

1GHz to 20GHz, Low Noise Amplifier with Integrated Temperature Sensor and Enable Function

FEATURES

- ▶ Single positive supply: 3.3V and I_{DO} of 55mA nominal
- ▶ RBIAS drain current adjustment pin
- ▶ Integrated temperature sensor
- Integrated enable and disable function
- ▶ Gain: 14.5dB typical from 10GHz to 15GHz
- ▶ OIP3: 29dBm typical from 10GHz to 15GHz
- Noise figure: 2dB typical from 10GHz to 15GHz
- ► Extended operating temperature range: -55°C to +125°C
- ▶ Die size: 1.55mm × 0.95mm × 0.1mm

APPLICATIONS

- ▶ Telecommunications
- Test instrumentation
- Military

GENERAL DESCRIPTION

The ADL8124CHIP is a highly integrated, 1GHz to 20GHz, low noise amplifier (LNA). On-chip features include input and output AC coupling capacitors, an integrated bias inductor, an integrated temperature sensor, and an enable or disable pad (VENBL).

The typical gain and noise figure are 14.5dB and 2dB, respectively, from 10GHz to 15GHz. The output power for 1 dB compression (OP1dB), output third-order intercept (OIP3), and output second-order intercept (OIP2) are 15dBm, 29dBm, and 38dBm, respectively, from 10GHz to 15GHz. The nominal operating current (I_{DQ}), which can be adjusted, is 55mA operating from a 3.3V supply voltage (V_{DD}). Operation at 5V is also supported.

The ADL8124CHIP is fabricated on a gallium arsenide (GaAs), pseudomorphic high electron mobility transistor (pHEMT) process. This device is specified for operation over an extended temperature range of −55°C to +125°C.

FUNCTIONAL BLOCK DIAGRAM

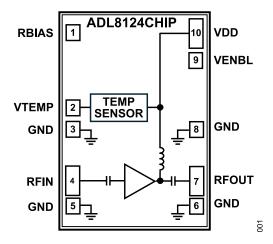


Figure 1. Functional Block Diagram

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Specifications	3
1GHz to 2GHz Frequency Range	3
2GHz to 10GHz Frequency Range	3
10GHz to 15GHz Frequency Range	4
15GHz to 18GHz Frequency Range	4
18GHz to 20GHz Frequency Range	5
DC Specifications	6
Absolute Maximum Ratings	7
Thermal Resistance	7
Electrostatic Discharge (ESD) Ratings	7

ESD Caution	7
Pin Configuration and Function Descriptions	8
Interface Schematics	9
Typical Performance Characteristics	10
Amplifier On State (V _{ENBL} = 3.3V)	10
Amplifier Off State (V _{ENBL} = 0V)	
Theory of Operation	
Applications Information	27
Mounting and Bonding Techniques for	
Millimeter GaAs MMICs	28
Recommended Bias Sequencing	29
Outline Dimensions	30
Orderina Guide	30

REVISION HISTORY

9/2025—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 30

SPECIFICATIONS

1GHz TO 2GHz FREQUENCY RANGE

 $V_{DD} = 3.3 \text{V}, \ I_{DQ} = 55 \text{mA}, \ \text{bias resistance} \ (R_{BIAS}) = 1540 \Omega, \ VENBL \ voltage \ (V_{ENBL}) = 3.3 \text{V}, \ \text{and} \ T_{CASE} = 25 ^{\circ}\text{C}, \ \text{unless otherwise noted}.$

Table 1. 1GHz to 2GHz Frequency Range

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	1		2	GHz	
GAIN	11.5	13.5		dB	
Gain Variation over Temperature		0.0042		dB/°C	
NOISE FIGURE		1.8		dB	
RETURN LOSS					
Input (S11)		8		dB	
Output (S22)		8		dB	
OUTPUT					
OP1dB	13	15		dBm	
Saturated Power (P _{SAT})		16		dBm	
OIP3		28		dBm	Measurement taken at output power (P _{OUT}) per tone = 0dBm
OIP2		35		dBm	Measurement taken at P _{OUT} per tone = 0dBm
POWER ADDED EFFICIENCY (PAE)		19		%	Measured at P _{SAT}

2GHz TO 10GHz FREQUENCY RANGE

 V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , V_{ENBL} = 3.3V, and T_{CASE} = 25°C, unless otherwise noted.

Table 2. 2GHz to 10GHz Frequency Range

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	2		10	GHz	
GAIN	12	14		dB	
Gain Variation over Temperature		0.0052		dB/°C	
NOISE FIGURE		1.8		dB	
RETURN LOSS					
S11		10.5		dB	
S22		12		dB	
OUTPUT					
OP1dB	13.5	15.5		dBm	
P _{SAT}		16		dBm	
OIP3		28.5		dBm	Measurement taken at P _{OUT} per tone = 0dBm
OIP2		30		dBm	Measurement taken at P _{OUT} per tone = 0dBm
PAE		21		%	Measured at P _{SAT}

analog.com Rev. 0 | 3 of 30

SPECIFICATIONS

10GHz TO 15GHz FREQUENCY RANGE

 V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , V_{ENBL} = 3.3V, and T_{CASE} = 25°C, unless otherwise noted.

Table 3. 10GHz to 15GHz Frequency Range

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	10		15	GHz	
GAIN	12.5	14.5		dB	
Gain Variation over Temperature		0.0067		dB/°C	
NOISE FIGURE		2		dB	
RETURN LOSS					
S11		11		dB	
S22		11		dB	
OUTPUT					
OP1dB	13	15		dBm	
P _{SAT}		16.5		dBm	
OIP3		29		dBm	Measurement taken at P _{OUT} per tone = 0dBm
OIP2		38		dBm	Measurement taken at P _{OUT} per tone = 0dBm
PAE		21		%	Measured at P _{SAT}

15GHz TO 18GHz FREQUENCY RANGE

 V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , V_{ENBL} = 3.3V, and T_{CASE} = 25°C, unless otherwise noted.

Table 4. 15GHz to 18GHz Frequency Range

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	15		18	GHz	
GAIN	12.5	14.5		dB	
Gain Variation over Temperature		0.0079		dB/°C	
NOISE FIGURE		2.2		dB	
RETURN LOSS					
S11		12		dB	
S22		10.5		dB	
OUTPUT					
OP1dB	11	13		dBm	
P _{SAT}		15		dBm	
OIP3		26		dBm	Measurement taken at P _{OUT} per tone = 0dBm
OIP2		51		dBm	Measurement taken at P _{OUT} per tone = 0dBm
PAE		17		%	Measured at P _{SAT}

analog.com Rev. 0 | 4 of 30

SPECIFICATIONS

18GHz TO 20GHz FREQUENCY RANGE

 V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , V_{ENBL} = 3.3V, and T_{CASE} = 25°C, unless otherwise noted.

Table 5. 18GHz to 20GHz Frequency Range

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	18		20	GHz	
GAIN	12.5	14.5		dB	
Gain Variation over Temperature		0.0114		dB/°C	
NOISE FIGURE		2.5		dB	
RETURN LOSS					
S11		12		dB	
S22		12		dB	
OUTPUT					
OP1dB		10		dBm	
P _{SAT}		13.5		dBm	
OIP3		21		dBm	Measurement taken at P _{OUT} per tone = 0dBm
OIP2		57		dBm	Measurement taken at P _{OUT} per tone = 0dBm
PAE		10		%	Measured at P _{SAT}

analog.com Rev. 0 | 5 of 30

SPECIFICATIONS

DC SPECIFICATIONS

Table 6. DC Specifications

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SUPPLY CURRENT					
Enable					V _{ENBL} = 3.3V
I_{DQ} = Amplifier Current (I_{DQ_AMP}) + RBIAS Current (I_{RBIAS})		55		mA	
I _{DQ_AMP}		53.6		mA	
I _{RBIAS}		1.4		mA	
Disable					V _{ENBL} = 0V
$I_{DQ} = I_{DQ_AMP} + I_{RBIAS}$		6.6		mA	
I _{DQ_AMP}		6.6		mA	
I _{RBIAS}		0		mA	
SUPPLY VOLTAGE					
V_{DD}	2	3.3	6	V	

Table 7. Logic Control (V_{ENBL})

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DIGITAL CONTROL INPUT					
Low, Amplifier Off State	0		1.1	V	
High, Amplifier On State	1.5		V_{DD}	V	
VENBL Input Current (I _{ENBL})		0.4		mA	V _{ENBL} = 3.3V
SWITCHING TIME					
Amplifier On State Time		29		ns	50% of the V _{ENBL} rising edge to the output envelope at 90%
Amplifier Off State Time		38		ns	50% of the V _{ENBL} falling edge to the output envelope at 10%

Table 8. Temperature Sensor

Parameter	Min	Тур	Max	Unit
VTEMP Voltage (V _{TEMP}) Output Voltage (V _{OUT}), T _{CASE} = 25°C		1.6		V
V _{TEMP} Temperature Coefficient, T _{CASE} = −55°C to +125°C		2.55		mV/°C

analog.com Rev. 0 | 6 of 30

ABSOLUTE MAXIMUM RATINGS

Table 9. Absolute Maximum Ratings

Parameter	Rating
V_{DD}	7.5V
V _{ENBL}	V _{DD}
RF Input Power Survivability (RFIN)	28dBm
Continuous Power Dissipation (PDISS)	
T _{CASE} = 85°C	0.92W
T _{CASE} = 125°C	0.47W
Temperature	
Storage Range	-65°C to +150°C
Operating Range	-55°C to +125°C
Maximum Channel	175°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Overall thermal performance is directly linked to the carrier or substrate on which the die is mounted. Careful attention is needed with each material used in the thermal path below the IC. With an epoxy layer of nominal thickness assumed under the die, θ_{JC} is the thermal resistance from the die channel to the bottom of the epoxy layer.

Table 10. Thermal Resistance¹

Package Type	θ_{JC}	Unit	
C-10-14			
T _{CASE} = 25°C	84.3	°C/W	
T _{CASE} = 85°C	98.1	°C/W	
T _{CASE} = 125°C	106.9	°C/W	

¹ Thermal resistance varies with operating conditions.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

ESD Ratings for ADL8124CHIP

Table 11. ADL8124CHIP, 10-Pad CHIP

ESD Model	Withstand Threshold (V)	Class	
HBM	±500	1B	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 7 of 30

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

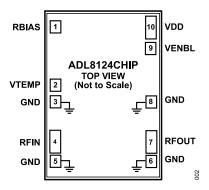


Figure 2. Pin Configuration

Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RBIAS	Bias Setting Resistor. Connect a resistor between RBIAS and VDD to set the I _{DQ} . See the typical application circuit (see Figure 100) and Table 13 to Table 16 for more details. See Figure 7 for the interface schematic.
2	VTEMP	Temperature Sensor Output Voltage. See Figure 5 for the interface schematic.
3, 5, 6, 8	GND	Ground. Connect the GND pads to a ground plane that has low electrical and thermal impedance. See Figure 3 for the interface schematic.
4	RFIN	RF Input. RFIN is AC-coupled and matched to 50Ω. See Figure 4 for the interface schematic.
7	RFOUT	RF Output. The RFOUT pad is AC-coupled and matched to 50Ω. See Figure 6 for the interface schematic.
9	VENBL	Device Enable. An active high digital signal enables the device, and an active low digital signal disables the device. See Figure 8 for the interface schematic.
10	VDD	Drain Bias. Connect the VDD pad to the supply voltage. See Figure 6 for the interface schematic.
Die Bottom	GND	Ground. Connect the die bottom to RF and DC ground. See Figure 3 for the interface schematic.

analog.com Rev. 0 | 8 of 30

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. RFIN Interface Schematic

Figure 5. VTEMP Interface Schematic

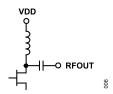


Figure 6. RFOUT and VDD Interface Schematic

Figure 7. RBIAS Interface Schematic

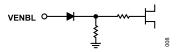


Figure 8. VENBL Interface Schematic

analog.com Rev. 0 | 9 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

AMPLIFIER ON STATE $(V_{ENBL} = 3.3V)$

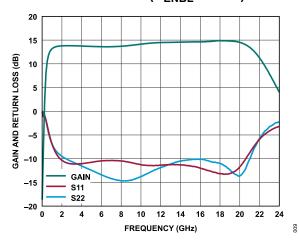


Figure 9. Broadband Gain and Return Loss vs. Frequency, 10MHz to 24GHz, $V_{DD} = 3.3V$, $I_{DQ} = 55mA$

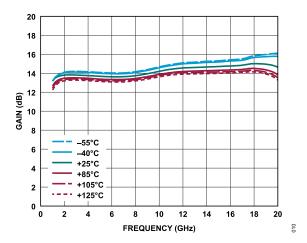


Figure 10. Gain vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

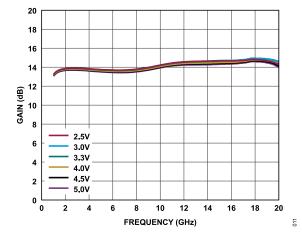


Figure 11. Gain vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, $I_{\rm DQ}$ = 55mA

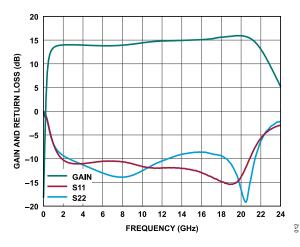


Figure 12. Broadband Gain and Return Loss vs. Frequency, 10MHz to 24GHz, $V_{\rm DD}$ = 5V, $I_{\rm DQ}$ = 85mA

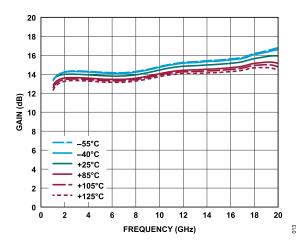


Figure 13. Gain vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

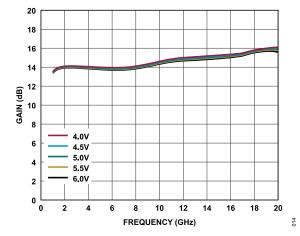


Figure 14. Gain vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, $I_{\rm DQ}$ = 85mA

analog.com Rev. 0 | 10 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

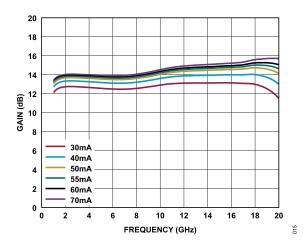


Figure 15. Gain vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

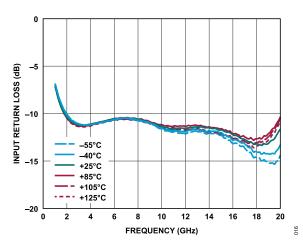


Figure 16. Input Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

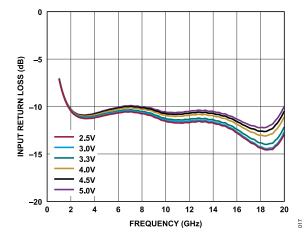


Figure 17. Input Return Loss vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{DQ} = 55 \text{mA}$

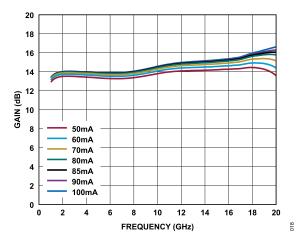


Figure 18. Gain vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

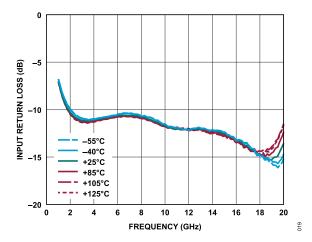


Figure 19. Input Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

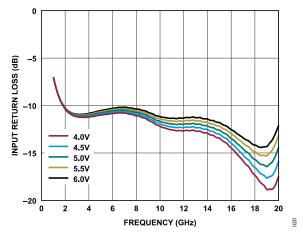


Figure 20. Input Return Loss vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{DQ} = 85 \text{mA}$

analog.com Rev. 0 | 11 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

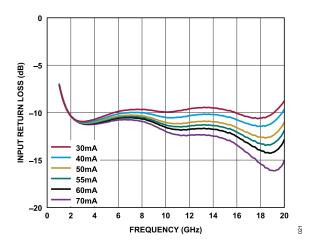


Figure 21. Input Return Loss vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

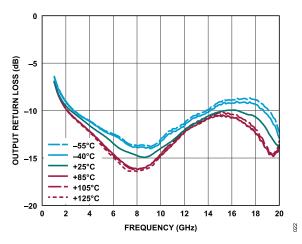


Figure 22. Output Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

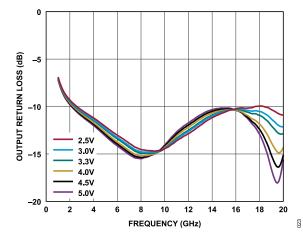


Figure 23. Output Return Loss vs Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{\text{DQ}} = 55 \text{mA}$

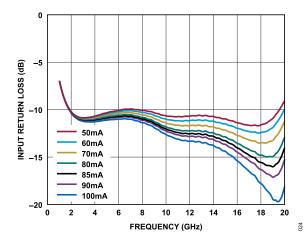


Figure 24. Input Return Loss vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

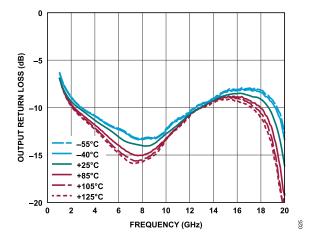


Figure 25. Output Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

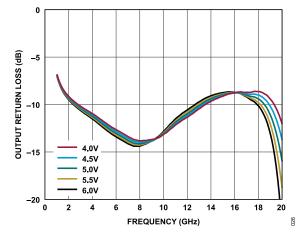


Figure 26. Output Return Loss vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, I_{DQ} = 85mA

analog.com Rev. 0 | 12 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

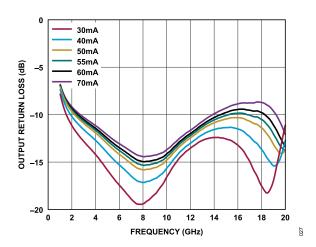


Figure 27. Output Return Loss vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, $V_{DD} = 3.3V$

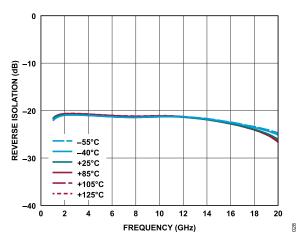


Figure 28. Reverse Isolation vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

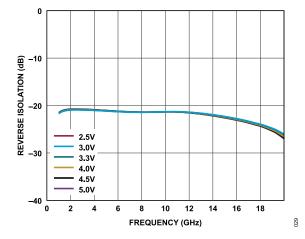


Figure 29. Reverse Isolation vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, $I_{\rm DQ}$ = 55mA

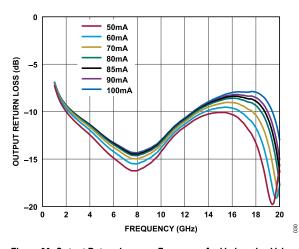


Figure 30. Output Return Loss vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, and $V_{DD} = 5V$

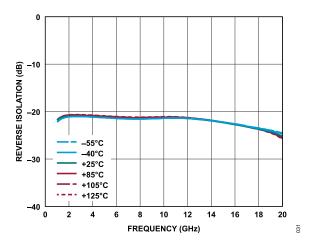


Figure 31. Reverse Isolation vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

Figure 32. Reverse Isolation vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{DQ} = 85 \text{mA}$

analog.com Rev. 0 | 13 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

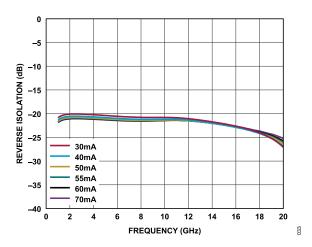


Figure 33. Reverse Isolation vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

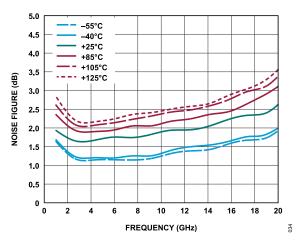


Figure 34. Noise Figure vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

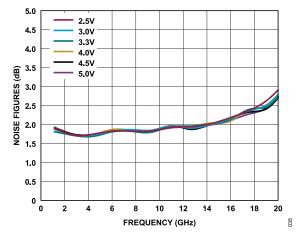


Figure 35. Noise Figure vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{DQ} = 55 \text{mA}$

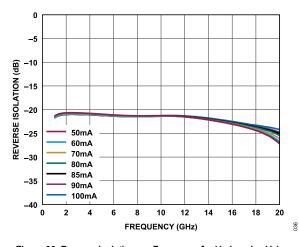


Figure 36. Reverse Isolation vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

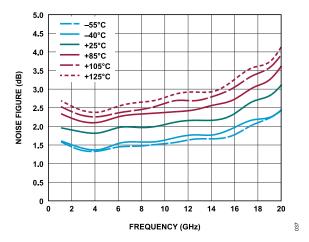


Figure 37. Noise Figure vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

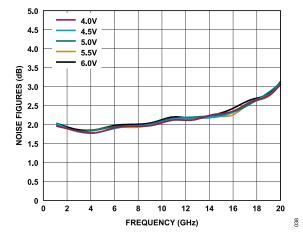


Figure 38. Noise Figure vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{DQ} = 85 \text{mA}$

analog.com Rev. 0 | 14 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

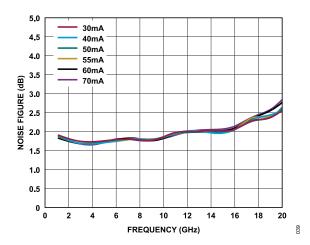


Figure 39. Noise Figure vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V V

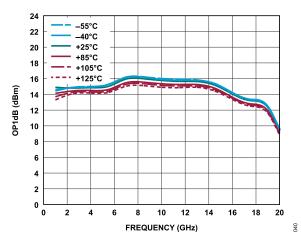


Figure 40. OP1dB vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

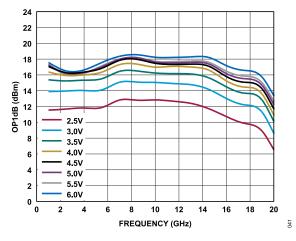


Figure 41. OP1dB vs. Frequency for Various Supply Voltages, 1 GHz to 20 GHz, $I_{\text{DQ}} = 55 \text{mA}$

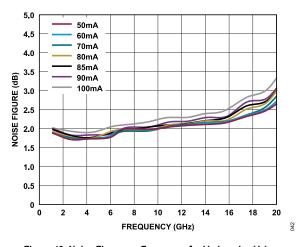


Figure 42. Noise Figure vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

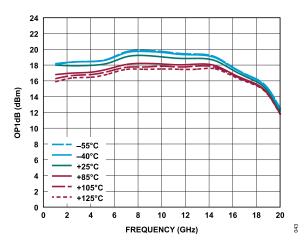


Figure 43. OP1dB vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

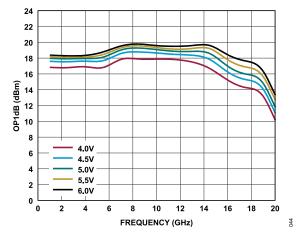


Figure 44. OP1dB vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, I_{DO} = 85mA

analog.com Rev. 0 | 15 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

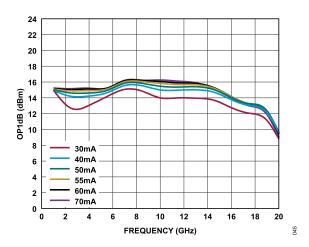


Figure 45. OP1dB vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

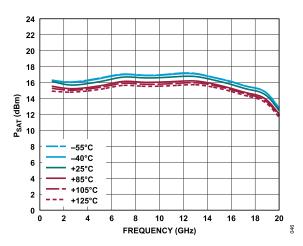


Figure 46. P_{SAT} vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

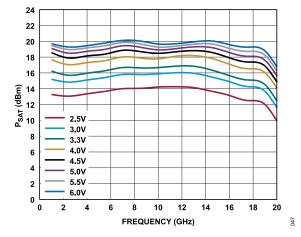


Figure 47. P_{SAT} vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, $I_{DQ} = 55mA$

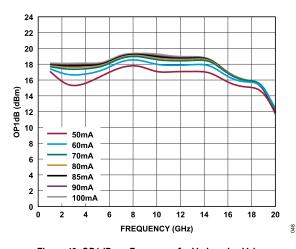


Figure 48. OP1dB vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

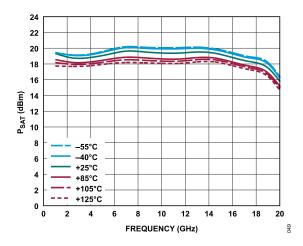


Figure 49. P_{SAT} vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

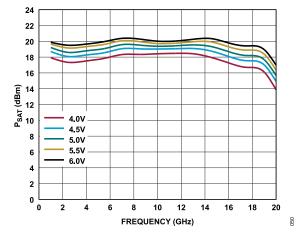


Figure 50. P_{SAT} vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, I_{DQ} = 85mA

analog.com Rev. 0 | 16 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

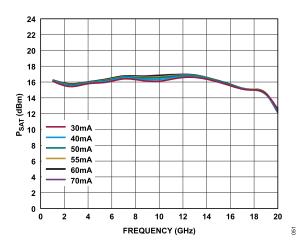


Figure 51. P_{SAT} vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

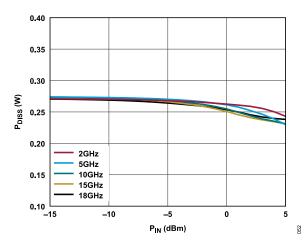


Figure 52. P_{DISS} vs. P_{IN} at for Various Frequencies at T_{CASE} = 85°C, V_{DD} = 3.3V, R_{BIAS} = 1540 Ω

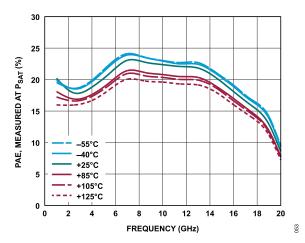


Figure 53. PAE, Measured at P_{SAT} vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 15mA, R_{BIAS} = 1540 Ω

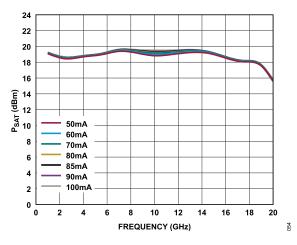


Figure 54. P_{SAT} vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 5V

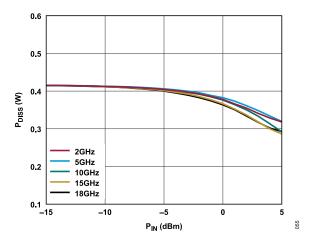


Figure 55. P_{DISS} vs. P_{IN} for Various Frequencies at T_{CASE} = 85°C, V_{DD} = 5V, R_{BIAS} = 1731 Ω

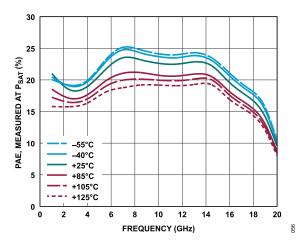


Figure 56. PAE, Measured at P_{SAT} vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

analog.com Rev. 0 | 17 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

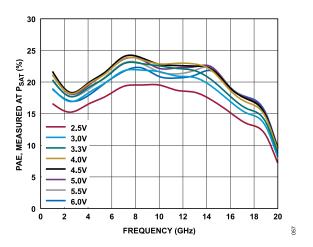


Figure 57. PAE, Measured at P_{SAT} vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, I_{DQ} = 55mA

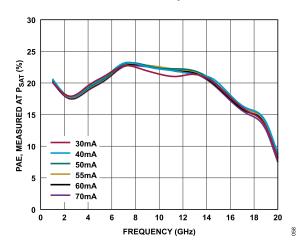


Figure 58. PAE, Measured at P_{SAT} vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, V_{DD} = 3.3V

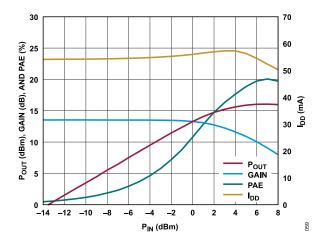


Figure 59. P_{OUT} , Gain, PAE, and Drain Current (I_{DD}) vs. P_{IN} . Power Compression at 5 GHz, V_{DD} = 3.3V, R_{BIAS} = 1540 Ω

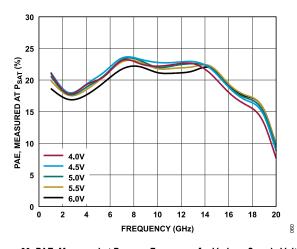


Figure 60. PAE, Measured at P_{SAT} vs. Frequency for Various Supply Voltages, 1GHz to 20GHz, I_{DQ} = 85mA

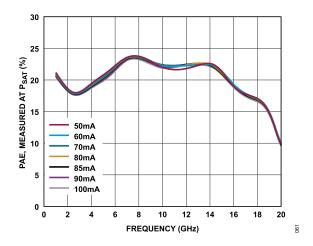


Figure 61. PAE, Measured at P_{SAT} vs. Frequency for Various I_{DQ} Values, 1GHz to 20GHz, $V_{DD} = 5$ V

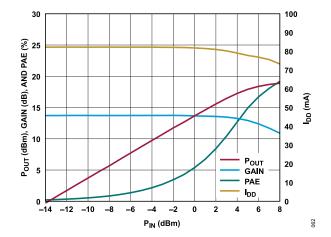


Figure 62. P_{OUT} , Gain, PAE, and I_{DD} vs. P_{IN} , Power Compression at 5 GHz, V_{DD} = 5V, R_{BIAS} = 1731 Ω

analog.com Rev. 0 | 18 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

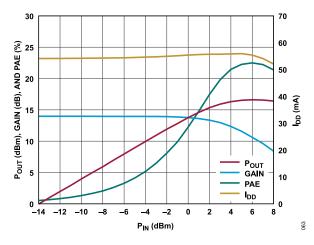


Figure 63. P_{OUT} , Gain, PAE, and I_{DD} vs. P_{IN} , Power Compression at 10GHz, V_{DD} = 3.3V, R_{BIAS} = 1540 Ω

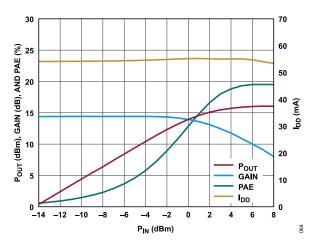


Figure 64. P_{OUT} , Gain, PAE, and I_{DD} vs. P_{IN} , Power Compression at 15GHz, V_{DD} = 3.3V, R_{BIAS} = 1540 Ω

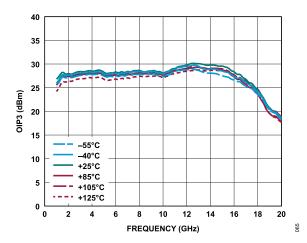


Figure 65. OIP3 vs. Frequency for Various Temperatures, 1GHz to 22GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , P_{OUT} per Tone = 0dBm

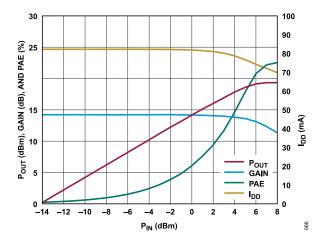


Figure 66. P_{OUT} , Gain, PAE, and I_{DD} vs. P_{IN} , Power Compression at 10GHz, V_{DD} = 5V, R_{BIAS} = 1731 Ω

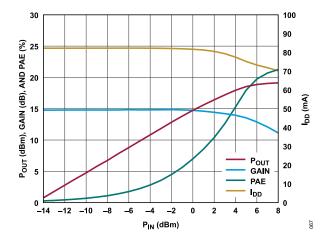


Figure 67. P_{OUT} , Gain, PAE, and I_{DD} vs. P_{IN} , Power Compression at 15GHz, V_{DD} = 5V, R_{BIAS} = 1731 Ω

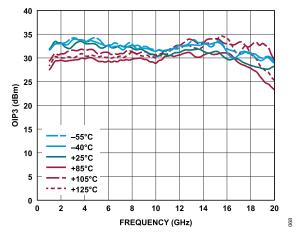


Figure 68. OIP3 vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω , P_{OUT} per Tone = 0dBm

analog.com Rev. 0 | 19 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

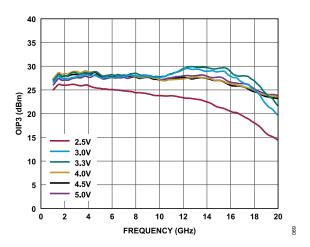


Figure 69. OIP3 vs. Frequency for Various Supply Voltages, I_{DO} = 55mA, P_{OUT} per Tone = 0dBm

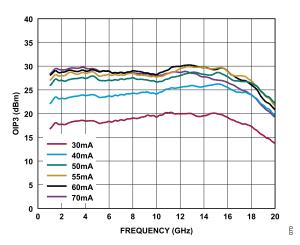


Figure 70. OIP3 vs. Frequency for Various I_{DQ} Values, V_{DD} = 3.3V, P_{OUT} per Tone = 0dBm

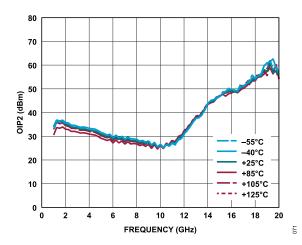


Figure 71. OIP2 vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω , P_{OUT} per Tone = 0dBm

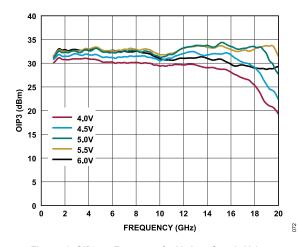


Figure 72. OIP3 vs. Frequency for Various Supply Voltages, I_{DO} = 85mA, P_{OUT} per Tone = 0dBm

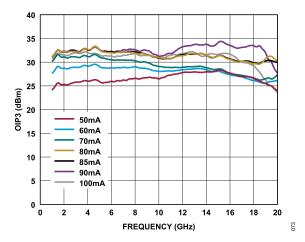


Figure 73. OIP3 vs. Frequency for Various I_{DQ} Values, V_{DD} = 5V, P_{OUT} per Tone = 0dBm

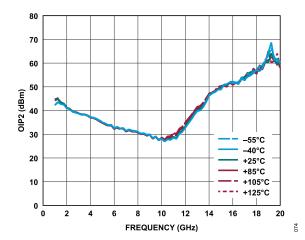


Figure 74. OIP2 vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω , P_{OUT} per Tone = 0dBm

analog.com Rev. 0 | 20 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

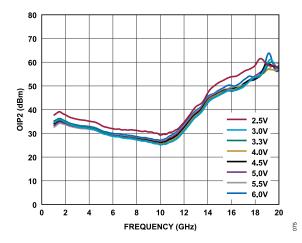


Figure 75. OIP2 vs. Frequency for Various Supply Voltages, I_{DO} = 55mA, P_{OUT} per Tone = 0dBm

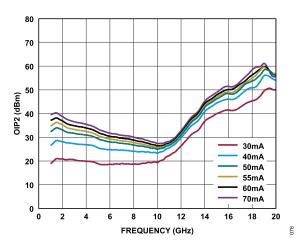


Figure 76. OIP2 vs. Frequency for Various I_{DQ} Values, V_{DD} = 3.3V, P_{OUT} per Tone = 0dBm

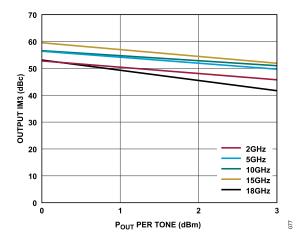


Figure 77. Output IM3 vs. P_{OUT} per Tone for Various Frequencies, V_{DD} = 3.3V, R_{BIAS} = 1540 Ω

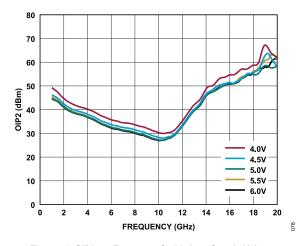


Figure 78. OIP2 vs. Frequency for Various Supply Voltages, I_{DO} = 85mA, P_{OUT} per Tone = 0dBm

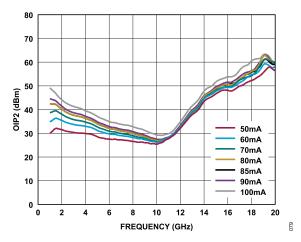


Figure 79. OIP2 vs. Frequency for Various I_{DQ} Values, V_{DD} = 5V, P_{OUT} per Tone = 0dBm

Figure 80. Output IM3 vs P_{OUT} per Tone for Various Frequencies, V_{DD} = 5V, R_{BIAS} = 1731 Ω

analog.com Rev. 0 | 21 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

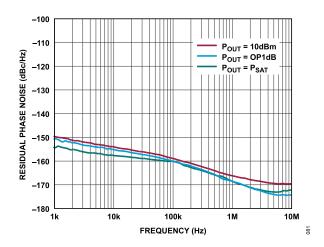


Figure 81. Residual Phase Noise vs. Frequency at 5GHz for Various P_{OUT} Values, V_{DD} = 5V, I_{DO} = 85mA, R_{BIAS} = 1731 Ω

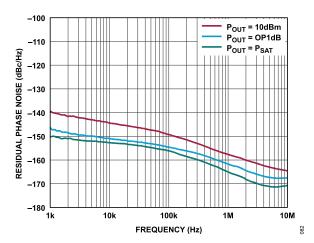


Figure 82. Residual Phase Noise vs. Frequency at 15GHz for Various P_{OUT} Values, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

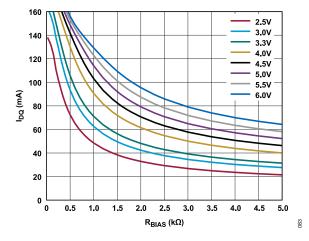


Figure 83. I_{DQ} vs. R_{BIAS} for Various Supply Voltages, 0Ω to $5k\Omega$

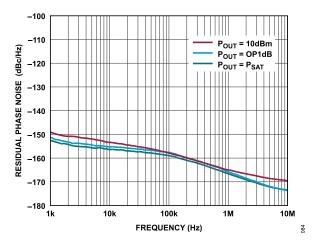


Figure 84. Residual Phase Noise vs. Frequency at 10GHz for Various P_{OUT} Values, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

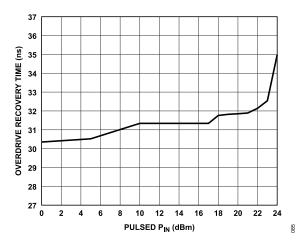


Figure 85. Overdrive Recovery Time vs. Pulsed P_{IN} at 8 GHz, Recovery to Within 90% of Small Signal Gain Value, V_{DD} = 5V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

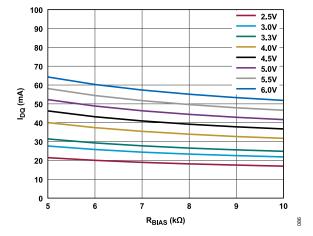


Figure 86. I_{DQ} vs. R_{BIAS} for Various Supply Voltages, $5k\Omega$ to $10k\Omega$

analog.com Rev. 0 | 22 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

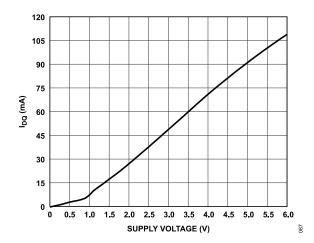


Figure 87. I_{DQ} vs. Supply Voltage, R_{BIAS} = 1540 Ω

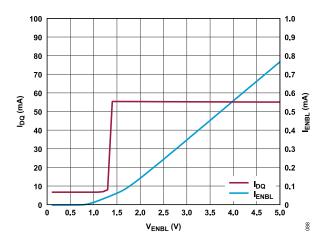


Figure 88. I_{DQ} and I_{ENBL} vs. V_{ENBL} , R_{BIAS} = 1540 Ω

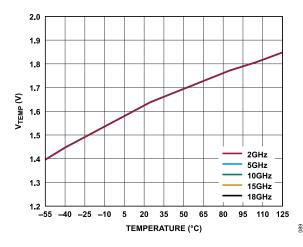


Figure 89. V_{TEMP} vs. Temperature for Various Frequencies at OP1dB, V_{DD} = 3.3V V, I_{DQ} = 55mA, R_{BIAS} = 1540 Ω

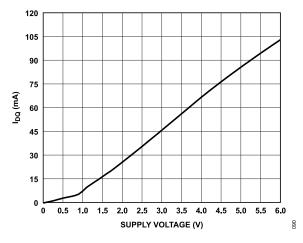


Figure 90. I_{DQ} vs. Supply Voltage, R_{BIAS} = 1731 Ω

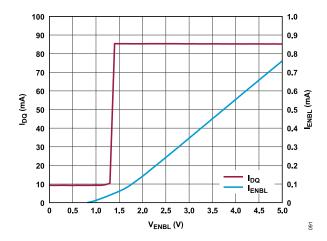


Figure 91. I_{DQ} and I_{ENBL} vs. V_{ENBL} , R_{BIAS} = 1731 Ω

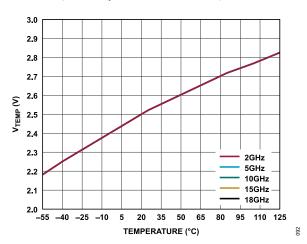


Figure 92. V_{TEMP} vs. Temperature for Various Frequencies at OP1dB, V_{DD} = 5V V, I_{DQ} = 85mA, R_{BIAS} = 1731 Ω

analog.com Rev. 0 | 23 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

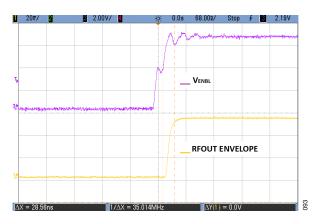


Figure 93. On Response of the RFOUT Envelope Timing When the VENBL Pin Is Toggled

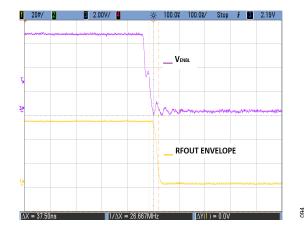


Figure 94. Off Response of the RFOUT Envelope Timing When the VENBL Pin Is Toggled

analog.com Rev. 0 | 24 of 30

TYPICAL PERFORMANCE CHARACTERISTICS

AMPLIFIER OFF STATE $(V_{ENBL} = 0V)$

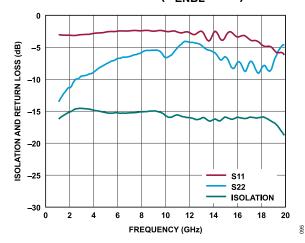


Figure 95. Isolation and Return Loss vs. Frequency, 1GHz to 20GHz, V_{DD} = 3.3V

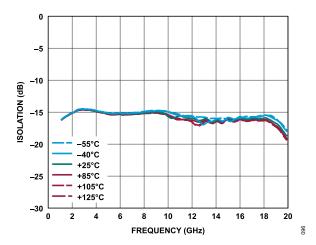


Figure 96. Isolation vs. Frequency for Various Temperatures, 1GHz to 20GHz, $V_{\rm DD}$ = 3.3V

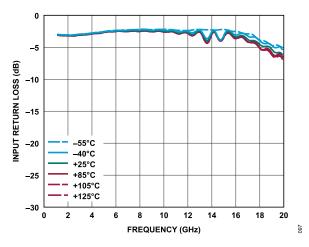


Figure 97. Input Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V

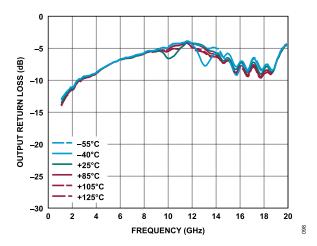


Figure 98. Output Return Loss vs. Frequency for Various Temperatures, 1GHz to 20GHz, V_{DD} = 3.3V

analog.com Rev. 0 | 25 of 30

THEORY OF OPERATION

The ADL8124CHIP is a wideband LNA with integrated AC-coupling capacitors, a bias inductor, a temperature sensor, and an enable or disable function. Figure 99 shows the simplified architecture of the ADL8124CHIP.

The ADL8124CHIP has AC-coupled, single-ended input and output ports with impedance that are nominally equal to 50Ω over the 1GHz to 20GHz frequency range. No external matching components are required. The value of the resistor connected between VDD and RBIAS controls the I_{DO}.

The ADL8124CHIP contains an integrated temperature sensor. The temperature sensor is biased internally through the VDD pad. The voltage that is proportional to the device temperature can be measured on the VTEMP pad.

The ADL8124CHIP also has an enable or disable function. By pulling the VENBL pad high or low, the ADL8124CHIP can be enabled or disabled, respectively.

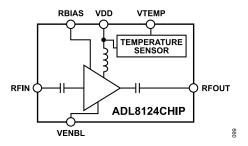


Figure 99. Simplified Architecture

analog.com Rev. 0 | 26 of 30

APPLICATIONS INFORMATION

The basic connections for operating the ADL8124CHIP over the specified frequency range are shown in Figure 100 . No external biasing inductor is required, which allows the 3.3V supply to be connected to the VDD pad. Alternatively, 5V supply operation is also supported. It is recommended to use 100pF power-supply decoupling capacitor. The power-supply decoupling capacitor shown in Figure 100 represent the configuration used to characterize and qualify the ADL8124CHIP.

To set I_{DQ} , connect a resistor (R3) between the RBIAS and VDD pads. A default value of 1540Ω is recommended, which results in a nominal I_{DQ} of 55mA. Table 13 shows how I_{DQ} and I_{DQ} I_{AMP} vary

vs. R_{BIAS} . The RBIAS pad also draws a current that varies with the value of R_{BIAS} (see Table 13). Do not leave the RBIAS pad open.

The VTEMP pad provides an output voltage that is proportional to the die temperature. The VTEMP pad has a high output resistance that must be buffered using an op-amp. The temperature sensor is internally supplied through the VDD pad.

The VENBL pad provides a convenient method to power up or power down the ADL8124CHIP. To enable the amplifier, connect the VENBL pad to a supply. To disable the amplifier, connect the VENBL pad to ground.

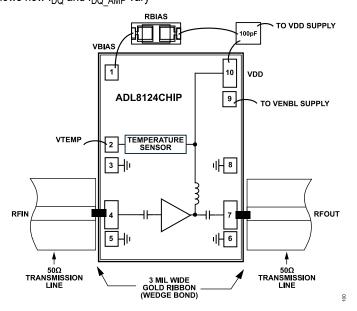


Figure 100. Typical Application Circuit

analog.com Rev. 0 | 27 of 30

APPLICATIONS INFORMATION

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETER GAAS MMICS

Attach the die directly to the ground plane with conductive epoxy (see the Handling Precaution section, the Mounting section, and the Wire Bonding) section.

Place the microstrip substrates as close to the die as possible to minimize ribbon bond length. Typical die to substrate spacing is 0.076mm to 0.152mm (3mil to 6mil).

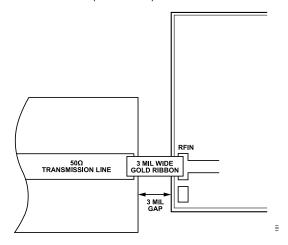


Figure 101. High Frequency Input Wideband Matching

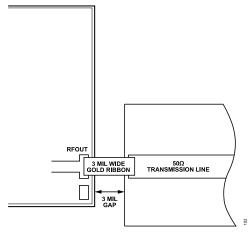


Figure 102. High Frequency Output Wideband Matching

Handling Precaution

To avoid permanent damage, follow these storage, cleanliness, static sensitivity, transient, and general handling precautions:

- ▶ Place all bare die in either waffle or gel-based ESD protective containers and then seal the die in an ESD protective bag for shipment. Once the sealed ESD protective bag is opened, store all die in a dry nitrogen environment.
- ▶ Handle the chips in a clean environment. Do not attempt to clean the chip using liquid cleaning systems.
- ▶ Follow ESD precautions to protect against ESD strikes.
- ▶ While bias is applied, suppress instrument and bias supply transients. Use shielded signal and bias cables to minimize inductive pick up.
- Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and must not be touched with vacuum collet, tweezers, or fingers.

Mounting

Before the epoxy die is attached, apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after it is placed into position. Cure the epoxy per the schedule of the manufacturer.

Wire Bonding

RF bonds made with 0.076mm × 0.0127mm (3mil × 0.5mil) gold ribbon are recommended for the RF ports. These bonds must be thermionically bonded with a force of 40g to 60g. Thermionically bonded DC bonds of 0.025mm (1mil) diameter are recommended. Create ball bonds with a force of 40g to 50g and wedge bonds with a force of 18g to 22g. Create all bonds with a nominal stage temperature of 150°C. Apply the minimum amount of ultrasonic energy (depending on the process and package being used) to achieve reliable bonds. Keep all bonds as short as possible, less than 0.203mm (8mil).

Alternatively, use short RF bonds that are 0.076mm to 0.152mm (3mil to 6mil) and made with two 0.025mm (1mil) diameter wires.

analog.com Rev. 0 | 28 of 30

APPLICATIONS INFORMATION

RECOMMENDED BIAS SEQUENCING

Correct sequencing of the DC and RF power is required to safely operate the ADL8124CHIP. To power up the ADL8124CHIP, take the following bias sequencing steps:

- 1. Set VDD to 3.3V.
- 2. Set VENBL to VDD.
- **3.** Apply the RF input signal.

The ideal power-down sequence is the reverse order of the power-up sequence. Table 13 , Table 14 , Table 15, and Table 16 show alternate bias resistor options for different $\rm I_{DQ}$ and $\rm V_{DD}$ choices.

Table 13. Recommended Bias Resistor Values for V_{DD} = 3.3V

	32			
$R_{BIAS}(\Omega)$	I _{DQ} (mA)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)	
5540	30	29.6	0.4	
2836	40	39.2	8	
1836	50	48.8	1.2	
1540	55	53.6	1.4	
1322	60	58.4	1.6	
1015	70	68	2	

Table 14. Recommended Bias Resistor Values for $V_{DD} = 5V$

R _{BIAS} (Ω)	I _{DQ} (mA)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
5539	50	49.3	0.7
3531	60	58.8	1.2
2532	70	68.5	1.5

Table 14. Recommended Bias Resistor Values for V_{DD} = 5V (Continued)

R _{BIAS} (Ω)	I _{DQ} (mA)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
1945	80	78	2
1731	85	82.8	2.2
1555	90	87.6	2.4
1275	100	97.2	2.8

Table 15. Recommended Bias Resistor Values for Various Supply Voltages, $I_{DQ} = 55mA$

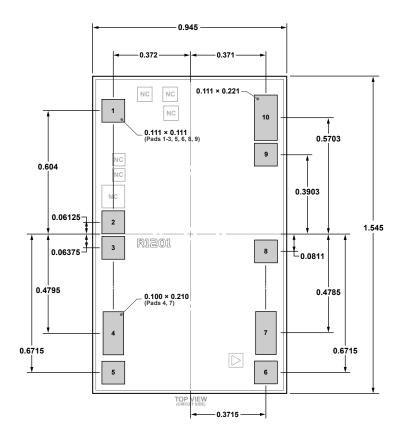

R _{BIAS} (Ω)	V _{DD} (V)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
776	2.5	53.3	1.7
1222	3	53.4	1.6
1540	3.3	53.6	1.4
2456	4	53.8	1.2
4312	5	54.1	0.9
7780	6	54.4	0.6

Table 16. Recommended Bias Resistor Values for Various Supply Voltages, $I_{\rm DQ}$ = 85mA

DQ			
R _{BIAS} (Ω)	V _{DD} (V)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
1103	4	82.6	2.4
1399	4.5	82.7	2.3
1731	5	82.8	2.2
2102	5.5	82.9	2.1
2534	6	83	2

analog.com Rev. 0 | 29 of 30

OUTLINE DIMENSIONS

7-21-2025-A

Figure 103. 10-Pad Bare Die [CHIP] (C-10-14) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADL8124CHIP	−55°C to +125°C	10-Pad Base Die [CHIP]	C-10-14
ADL8124CHIP-SX	-55°C to +125°C	Die Sample Pack	C-10-14

¹ Z = RoHS Compliant Part.

