor. This bit is latched. | | | | 4 | VIN_UV_FAULT | | V _{IN} undervoltage fault. | 0x0 | R | | | | 0 | No undervoltage detected on the UVH/UVL pins. | | | | | | 1 | An undervoltage was detected on the UVH/UVL pins. This bit is latched. | | | | [3:1] | RESERVED | | Always reads as 000. | 0x0 | RESERVED | | 0 | PIN_OP_WARN | | P _{IN} overpower warning. | 0x0 | R | | | | 0 | No overpower condition on the input supply detected by the power monitor. | | | | | | 1 | An overpower condition on the input supply was detected by the power monitor. This bit is latched. | | | ### **TEMPERATURE STATUS REGISTER** Address: 0x7D, Reset: 0x00, Name: STATUS_TEMPERATURE This command provides status information for faults and warnings related to temperature. Table 26. Bit Descriptions for STATUS_TEMPERATURE | Bits | Bit Name | Settings | Description | Reset | Access | |-------|------------|----------|--|-------|----------| | 7 | OT_FAULT | | Overtemperature fault. | 0x0 | R | | | | 0 | No overtemperature fault detected by the ADC. | | | | | | 1 | An overtemperature fault was detected by the ADC. This bit is latched. | | | | 6 | OT_WARNING | | Overtemperature warning. | 0x0 | R | | | | 0 | No overtemperature warning detected by the ADC. | | | | | | 1 | An overtemperature warning was detected by the ADC. This bit is latched. | | | | [5:0] | RESERVED | | Always reads as 000000. | 0x00 | RESERVED | ## COMMUNICATION, MEMORY, AND LOGIC STATUS REGISTER Address: 0x7E, Reset: 0x00, Name: STATUS_CML This command provides status information for faults and warnings related to I²C/PMBus. Table 27. Bit Descriptions for STATUS_CML | Bits | Bit Name | Settings | Description | Reset | Access | |------|----------|----------|--|-------|--------| | 7 | CML_CMD | | Invalid or unsupported
command received. | 0x0 | R | | | | 0 | No fault detected. | | | analog.com Rev. 0 | 45 of 58 ## **REGISTER DETAILS** Table 27. Bit Descriptions for STATUS_CML (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |-------|----------------|----------|--|-------|----------| | | | 1 | Fault detected. This bit is latched. | | | | 6 | CML_DATA | | Invalid or unsupported data received. | 0x0 | R | | | | 0 | No fault detected. | | | | | | 1 | Fault detected. This bit is latched. | | | | 5 | CML_PEC | | Packet error check failed. | 0x0 | R | | | | 0 | No fault detected. | | | | | | 1 | Fault detected. This bit is latched. | | | | 4 | CML_MEM | | Trim memory fault detected. | 0x0 | R | | | | 0 | No fault detected. | | | | | | 1 | Fault detected. This bit is latched. GATE stays off. Contact ADI. | | | | [3:2] | RESERVED | | Always reads as 00. | 0x0 | RESERVED | | 1 | CML_COMM_OTHER | | A communication fault other than the ones listed in this table has occurred. | 0x0 | R | | | | 0 | No fault detected. | | | | | | 1 | Fault detected. This bit is latched. | | | | 0 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | ## MANUFACTURER SPECIFIC STATUS REGISTER Address: 0x80, Reset: 0x00, Name: STATUS_MFR_SPECIFIC This command provides status information for manufacturer specific faults and warnings. Table 28. Bit Descriptions for STATUS_MFR_SPECIFIC | Bits | Bit Name | Settings | Description | Reset | Access | |-------|-------------------|----------|--|-------|--------| | 7 | FET_HEALTH_FAULT | | FET health fault. | 0x0 | R | | | | 0 | No FET health problems detected. | | | | | | 1 | A FET health fault is detected. This bit is latched. | | | | 6 | UV_CMP_OUT | | UV input comparator fault output. | 0x0 | R | | | | 0 | Input voltage to UVL/UVH pins is above threshold. | | | | | | 1 | Input voltage to UVL/UVH pin is below threshold. This bit is live. | | | | 5 | OV_CMP_OUT | | OV input comparator fault output. | 0x0 | R | | | | 0 | Input voltage to OV pin is below threshold. | | | | | | 1 | Input voltage to OV pin is above threshold. This bit is live. | | | | 4 | SEVERE_OC_FAULT | | Severe overcurrent fault. | 0x0 | R | | | | 0 | A severe overcurent is not detected by the hot-swap. | | | | | | 1 | A severe overcurrent is detected by the hot-swap. This bit is latched. | | | | 3 | HS_INLIM_FAULT | | Hot-swap in limit fault. | 0x0 | R | | | | 0 | The hot-swap has not actively limited the current into the load. | | | | | | 1 | The hot-swap has actively limited current into the load. This bit differs from the IOUT_OC_FAULT bit in that the HS_INLIM_FAULT bit is set immediately, whereas the IOUT_OC_FAULT bit is not set unless the limit set by the components on the ESTART or EFAULT pins is exceeded. This bit is latched. | | | | [2:0] | HS_SHUTDOWN_CAUSE | | Cause of last hot-swap shutdown. This bit is latched until the status registers are cleared. | 0x0 | R | | | | 000 | The hot-swap is either enabled and working correctly, or is shut down using the OPERATION command or due to the 100 ms backup limit. | | | | | | 001 | An OT_FAULT condition occurred that caused the hot-swap to shut down. | | | | | | 010 | An IOUT_OC_FAULT condition occurred that caused the hot-swap to shut down. | | | analog.com Rev. 0 | 46 of 58 ### **REGISTER DETAILS** ### Table 28. Bit Descriptions for STATUS_MFR_SPECIFIC (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |------|----------|----------|--|-------|--------| | | | 011 | A FET_HEALTH_FAULT condition occurred that caused the hot-swap to shut | | | | | | | down. | | | | | | 100 | A VIN_UV_FAULT condition occurred that caused the hot-swap to shut down. | | | | | | 110 | A VIN_OV_FAULT condition occurred that caused the hot-swap to shut down. | | | ### **READ ENERGY REGISTER** Address: 0x86, Reset: 0x00000000000, Name: READ_EIN This command reads the energy metering registers in a single operation to ensure time consistent data. ### Table 29. Bit Descriptions for READ_EIN | Bits | Bit Name | Settings | Description | Reset | Access | |---------|----------------|----------|--|----------|--------| | [47:24] | SAMPLE_COUNT | | This is the total number of P_{IN} samples acquired and accumulated in the energy count accumulator. Byte 5 is the high byte, Byte 4 is the middle byte, and Byte 3 is the low byte. This is an unsigned, 24-bit binary value. | 0x000000 | R | | [23:16] | ROLLOVER_COUNT | | Number of times that the energy count has rolled over, from 0x7FFF to 0x0000. This is an unsigned 8-bit binary value. | 0x00 | R | | [15:0] | ENERGY_COUNT | | Energy accumulator value in direct format. Byte 1 is the high byte, and Byte 0 is the low byte. Internally, the energy accumulator is a 24-bit value, but only the most significant 16 bits are returned with this command, expressed in direct format. Use the READ_EIN_EXT to access the nontruncated version. | 0x0000 | R | ### **READ INPUT VOLTAGE REGISTER** Address: 0x88, Reset: 0x0000, Name: READ_VIN This command reads the input voltage, $V_{\mbox{\scriptsize IN}},$ from the device. Table 30. Bit Descriptions for READ_VIN | Bits | Bit Name | Settings | Description | Reset | Access | |---------|----------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | READ_VIN | | Input voltage from the SENSE+ pin measurement after averaging, expressed in direct format. | 0x000 | R | ## **READ OUTPUT VOLTAGE REGISTER** Address: 0x8B, Reset: 0x0000, Name: READ_VOUT This command reads the output voltage, V_{OUT} , from the device. Table 31. Bit Descriptions for READ_VOUT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-----------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | READ_VOUT | | Input voltage from the VOUT pin measurement after averaging, expressed in direct format. | 0x000 | R | analog.com Rev. 0 | 47 of 58 ### **REGISTER DETAILS** ### **READ OUTPUT CURRENT REGISTER** Address: 0x8C, Reset: 0x0000, Name: READ_IOUT This command reads the output current, $I_{\mbox{\scriptsize OUT}},$ from the device. ### Table 32. Bit Descriptions for READ_IOUT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-----------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | READ_IOUT | | Output current derived from the SENSE+ and SENSE- sense pin voltage measurement after averaging, expressed in direct format. | 0x000 | R | #### **READ TEMPERATURE 1 REGISTER** Address: 0x8D, Reset: 0x0000, Name: READ_TEMPERATURE_1 This command reads the temperature measured by the device. ## Table 33. Bit Descriptions for READ_TEMPERATURE_1 | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------------|----------|--|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | READ_TEMPERATURE_1 | | Temperature from the TEMP+ and TEMP- measurement, after averaging, expressed in direct format. | 0x000 | R | #### **READ POWER REGISTER** Address: 0x97, Reset: 0x0000, Name: READ_PIN This command reads the calculated input power, P_{IN} , from the device. ## Table 34. Bit Descriptions for READ_PIN | Bits | Bit Name | Settings | Description | Reset | Access | |--------|----------|----------|---|--------|--------| | [15:0] | READ_PIN | | Input power calculation. Power is calculated as the product of individual samples of V_{IN} and I_{OUT} . These power calculations can be averaged, according to the settings of the PWR_AVG bits in the PMON_CONFIG register, before being presented to the READ_PIN register. Expressed in direct format. | 0x0000 | R | #### **PMBUS REVISION REGISTER** Address: 0x98, Reset: 0x22, Name: PMBUS REVISION This command allows the system host to read the PMBus revision that the device supports. ## Table 35. Bit Descriptions for PMBUS_REVISION | Bits | Bit Name | Settings | Description | Reset | Access | |-------|-------------------|----------|------------------------|-------|--------| | [7:4] | PMBUS_P1_REVISION | | PMBus Part I Support. | 0x2 | R | | | | 0010 | Revision 1.2. | | | | [3:0] | PMBUS_P2_REVISION | | PMBus Part II Support. | 0x2 | R | | | | 0010 | Revision 1.2. | | | analog.com Rev. 0 | 48 of 58 #### **REGISTER DETAILS** ### **MANUFACTURER ID REGISTER** Address: 0x99, Reset: 0x494441, Name: MFR ID This command returns a string identifying the manufacturer of the device. ###
Table 36. Bit Descriptions for MFR_ID | Bits | Bit Name | Settings | Description | Reset | Access | |--------|----------|----------|---|----------|--------| | [23:0] | MFR_ID | | String identifying manufacturer as ADI (as ASCII code). | 0x494441 | R | #### MANUFACTURER MODEL REGISTER Address: 0x9A, Reset: 0x41312D333732314D4441, Name: MFR MODEL This command returns a string identifying the specific model of the device. ### Table 37. Bit Descriptions for MFR MODEL | Bits | Bit Name | Settings | Description | Reset | Access | |--------|-----------|----------|---|------------------------|--------| | [79:0] | MFR_MODEL | | String identifying model as ADM1273-1A (as ASCII code). | 0x41312D333732314D4441 | R | #### MANUFACTURER REVISION REGISTER Address: 0x9B, Reset: 0x3531, Name: MFR REVISION The most significant byte is the ASCII revision of the hot-swap and the least significant byte is the revision of the power management feature. #### Table 38. Bit Descriptions for MFR REVISION | Bits | Bit Name | Settings | Description | Reset | Access | |--------|--------------|----------|---|--------|--------| | [15:0] | MFR_REVISION | | The upper byte is an ASCII character indicating the numerical revision of the hot-swap feature. The lower byte is an ASCII character indicating the numerical revision of the power management feature. | 0x3531 | R | ## **MANUFACTURER DATE REGISTER** Address: 0x9D, Reset: 0x313033303631, Name: MFR DATE This command returns a string identifying the manufacturing date of the device. ## Table 39. Bit Descriptions for MFR_DATE | Bits | Bit Name | Settings | Description | Reset | Access | |--------|----------|----------|--|----------------|--------| | [47:0] | MFR_DATE | | String identifying manufacturing date, in the form of YYMMDD. Example reset code of 1 st March 2016 is shown. | 0x313033303631 | R | ## PROGRAMMABLE RESTART TIME REGISTER Address: 0xCC, Reset: 0x64, Name: RESTART_TIME ## Table 40. Bit Descriptions for RESTART_TIME | Bits | Bit Name | Settings | Description | Reset | Access | |-------|--------------|----------|---|-------|--------| | [7:0] | RESTART_TIME | | This byte controls the off time of the hot-swap restart feature. Default value gives 10.1sec. | 0x64 | RW | | | | 0x00 | 0.1sec. | | | | | | 0x01 | 0.2sec. | | | | | | 0x64 | 10.1sec. | | | | | | 0xFF | 25.6sec. | | | analog.com Rev. 0 | 49 of 58 #### **REGISTER DETAILS** #### PEAK OUTPUT CURRENT REGISTER Address: 0xD0, Reset: 0x0000, Name: PEAK_IOUT This command reports the peak output current, I_{OUT}. Writing 0x0000 with this command resets the peak value. Table 41. Bit Descriptions for PEAK_IOUT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-----------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | PEAK_IOUT | | Peak output current measurement, I _{OUT} , expressed in direct format. If averaging has been enabled, the average values are used in this calculation. | 0x000 | R | #### **PEAK INPUT VOLTAGE REGISTER** Address: 0xD1, Reset: 0x0000, Name: PEAK_VIN This command reports the peak input voltage, V_{IN}, measured at the SENSE+ pin. Writing 0x0000 with this command resets the peak value. Table 42. Bit Descriptions for PEAK_VIN | Bits | Bit Name | Settings | Description | Reset | Access | |---------|----------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | PEAK_VIN | | Peak input voltage measurement, V _{IN} , measured at the SENSE+ pin. Expressed in direct format. If averaging has been enabled, the average values are used in this calculation. | 0x000 | R | #### PEAK OUTPUT VOLTAGE REGISTER Address: 0xD2, Reset: 0x0000, Name: PEAK_VOUT This command reports the peak output voltage, V_{OUT}. Writing 0x0000 with this command resets the peak value. Table 43. Bit Descriptions for PEAK_VOUT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|-----------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | PEAK_VOUT | | Peak output voltage measurement, V _{OUT} , expressed in direct format. If averaging is enabled, the average values are used in this calculation. | 0x000 | R | ### **POWER MONITOR CONTROL REGISTER** Address: 0xD3, Reset: 0x01, Name: PMON_CONTROL This command is used to start and stop the power monitor. Table 44. Bit Descriptions for PMON_CONTROL | Bits | Bit Name | Settings | Description | Reset | Access | |-------|----------|----------|--|-------|----------| | [7:1] | RESERVED | | Always reads as 0000000. | 0x00 | RESERVED | | 0 | CONVERT | | Convert enable. | 0x1 | RWAS | | | | 0 | Power monitor is not running. | | | | | | 1 | Power monitor is sampling. Default. In single-shot mode, this bit clears itself after one complete cycle. In continuous mode, this bit must be written to 0 to stop sampling. A rising edge on a conversion (CONV) input pin sets this bit to 1. During sampling, additional rising edges on CONV are ignored. | | | analog.com Rev. 0 | 50 of 58 ### **REGISTER DETAILS** # **POWER MONITOR CONFIGURATION REGISTER** Address: 0xD4, Reset: 0x3F35, Name: PMON_CONFIG This command configures the power monitor. Different combinations of channels can be included in the sampling round robin, and averaging can be set for different measurements. Table 45. Bit Descriptions for PMON_CONFIG | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------|----------|---|-------|----------| | 15 | TSFILT | | Temperature sensor filter enable. | 0x0 | RW | | | | 0 | Filter disabled. Data sheet specifications are given with the temperature sensor filter | | | | | | | disabled. | | | | | | 1 | Filter enabled. | | | | 14 | SIMULTANEOUS | | Signals on V _{IN} and I _{OUT} are sampled simultaneously. | 0x0 | RW | | | | 0 | | | | | | | 1 | Enabled. Power monitoring accuracy is slightly reduced. | | | | [13:11] | PWR_AVG | | P _{IN} averaging. | 0x7 | RW | | | | 000 | | | | | | | 001 | | | | | | | 010 | ' ' ' ' ' | | | | | | 011 | | | | | | | 100 | | | | | | | 101 | | | | | | | 110 | ' ' ' ' | | | | | | 111 | Sets sample averaging for power to 128 samples. | | | | [10:8] | VI_AVG | | $V_{IN}/V_{OUT}/I_{OUT}$ averaging. | 0x7 | RW | | | | 000 | | | | | | | 001 | Sets sample averaging for current and voltage to two samples. | | | | | | 010 | Sets sample averaging for current and voltage to four samples. | | | | | | 011 | Sets sample averaging for current and voltage to eight samples. | | | | | | 100 | 1 3 3 | | | | | | 101 | Sets sample averaging for current and voltage to 32 samples. | | | | | | 110 | Sets sample averaging for current and voltage to 64 samples. | | | | | | 111 | Sets sample averaging for current and voltage to 128 samples. | | | | [7:6] | RESERVED | | Always reads as 00. | 0x0 | RESERVED | | 5 | VRANGE | | | 0x1 | RW | | | | 0 | Sets the input divider of V _{IN} (on SENSE+) to give a full scale at 60V. | | | | | | 1 | Sets the input divider of V _{IN} (on SENSE+) to give a full scale at 100V. | | | | 1 | PMON_MODE | | Conversion mode. | 0x1 | RW | | | | 0 | Single-shot sampling. | | | | | | 1 | Continuous sampling. | | | | 3 | TEMP1_EN | | Enable temperature sampling. | 0x0 | RW | | | | 0 | Temperature sampling disabled. | | | | | | 1 | Temperature sampling enabled. | | | | 2 | VIN_EN | | Enable V _{IN} sampling. | 0x1 | RW | | | _ | 0 | | | | | | | 1 | V _{IN} sampling enabled. | | | | 1 | VOUT_EN | | Enable V _{OUT} sampling. | 0x0 | RW | | | | 0 | 1 - 1 - 1 | | | | | | 1 | V _{OUT} sampling enabled. | | | | 0 | IRANGE | | V _{IN} sense range. | 0x1 | RW | analog.com Rev. 0 | 51 of 58 ### **REGISTER DETAILS** Table 45. Bit Descriptions for PMON CONFIG (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |------|----------|----------|--|-------|--------| | | | 0 | Sets the gain on the current sense channel to give a full scale at $(V_{SENSE+} - V_{SENSE-}) = 15mV$. | | | | | | 1 | Sets the gain on the current sense channel to give a full scale at ($V_{SENSE+} - V_{SENSE-}$) = 30mV. | | | ## **ALERT 1 CONFIGURATION REGISTER** Address: 0xD5, Reset: 0x0000, Name: ALERT1_CONFIG This commands allows different combinations of faults and warnings to be configured on the GPIO1/ALERT1/CONV output pin. The GPIO1/ALERT1/CONV pin can operate in different modes as configured by the DEVICE_CONFIG command. Table 46. Bit Descriptions for ALERT1_CONFIG | Bits | Bit Name
 Settings | Description | Reset | Access | |------|----------------------|----------|--|-------|--------| | 15 | FET_HEALTH_FAULT_EN1 | | FET health fault alert mode enable (not available in source mode). | 0x0 | RW | | 14 | IOUT_OC_FAULT_EN1 | | I _{OUT} overcurrent fault alert mode enable (not available in source mode). | 0x0 | RW | | 13 | VIN_OV_FAULT_EN1 | | V _{IN} overvoltage fault alert mode enable (not available in source mode). | 0x0 | RW | | 12 | VIN_UV_FAULT_EN1 | | V _{IN} undervoltage fault alert mode enable (not available in source mode). | 0x0 | RW | | 11 | CML_ERROR_EN1 | | Communications error alert mode enable (not available in source mode). | 0x0 | RW | | 10 | IOUT_OC_WARN_EN1 | | I _{OUT} overcurrent warning alert and source mode enable. | 0x0 | RW | | 9 | HYSTERETIC_EN1 | | I _{OUT} hysteretic warning alert and source mode enable. | 0x0 | RW | | 8 | VIN_OV_WARN_EN1 | | V _{IN} overvoltage warning alert and source mode enable. | 0x0 | RW | | 7 | VIN_UV_WARN_EN1 | | V _{IN} Undervoltage warning alert and source mode enable. | 0x0 | RW | | 6 | VOUT_OV_WARN_EN1 | | V _{OUT} overvoltage warning alert and source mode enable. | 0x0 | RW | | 5 | VOUT_UV_WARN_EN1 | | V _{OUT} undervoltage warning alert and source mode enable. | 0x0 | RW | | 4 | HS_INLIM_EN1 | | Hot-swap in limit alert and source mode enable. | 0x0 | RW | | 3 | PIN_OP_WARN_EN1 | | P _{IN} overpower warning alert and source mode enable. | 0x0 | RW | | 2 | OT_FAULT_EN1 | | Overtemperature fault alert and source mode enable. | 0x0 | RW | | 1 | OT_WARN_EN1 | | Overtemperature warning alert and source mode enable. | 0x0 | RW | | 0 | INEG_EN1 | | Negative current detected alert and source mode enable. | 0x0 | RW | ## **ALERT 2 CONFIGURATION REGISTER** Address: 0xD6, Reset: 0x0000, Name: ALERT2_CONFIG This commands allows different combinations of faults and warnings to be configured on the GPIO2/ALERT2 output pin. The pin can operate in different modes as configured by the DEVICE CONFIG command. Table 47. Bit Descriptions for ALERT2_CONFIG | Bits | Bit Name | Settings | Description | Reset | Access | |------|----------------------|----------|--|-------|--------| | 15 | FET_HEALTH_FAULT_EN2 | | FET health fault alert mode enable (not available in source mode). | 0x0 | RW | | 14 | IOUT_OC_FAULT_EN2 | | I _{OUT} overcurrent fault alert mode enable (not available in source mode). | 0x0 | RW | | 13 | VIN_OV_FAULT_EN2 | | V _{IN} overvoltage fault alert mode enable (not available in source mode). | 0x0 | RW | | 12 | VIN_UV_FAULT_EN2 | | V _{IN} undervoltage fault alert mode enable (not available in source mode). | 0x0 | RW | | 11 | CML_ERROR_EN2 | | Communications error alert mode enable (not available in source mode). | 0x0 | RW | | 10 | IOUT_OC_WARN_EN2 | | I _{OUT} overcurrent warning alert and source mode enable. | 0x0 | RW | | 9 | HYSTERETIC_EN2 | | I _{OUT} hysteretic warning alert and source mode enable. | 0x0 | RW | | 8 | VIN_OV_WARN_EN2 | | V _{IN} overvoltage warning alert and source mode enable. | 0x0 | RW | | 7 | VIN_UV_WARN_EN2 | | V _{IN} undervoltage warning alert and source mode enable. | 0x0 | RW | | ô | VOUT_OV_WARN_EN2 | | V _{OUT} overvoltage warning alert and source mode enable. | 0x0 | RW | analog.com Rev. 0 | 52 of 58 ### **REGISTER DETAILS** Table 47. Bit Descriptions for ALERT2 CONFIG (Continued) | Bits | Bit Name | Settings | Description | Reset | Access | |------|------------------|----------|---|-------|--------| | 5 | VOUT_UV_WARN_EN2 | | V _{OUT} undervoltage warning alert and source mode enable. | 0x0 | RW | | 4 | HS_INLIM_EN2 | | Hot-swap in limit alert and source mode enable. | 0x0 | RW | | 3 | PIN_OP_WARN_EN2 | | P _{IN} overpower warning alert and source mode enable. | 0x0 | RW | | 2 | OT_FAULT_EN2 | | Overtemperature fault alert and source mode enable. | 0x0 | RW | | 1 | OT_WARN_EN2 | | Overtemperature warning alert and source mode enable. | 0x0 | RW | | 0 | INEG_EN2 | | Negative current detected alert and source mode enable. | 0x0 | RW | ## PEAK TEMPERATURE REGISTER Address: 0xD7, Reset: 0x0000, Name: PEAK_TEMPERATURE This command reports the peak measured temperature. Writing 0x0000 to this command resets the peak value. Table 48. Bit Descriptions for PEAK_TEMPERATURE | Bits | Bit Name | Settings | Description | Reset | Access | |---------|------------------|----------|---|-------|----------| | [15:12] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [11:0] | PEAK_TEMPERATURE | | Peak temperature measurement, expressed in direct format. | 0x000 | R | ## **DEVICE CONFIGURATION REGISTER** Address: 0xD8, Reset: 0x0008, Name: DEVICE CONFIG This command configures the hot-swap overcurrent threshold and filtering, and GPIO1/GPIO2 output modes. Note that multifunction pins, such as GPIO1/ALERT1/CONV, are referred to either by the entire pin name or by a single function of the pin, for example, GPIO1, when only that function is relevant. Table 49. Bit Descriptions for DEVICE CONFIG | Bits | Bit Name | Settings | Description | Reset | Access | |---------|----------------|----------|---|-------|--------| | 15 | RNDSTART_DIS | | Disable the random start function. | 0x0 | RW | | | | 0 | Hot-swap random start feature enabled. | | | | | | 1 | Hot-swap random start feature disabled. | | | | [14:13] | OC_FILT_SELECT | | Severe overcurrent filter select. | 0x0 | RW | | | | 00 | 500ns. Hot-swap severe overcurrent filter time. | | | | | | 01 | 1μs. | | | | | | 10 | 5μs. | | | | | | 11 | 10µs. | | | | 12 | FAST_GATE_DIS | | Disable fast gate recovery mode. | 0x0 | RW | | | | 0 | Hot-swap fast gate recovery after a severe over current enabled. | | | | | | 1 | Disabled. | | | | 11 | FHDIS | | Disable FET health capabilities. | 0x0 | RW | | | | 0 | Hot-swap external FET health monitoring feature enabled. | | | | | | 1 | Disabled. | | | | 10 | PWR_HYST_EN | | When enabled, the general-purpose output alert hysteresis functions refer to power rather than current. The HYSTERETIC_ENn bit also needs to be set in ALERTn_CONFIG. | 0x0 | RW | | | | 0 | Current hysteresis mode. | | | | | | 1 | Power hysteresis mode. | | | | [9:8] | GPO2_MODE | | GPIO2 configuration mode. | 0x0 | RW | | | | 00 | Alert mode. The GPIO2 output is driven by the SMBus alert signal generated per ALERT2_CONFIG. | | | | | | 01 | General-purpose digital pin mode. In this mode, GPO2_INVERT controls the polarity of the | | | | | | | output. | | | analog.com Rev. 0 | 53 of 58 ### **REGISTER DETAILS** Table 49. Bit Descriptions for DEVICE CONFIG (Continued) | Bits | Bit Name | Settings | Description | Reset | Acces | |-------|----------------|----------|---|-------|-------| | | | 10 | Reserved. | | | | | | 11 | Digital comparator source mode. The output pin is driven with the live value of the warning or fault bit selected by ALERT2_CONFIG to emulate a non-latched SMBus alert. | | | | , | GPO2_INVERT | | GPIO2 invert mode. | 0x0 | RW | | | | 0 | In SMBus alert mode the output is not inverted, and active low. In general-purpose mode, the output is set low. | | | | | | 1 | In SMBus alert mode the output is inverted, and active high. In general-purpose mode, the output is set high. Use general-purpose mode and set GPO2_INVERT high to configure this pin as a general-purpose digital input. | | | | [6:5] | GPO1_MODE | | GPIO1 configuration mode. | 0x0 | RW | | | | 00 | Alert mode. The GPIO1 output is driven by the SMBus alert signal generated by ALERT1_CONFIG. | | | | | | 01 | General-purpose digital pin mode. In this mode, GPO1_INVERT controls the polarity of the output. | | | | | | 10 | Convert mode. The GPIO1/ALERT1/CONV pin is configured as the convert (CONV) input pin. | | | | | | 11 | Digital comparator source mode. The output pin is driven with the live value of the warning or fault bit selected by ALERT1_CONFIG to emulate a non-latched SMBus alert. | | | | 4 | GPO1_INVERT | | GPIO1 invert mode. | 0x0 | RW | | | | 0 | In SMBus alert mode, the output is not inverted, and active low. In general-purpose mode, the output is set low. | | | | | | 1 | In SMBus alert mode, the output is inverted, and active high. In general-purpose mode, the output is set high. Use general-purpose mode and set GPO1_INVERT high to configure this pin up as a general-purpose digital input. | | | | [3:2] | OC_TRIP_SELECT | | Severe overcurrent threshold select. | 0x2 | RW | | | | 00 | 400% hot-swap severe overcurrent trip threshold as a % of current regulation level. | | | | | | 01 | 300%. | | | | | | 10 | 200% (default). | | | | | | 11 | 150%. | | | | 1 | OC_RETRY_DIS | | Severe OC retry mode. | 0x0 | RW | | | | 0 | Allows the hot-swap system to attempt to keep the output on after a severe overcurrent event. | | | | | | 1 | Hot-swap turns off after a severe overcurrent event. | | | |) | PWRGD_SENSE | | PWRGD polarity. | 0x0 | RW | | | | 0 | Active high. When the V _{OUT} voltage is good (sensed via the PWGIN pin), the open-drain output is high impedance, which allows an external resistor to pull the pin up. | | | | | | 1 | Active low. When the V _{OUT} voltage is good (sensed via the PWGIN pin), the open-drain output is enabled and drives the PWRGD pin low. | | | ## **POWER CYCLE REGISTER** Address: 0xD9, Reset: 0x, Name: POWER CYCLE This command is provided to allow a processor to request the hot-swap to turn off and turn
back on again a few seconds later. This is useful in the event that the hot-swap output is powering the processor. This command does not require any data. ### **PEAK POWER REGISTER** Address: 0xDA, Reset: 0x0000, Name: PEAK_PIN This command reports the peak input power, P_{IN}. Writing 0x0000 with this command resets the peak value. analog.com Rev. 0 | 54 of 58 ### **REGISTER DETAILS** #### Table 50. Bit Descriptions for PEAK PIN | Bits | Bit Name | Settings | Description | Reset | Access | |--------|----------|----------|--|--------|--------| | [15:0] | PEAK_PIN | | Peak input power calculation, PIN, expressed in direct format. | 0x0000 | R | ## **READ POWER (EXTENDED) REGISTER** Address: 0xDB, Reset: 0x000000, Name: READ PIN EXT This command reads the extended precision version of the calculated input power, P_{IN}, from the device. ### Table 51. Bit Descriptions for READ_PIN_EXT | Bits | Bit Name | Settings | Description | Reset | Access | |--------|--------------|----------|---|----------|--------| | [23:0] | READ_PIN_EXT | | Extended precision version of peak input power calculation, P _{IN} , expressed in direct format. | 0x000000 | R | ## **READ ENERGY (EXTENDED) REGISTER** Address: 0xDC, Reset: 0x00000000000000, Name: READ_EIN_EXT This command reads the extended precision Energy Metering registers in a single operation to ensure time consistent data. ### Table 52. Bit Descriptions for READ EIN EXT | Bits | Bit Name | Settings | Description | Reset | Access | |---------|--------------|----------|--|----------|--------| | [63:40] | SAMPLE_COUNT | | This is the total number of P_{IN} samples acquired and accumulated in the energy count accumulator. This is an unsigned 24-bit binary value. Byte 7 is the high byte, Byte 6 is the middle byte, and Byte 5 is the low byte. | 0x000000 | R | | [39:24] | ROLLOVER_EXT | | Number of times that the energy count has rolled over, from 0x7FFFFF to 0x000000. This is an unsigned 16-bit binary value. Byte 4 is the high byte, and Byte 3 is the low byte. | 0x0000 | R | | [23:0] | ENERGY_EXT | | Extended precision energy accumulator value in direct format. Byte 2 is the high byte, and Byte 0 is the low byte. | 0x000000 | R | #### **HYSTERESIS LOW LEVEL REGISTER** Address: 0xF2, Reset: 0x0000, Name: HYSTERESIS LOW This command sets the lower threshold used to generate the hysteretic output signal that can be made available on a GPIO pin. #### Table 53. Bit Descriptions for HYSTERESIS LOW | Bits | Bit Name | Settings | Description | Reset | Access | |--------|----------------|----------|---|-------|--------| | [15:0] | HYSTERESIS_LOW | | Value setting the lower hysteresis threshold, expressed in direct format. | 0x000 | RW | ### **HYSTERESIS HIGH LEVEL REGISTER** Address: 0xF3, Reset: 0xFFFF, Name: HYSTERESIS_HIGH This command sets the higher threshold used to generate the hysteretic output signal that can be made available on a GPIO pin. ## Table 54. Bit Descriptions for HYSTERESIS_HIGH | Bits | Bit Name | Settings | Description | Reset | Access | |--------|-----------------|----------|--|--------|--------| | [15:0] | HYSTERESIS_HIGH | | Value setting the higher hysteresis threshold, expressed in direct format. | 0xFFFF | RW | analog.com Rev. 0 | 55 of 58 ### **REGISTER DETAILS** ### **HYSTERESIS STATUS REGISTER** Address: 0xF4, Reset: 0x00, Name: STATUS HYSTERESIS This status register reports if the hysteretic comparison is above or below the user defined thresholds, and the IOUT_OC_WARN status bit as well. Table 55. Bit Descriptions for STATUS HYSTERESIS | Bits | Bit Name | Settings | Description | Reset | Access | |-------|--------------|----------|---|-------|----------| | [7:4] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | 3 | IOUT_OC_WARN | | I _{OUT} overcurrent warning. | 0x0 | R | | | | 0 | No overcurrent condition on the output supply detected by the power monitor using the IOUT_OC_WARN_LIMIT command. | | | | | | 1 | An overcurrent condition was detected by the power monitor using the IOUT_OC_WARN_LIMIT command. | | | | 2 | HYST_STATE | | Hysteretic comparison output. | | R | | | | 0 | Comparison output low. | | | | | | 1 | Comparison output high. | | | | 1 | HYST_GT_HIGH | | Hysteretic upper threshold comparison. | 0x0 | R | | | | 0 | Compared value is below upper threshold. | | | | | | 1 | Compared value is above upper threshold. | | | | 0 | HYST_LT_LOW | | Hysteretic lower threshold comparison. | 0x0 | R | | | | 0 | Compared value is above lower threshold. | | | | | | 1 | Compared value is below lower threshold. | | | ### **GPIO PIN STATUS REGISTER** Address: 0xF5, Reset: 0x00, Name: STATUS_GPIO STATUS_GPIO is the readback register for the status of the GPIO1/ALERT1/CONV and GPIO2/ALERT2 pins. Table 56. Bit Descriptions for STATUS_GPIO | Bits | Bit Name | Settings | Description | Reset | Access | |------|-------------|----------|--|-------|----------| | 7 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 6 | GPIO2_HIGH | 1 | The GPIO2/ALERT2 pin has been high at some time since the last time this register was read. | 0x0 | R | | 5 | GPIO2_LOW | 1 | The GPIO2/ALERT2 pin has been low at some time since the last time this register was read. | 0x0 | R | | 4 | GPIO2_STATE | | Live state of the GPIO2 pin. | 0x0 | R | | 3 | RESERVED | | Always reads as 0. | 0x0 | RESERVED | | 2 | GPIO1_HIGH | 1 | The GPIO1/ALERT1/CONV pin has been high at some time since the last time this register was read. | 0x0 | R | | 1 | GPIO1_LOW | 1 | The GPIO1/ALERT1/CONV pin has been low at some time since the last time this register was read. | 0x0 | R | | 0 | GPIO1_STATE | | Live state of the GPIO1/ALERT1/CONV pin. | 0x0 | R | analog.com Rev. 0 | 56 of 58 ## **REGISTER DETAILS** # START-UP CURRENT LIMIT REGISTER Address: 0xF6, Reset: 0x000F, Name: STRT_UP_IOUT_LIM This command sets the current limit initially used while the hot-swap is turning on the FET. Table 57. Bit Descriptions for STRT_UP_IOUT_LIM | Bits | Bit Name | Settings | Description | Reset | Access | |--------|------------------|----------|---|-------|----------| | [15:8] | RESERVED | | Always reads as 0x00. | 0x00 | RESERVED | | [7:4] | RESERVED | | Always reads as 0000. | 0x0 | RESERVED | | [3:0] | STRT_UP_IOUT_LIM | | Current limit used during startup, expressed in direct format. | 0xF | RW | | | | 0000 | Current limit equal to (ISTART × 1/16) (hot-swap start up current limit level). | | | | | | 0001 | Current limit equal to (ISTART × 2/16). | | | | | | | | | | | | | 1110 | Current limit equal to (ISTART × 15/16). | | | | | | 1111 | Current limit equal to ISTART. | | | analog.com Rev. 0 | 57 of 58 ## **OUTLINE DIMENSIONS** | Package Drawing Option | Package Type | Package Description | |------------------------|--------------|---------------------------------------| | CP-48-18 | LFCSP | 48-Lead Lead Frame Chip Scale Package | For the latest package outline information and land patterns (footprints), go to Package Index. ## **ORDERING GUIDE** | Model ¹ | Temperature Range | Package Description | Packing Quantity | Package Option | |--------------------|-------------------|---------------------|------------------|----------------| | ADM1273-1ACPZ | -40°C to +105°C | 48-Lead LFCSP | Tray, 260 | CP-48-18 | | ADM1273-1ACPZ-RL | -40°C to +105°C | 48-Lead LFCSP | Reel, 2500 | CP-48-18 | ¹ Z = RoHS Compliant Part. ## **EVALUATION BOARDS** | Model ¹ | Description | |--------------------|------------------| | EVAL-ADM1273-AZ | Evaluation Board | ¹ Z = RoHS Compliant Part.