

3mm × 3mm SP4T MEMS Switch, 0Hz/DC to 30GHz

FEATURES

- ▶ Operational frequency range:
 - ▶ -3dB bandwidth:
 - ▶ DC to 19GHz (typical) for RF1, RF4
 - ▶ DC to 17GHz (typical) for RF2, RF3
 - ▶ -6dB bandwidth:
 - ▶ DC to 29GHz (typical) for RF1, RF4
 - ▶ DC to 22GHz (typical) for RF2, RF3
- ▶ High bit rate capability up to 64Gbps
- ▶ Low insertion loss:
 - ▶ 0.55dB (typical) at 6GHz
 - ▶ 0.85dB (typical) at 10GHz
- ▶ Off isolation:
 - ▶ 26dB (typical) at 6GHz
 - ▶ 23dB (typical) at 10GHz
- ▶ Return loss:
 - ▶ 28dB (typical) at 6GHz
 - ▶ 25dB (typical) at 10GHz
- ▶ High input IIP3: 70dBm (typical)
- ▶ High RF power handling: 33dBm (maximum)
- ▶ On resistance: 1.9Ω (typical)
- ▶ High DC current handling: 200mA (maximum)
- ▶ High switch cycle count: 100 million cycles (minimum at +85°C)
- ▶ Fast switching time: 200µs T_{ON} (maximum)
- ▶ Integrated 3.3V driver for simple control with parallel interface and SPI
- ▶ Space saving integrated passive shunt resistors
- ▶ Small 24-lead, 3mm × 3mm × 1.5mm land grid array package
- ▶ Temperature range: -40°C to +85°C

APPLICATIONS

- ▶ ATE load and probe boards
- ▶ DC with high speed loopback testing
- ▶ Supports digital standards: high speed serialization/deserialization, PCIe Gen4/Gen5/Gen6, USB 4, and PAM 4
- ▶ Relay replacements
- ▶ Reconfigurable filters and attenuators
- ▶ Military and microwave radios
- ▶ Cellular infrastructure: 5G mmWave

FUNCTIONAL BLOCK DIAGRAM

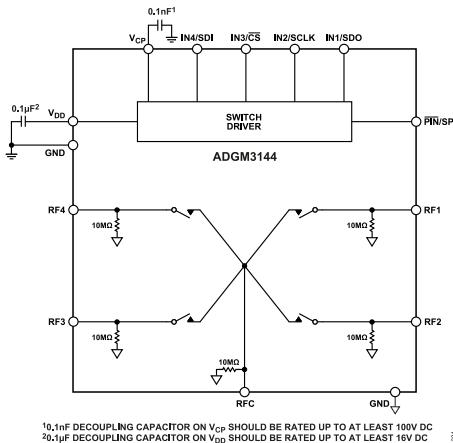


Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADGM3144 is a wideband, single-pole, four-throw (SP4T) switch, fabricated using Analog Devices, Inc., microelectromechanical system (MEMS) switch technology. This technology enables a small form factor, wide RF bandwidth, highly linear, low insertion loss switch that is operational down to 0Hz/DC, making it an ideal solution for a wide range of RF and precision equipment switching needs.

An integrated driver chip generates a high voltage to electrostatically actuate switch that can be controlled by a parallel interface or a serial peripheral interface (SPI). All switches are independently controllable.

The device is packaged in a 24-lead, 3mm × 3mm × 1.5mm land grid array package. To ensure optimum operation of the ADGM3144 refer to the [Critical Operational Requirements](#) section.

The on-resistance (R_{ON}) performance of the ADGM3144 is affected by part-to-part variation, channel-to-channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

COMPANION PRODUCTS

- ▶ Quad PMU : [AD5522](#)
- ▶ SP4T MEMS switch: [ADGM1144](#), [ADGM1304](#), [ADGM1004](#)
- ▶ Low noise, LDO regulators: [ADP7142](#), [LT1962](#), [LT3045-1](#)

TABLE OF CONTENTS

Features.....	1	Internal Oscillator Feedthrough.....	22
Applications.....	1	Typical Operating Circuit.....	22
Functional Block Diagram.....	1	Applications Information.....	23
General Description.....	1	Power Supply Rails.....	23
Companion Products.....	1	Power Supply Recommendations.....	23
Specifications.....	3	High-Speed Digital Loopback.....	23
Timing Characteristics.....	6	Switchable RF Attenuator.....	23
Absolute Maximum Ratings.....	8	Critical Operational Requirements.....	25
Thermal Resistance.....	8	System Error Considerations Due to	
Electrostatic Discharge (ESD) Ratings.....	8	On-Resistance Drift.....	25
ESD Caution.....	8	On-Resistance Shift Due To Temperature	
Pin Configuration and Function Descriptions.....	9	Shock Post Actuations.....	25
Typical Performance Characteristics.....	10	Hot Switching.....	25
Test Circuits.....	19	Handling Precautions.....	26
Deriving $C_{DS(OFF)}$ from Off Isolation.....	19	Register Summary.....	28
Theory of Operation.....	20	Register Details.....	29
Switch Design.....	20	Switch Data Register.....	29
Parallel Digital Interface.....	20	Outline Dimensions.....	30
SPI Digital Interface.....	21	Ordering Guide.....	30

REVISION HISTORY**12/2025—Revision 0: Initial Version**

SPECIFICATIONS

V_{DD} = 3.0V to 3.6V, GND = 0V, and all specifications at 25°C, unless otherwise noted.

Table 1. Specifications

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
ON-RESISTANCE PROPERTIES						
Initial On-Resistance Properties						
On Resistance	R_{ON}		1.9	3	Ω	Drain source current (I_{DS}) = 50 mA, 0V input bias, at 1ms after first actuation, maximum specification from -40°C to 85°C
On-Resistance Match Between Channels	ΔR_{ON} CH_CH			0.8	Ω	Maximum value tested from -40°C to 85°C
On-Resistance Drift						
Over Time	$\Delta R_{ON\ TIME}$			-0.32	Ω	R_{ON} changed from 1ms to 100ms after first actuation, maximum value tested from -40°C to 85°C
Over Actuations	ΔR_{ON}		0.2	0.32	Ω	Absolute change after 10^6 actuations, switch is actuated at 25°C and R_{ON} is measured at 25°C
			± 0.7		Ω	Absolute change after 100×10^6 actuations, switch is actuated at 25°C and R_{ON} is measured at 25°C
				2	Ω	Absolute change after 100×10^6 actuations, switch is actuated at 85°C and R_{ON} is measured at 25°C, actuation frequency = 289Hz
RELIABILITY PROPERTIES						
Continuously On Lifetime			10		Years	Time before failure ³ at 85°C
Actuation Lifetime						
Cold Switched		100×10^6	500×10^6		Actuations	Load between toggling is 150mA, tested at 85°C
RF Hot Switched						RF power = continuous wave (CW), terminated into 50Ω, 50% of test population failure point (T50)
7dBm			500×10^6		Actuations	
10dBm			150×10^6		Actuations	
13dBm			30×10^6		Actuations	
20dBm			20×10^3		Actuations	
DC Hot Switched						Terminated into 50Ω, RFx load capacitance = 10μF, 50% of test population failure point (T50)
0.5V or 9mA			500×10^6		Actuations	
1V or 18mA			500×10^6		Actuations	
2.5V or 46mA			35×10^6		Actuations	
3.5V or 65mA			6.5×10^3		Actuations	
5V or 93mA			2×10^3		Actuations	
DYNAMIC CHARACTERISTICS						
Operational Frequency Range						
-3dB Bandwidth			19		GHz	RF1, RF4
			17		GHz	RF2, RF3
-6dB Bandwidth			29		GHz	RF1, RF4
			22		GHz	RF2, RF3

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
Isolation	ISO		0.31		dB	RFx to RFC
			0.55		dB	DC to 2.5GHz
			0.85		dB	2.5GHz to 6GHz
			2.3		dB	6GHz to 10GHz
			6.1		dB	10GHz to 16GHz
	ISO		30		dB	16GHz to 24GHz
			26		dB	RFx to RFC, with at least one switch on
			23		dB	DC to 2.5GHz
			18		dB	2.5GHz to 6GHz
			14		dB	6GHz to 10GHz
Crosstalk	CTK		18		dB	10GHz to 16GHz
			16		dB	16GHz to 24GHz
			13		dB	RFx to RFC, all switches are off
			11		dB	DC to 2.5GHz
			26		dB	2.5GHz to 6GHz
	CTK		19		dB	6GHz to 10GHz
			16		dB	10GHz to 16GHz
			13		dB	16GHz to 24GHz
			11		dB	RF1 to RFx, with RF1 to RFC on
			31		dB	DC to 2.5GHz
Return Loss	RL		25		dB	2.5GHz to 6GHz
			20		dB	6GHz to 10GHz
			16		dB	10GHz to 16GHz
			12		dB	16GHz to 24GHz
			30		dB	Measured at RFx
	RL		28		dB	DC to 2.5GHz
			25		dB	2.5GHz to 6GHz
			19		dB	6GHz to 10GHz
			10		dB	10GHz to 16GHz
			10		dB	16GHz to 24GHz
Third-Order Intermodulation Intercept	IIP3		70		dBm	Input: 2110MHz and 2170MHz, 3510MHz and 3570MHz; input power = 30dBm
Second Harmonic	HD2		-107		dBc	Input: 5.4MHz; input power = 0dBm
	HD2		-88		dBc	Input: 150MHz, 800MHz; input power = 33dBm
Third Harmonic	HD3		-88		dBc	Input: 150MHz, 800MHz; input power = 33dBm
Total Harmonic Distortion	THD		-103		dBc	$R_L = 300\Omega$, f = 1kHz, RFx = 2.5V p-p
Total Harmonic Distortion Plus Noise	THD + N		-99		dBc	$R_L = 300\Omega$, f = 1kHz, RFx = 2.5V p-p
Maximum RF Power			33		dBm	RF power = CW, terminated into 50 Ω termination; -40°C to +85°C
DC Signal Range		-6		+6	V	On switch DC input bias voltage signal range; -40°C to +85°C
Stand Off voltage		-6		+6	V	-40°C to +85°C, this specification is applied when the switch is in the off position with no RF signal applied
Maximum DC Current			200		mA	-40°C to +85°C
On Switching Time ⁴	t _{ON}		200		μs	50% INx to 90% (0.05dB of final IL value) RFx, 50 Ω termination, -40°C to 85°C See Figure 5 for details.

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
Off Switching Time ^{4, 5}	t_{OFF}			200	μs	50% INx to 10% (0.05dB of final IL value) RFx, 50 Ω termination, -40°C to 85°C See Figure 5 for details.
Power-Up Time			4	5	ms	V_{CP} cap = 100pF, -40°C to +85°C
Video Feedthrough			10		mV peak	1 MΩ termination at RFx and 50Ω termination at RFC
Actuation Frequency			5		kHz	Both switches toggled simultaneously
Internal Oscillator Frequency		8.6	10	11	MHz	
Internal Oscillator Feedthrough			-92.5		dBm	See note ⁶ for measurement setup details
			-115.5		dBm/Hz	This value comes from calculations
Signal Timing Parameters						Simulated digitally using measured s-parameter models
Phase Delta Between Channels			2.75		degree	
Propagation Delay			49.5		ps	RF1 to RFC, see Figure 49
			48.5		ps	RF2 to RFC, see Figure 49
			48.6		ps	RF3 to RFC, see Figure 49
			50		ps	RF4 to RFC, see Figure 49
Channel-to-Channel Skew			0.5		ps	RF1 to RFC, RF4 to RFC, see Figure 50
			0.2		ps	RF2 to RFC, RF3 to RFC, see Figure 50
			1.2		ps	RF1/4 to RFC, RF2/3 to RFC, see Figure 50
CAPACITANCE PROPERTIES						
Input to Output Off Capacitance	$C_{DS(OFF)}$		30		fF	At 1MHz, includes LGA package capacitance
On Switch Channel Capacitance	C_{ON}		3.4		pF	Capacitance from input to output derived from off isolation measurements, see Deriving CDS(OFF) from Off Isolation section
Off Switch Channel Capacitance	C_{OFF}		1.9		pF	Capacitance measured on RFx with respect to ground when RFx to RFC is on
Off Switch Channel Capacitance						Capacitance measured on RFx with respect to ground when all switches are off
LEAKAGE PROPERTIES						
On Leakage ⁷		0.7	1.1	1.39	μA	RFx (off channels) = +6V; RFC/RFx (on channel) = -6V; maximum value tested from -40°C to +85°C
Off Leakage ⁷		0.34	0.6	0.77	μA	RFx = +6V; RFC = -6V; maximum value tested from -40°C to +85°C
Internal Shunt Resistor		8.7	11.5	15.2	MΩ	Typical temperature coefficient = 27.5kΩ/°C, maximum and minimum value tested at 25°C
DIGITAL INPUTS						
Input High Voltage	V_{INH}	2			V	Minimum and maximum over -40°C to 85°C
Input Low Voltage	V_{INL}			0.8	V	
Input Current	I_{INL}/I_{INH}		0.025	1	μA	$V_{IN} = V_{INL}$ or V_{INH}
Capacitance			5		pF	
DIGITAL OUTPUTS						
Output Low Voltage	V_{OL}			0.4	V_{MAX}	Minimum and maximum over -40°C to 85°C
Output High Voltage	V_{OH}	$V_{DD} - 0.4V$			V_{MIN}	$I_{SINK} = 1mA$
Capacitance			5		pF	$I_{SOURCE} = 1mA$
POWER REQUIREMENTS						
Supply Voltage	V_{DD}	3.0		3.6	V	Minimum and maximum over -40°C to 85°C.
Supply Current	I_{DD}			2.5	mA	Digital inputs = 0V or V_{DD} , SDO floating in SPI mode

SPECIFICATIONS

- 1 Typical specifications tested at 25°C with $V_{DD} = 3.3V$.
- 2 RFx is RF1, RF2, RF3, and RF4. INx is IN1, IN2, IN3, and IN4.
- 3 This value shows the time it takes for 1% of a sample lot to fail.
- 4 Switch is settled after 200 μ s. Do not apply RF power between 0 μ s to 200 μ s.
- 5 RF power should be removed or less than 5dBm, 50 μ s before turning the switch off.
- 6 Spectrum analyzer setup: resolution bandwidth (RBW) = 200Hz, video bandwidth (VBW) = 2Hz, span = 100kHz, input attenuator = 0dB, detector type = peak, maximum hold = off. Measurements taken with one switch on and off switch port terminated into 50 Ω . The fundamental feedthrough noise or harmonic thereof is tested (whichever is the highest).
- 7 The on leakage and off leakage specifications depend on the DC voltage level applied to the switch node. For example, if 1V is applied at RFx to RFC, the on leakage specification is 0.2 μ A and off leakage specification is 0.1 μ A. The leakage specification of the switch is mainly driven by the internal 10M Ω resistors to ground connected on all the RF nodes to avoid floating nodes.

TIMING CHARACTERISTICS

$V_{DD} = 3.0V$ to $3.6V$, GND = 0V and all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2. Timing Characteristics

Parameter	Limit at T_{MIN}	Limit at T_{MAX}	Unit	Conditions
t_1	100		ns	SCLK period
t_2	45		ns	SCLK high pulse width
t_3	45		ns	SCLK low pulse width
t_4	25		ns	\overline{CS} falling edge to SCLK active edge
t_5	20		ns	Data setup time
t_6	20		ns	Data hold time
t_7	25		ns	SCLK active edge to \overline{CS} rising edge
t_8		20	ns	\overline{CS} falling edge to SDO data available
t_9^1		40	ns	SCLK falling edge to SDO data available
t_{10}		25	ns	\overline{CS} rising edge to SDO data available
t_{11}	100		ns	\overline{CS} high time between SPI commands
t_{12}	25		ns	SCLK edge rejection to \overline{CS} falling edge
t_{13}	25		ns	\overline{CS} rising edge to SCLK edge rejection

¹ Measured with a 20pF load. t_9 determines the maximum SCLK frequency when SDO is used.

Timing Diagrams

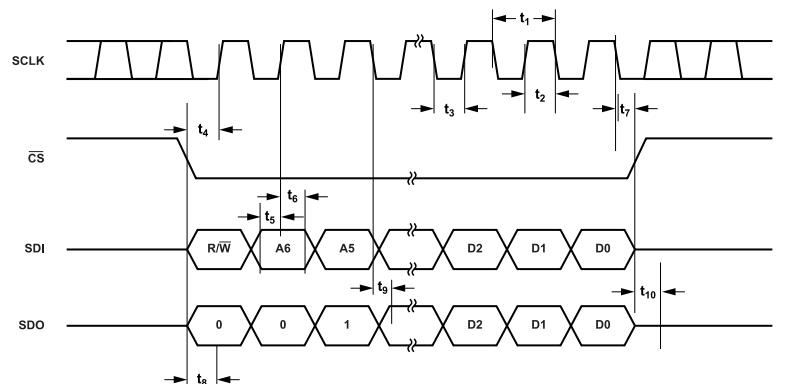


Figure 2. Addressable Mode Timing

SPECIFICATIONS

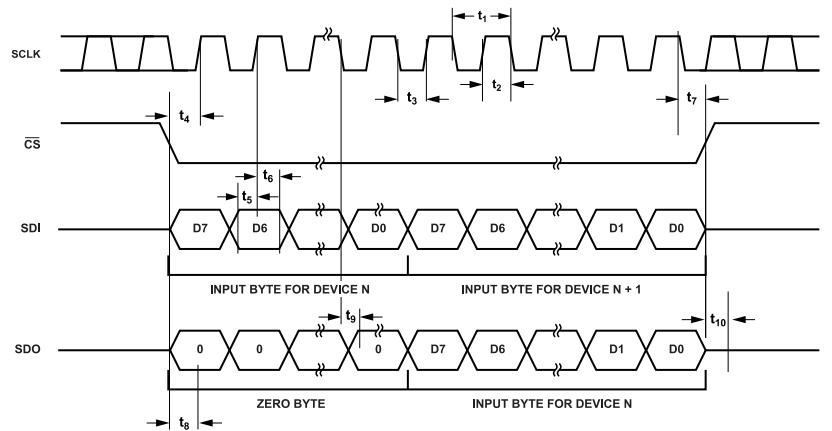


Figure 3. Daisy Chain Timing

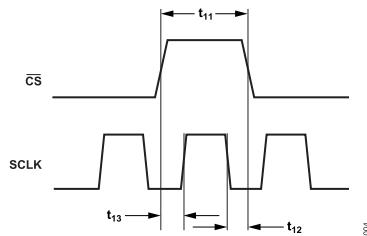


Figure 4. SCLK and CS Timing Relationship

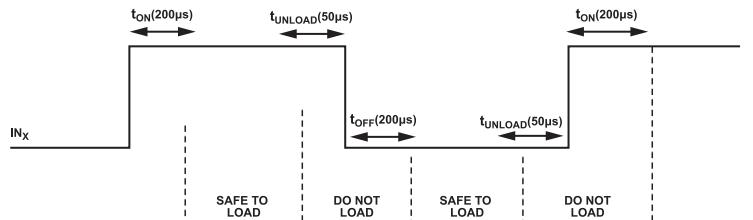


Figure 5. Switch Loading Profile

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^\circ\text{C}$, unless otherwise noted.

Table 3. Absolute Maximum Ratings

Parameter	Rating
V_{DD} to AGND	-0.3V to +6V
Digital Inputs ¹	-0.3V to $V_{DD} + 0.3\text{V}$ or 30mA (whichever occurs first).
Switch DC Rating ²	
Voltage	$\pm 7\text{V}$
Current	220mA
V_{CP}	82V
Stand Off Voltage ³	$\pm 10\text{V}$
RF Power Rating ⁴	34dBm
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Reflow Soldering (Pb-Free)	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10sec to 30sec
Group D	
Mechanical Shock ⁵	1500g with 0.5ms pulse
Vibration	20Hz to 2000Hz acceleration at 50g
Constant Acceleration	30,000g

¹ Limit the current to the maximum ratings shown.

² This rating is with respect to the switch in the on position with no RF signal applied.

³ This rating is with respect to the switch in the off position with no RF signal applied.

⁴ This rating is with respect to the switch in the on position and terminated into 50Ω.

⁵ If a device is dropped during handling, do not use the device.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

θ_{JCT} is the junction to the top of the case thermal resistance.

θ_{JCB} is the junction to the bottom of the case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JA}	θ_{JCT}	θ_{JCB}	Unit
CC-24-23	68.1	161.7	93.7	°C/W

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for the handling of ESD-sensitive devices in an ESD-protected area only.

Human body model (HBM) as per ANSI/ESDA/JEDEC JS-001.

Field-induced charged device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings

Table 5. ADGM3144, 24-Lead LGA

ESD Model	Withstand Threshold	Class
HBM ¹	150V for RFx and RFC ² pins 3kV for all other pins	0B
FICDM ³	1kV	C3

¹ Take proper precautions during handling, as outlined in the [Handling Precautions](#) section.

² RFx is RF1, RF2, RF3, and RF4.

³ A safe automated handling and assembly process is achieved at this rating level by implementing industry standard ESD controls.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

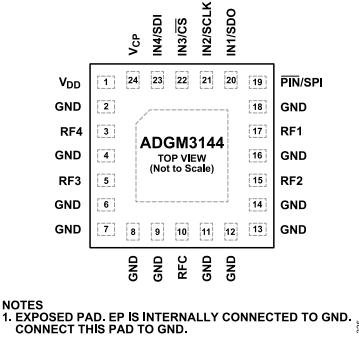
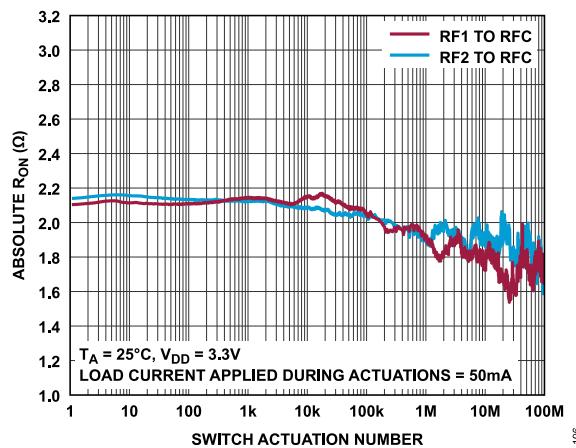
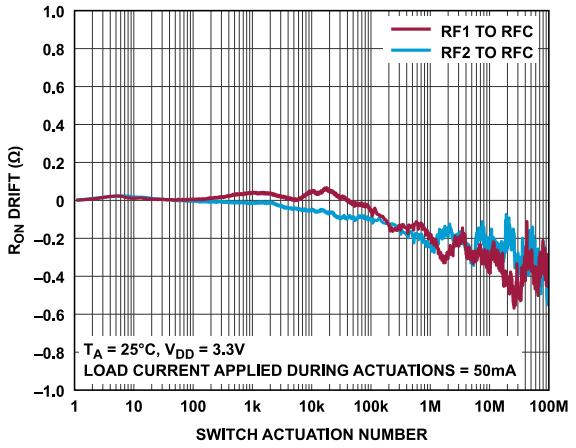
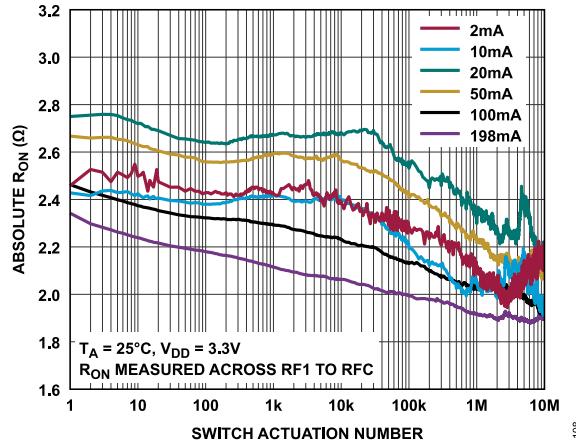
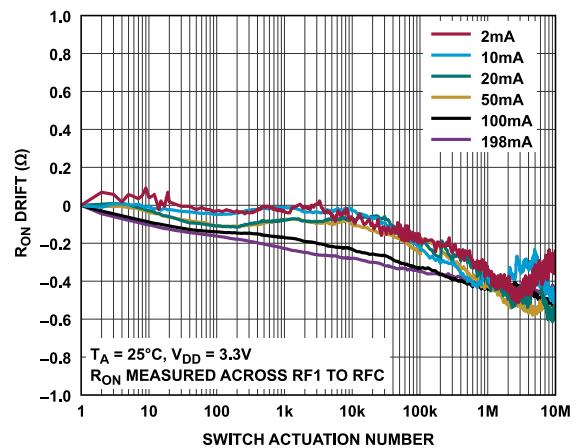
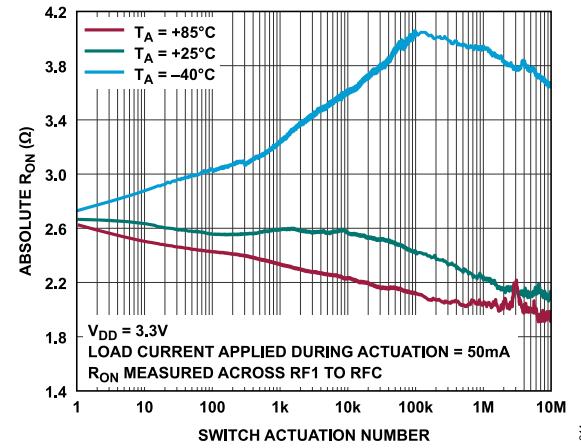
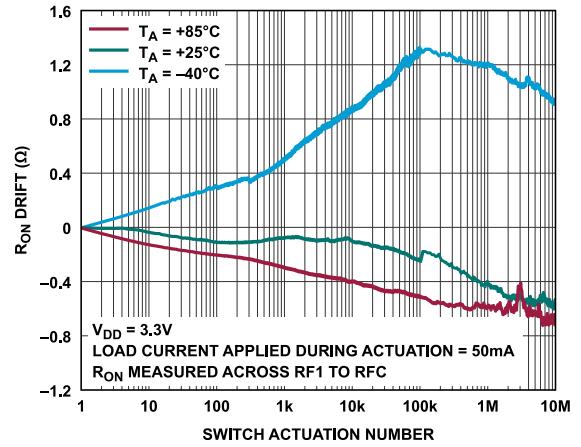
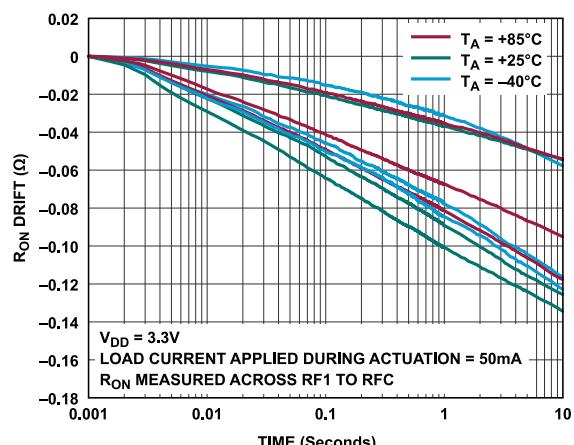
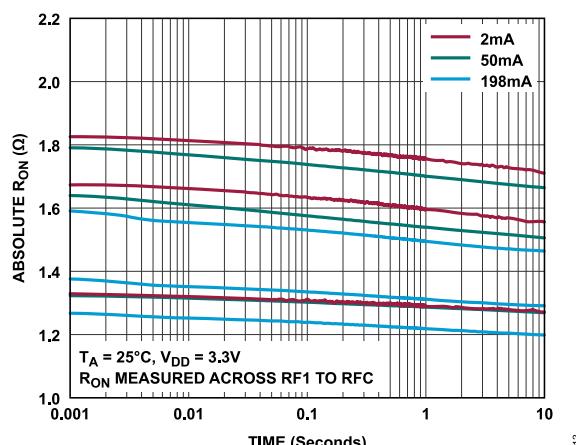
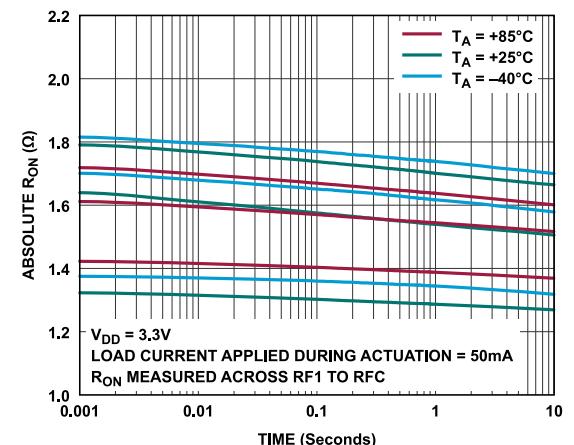
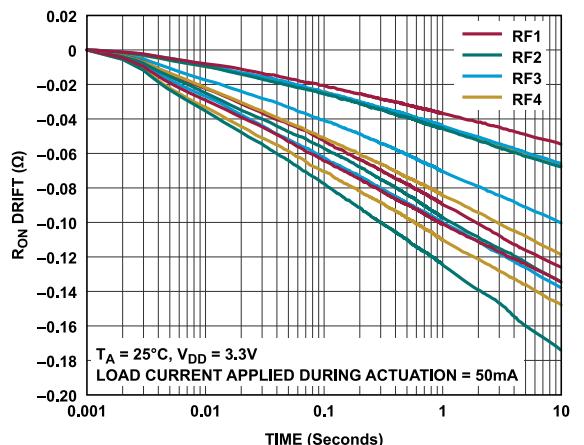
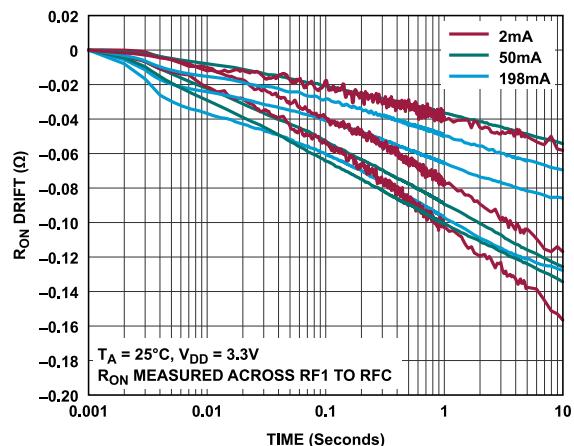








Figure 6. ADGM3144 Pin Configuration






Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD}	Positive Power Supply Input. For the recommended input voltage see Table 1. Place a 0.1μF decoupling capacitor to GND as close to this pin as possible. The decoupling capacitor should be rated to at least 16V DC.
2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18	GND	Ground Return.
3	RF4	RF4 Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
5	RF3	RF3 Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
10	RFC	Common RFC Port. This pin can be an input or an output.
15	RF2	RF2 Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
17	RF1	RF1 Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
19	PIN/SPI	Parallel Mode Enable/SPI Mode Enable. The SPI interface is enabled when this pin is high, and the parallel interface (IN1, IN2, IN3, IN4) is enabled when this pin is low.
20	IN1/SDO	Parallel Logic Digital Control Input 1 (IN1). The voltage applied to this pin controls the gate of the RF1 to RFC MEMS switch. In SPI mode, this pin is the serial data output (SDO) pin.
21	IN2/SCLK	Parallel Logic Digital Control Input 2 (IN2). The voltage applied to this pin controls the gate of the RF2 to RFC MEMS switch. In SPI mode, this pin is the serial clock (SCLK) that synchronizes the target device(s) to the controller device.
22	IN3/CS	Parallel Logic Digital Control Input 3 (IN3). The voltage applied to this pin controls the gate of the RF3 to RFCB MEMS switch. In SPI mode, this pin is the chip select (CS). CS is an active low signal that selects the target device with which the controller device intends to communicate.
23	IN4/SDI	Parallel Logic Digital Control Input 4 (IN4). The voltage applied to this pin controls the gate of the RF4 to RFCB MEMS switch. In SPI mode, this pin is the serial data input (SDI).
24	V _{CP}	Driver IC output. This pin outputs 80V DC. Place a 0.1nF decoupling capacitor to GND as close to this pin as possible. The decoupling capacitor should be rated to at least 100V DC.
	EP	Exposed Pad. EP is internally connected to GND. Connect this pad to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Absolute R_{ON} vs. Switch Actuation NumberFigure 8. R_{ON} Drift vs. Switch Actuation Number, Normalized at ZeroFigure 9. Absolute R_{ON} vs. Switch Actuation Number over Different Currents Applied During ActuationsFigure 10. R_{ON} Drift vs. Switch Actuation Number over Different Currents Applied During Actuations, Normalized at ZeroFigure 11. Absolute R_{ON} vs. Switch Actuation Number over TemperatureFigure 12. R_{ON} Drift vs. Switch Actuation Number over Temperature, Normalized at Zero

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

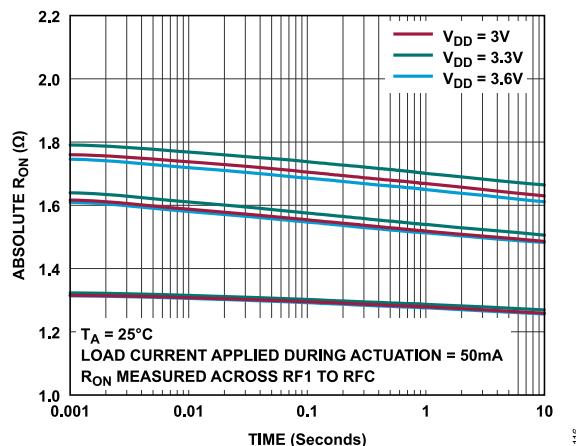


Figure 19. Absolute R_{ON} vs. Time (1ms to 10sec) over Supplies, Multiple Devices

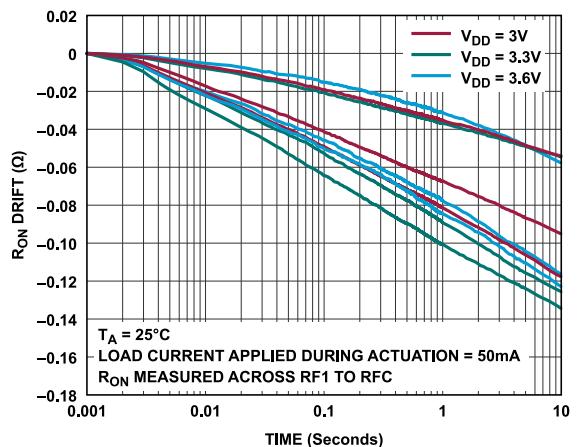


Figure 20. R_{ON} Drift vs. Time (1ms to 10sec) over Supplies, Multiple Devices, Normalized at Zero

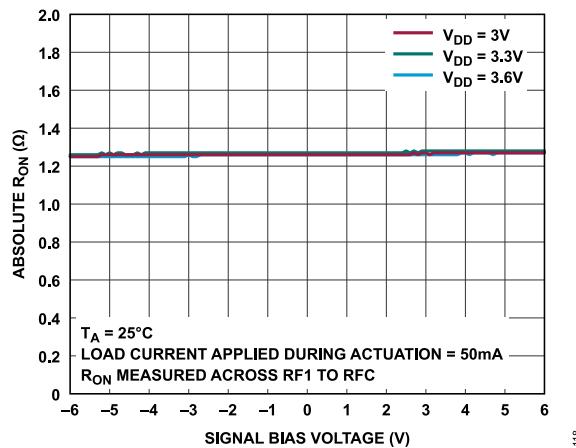


Figure 21. Absolute R_{ON} vs. Signal Bias Voltage over Supply Voltages

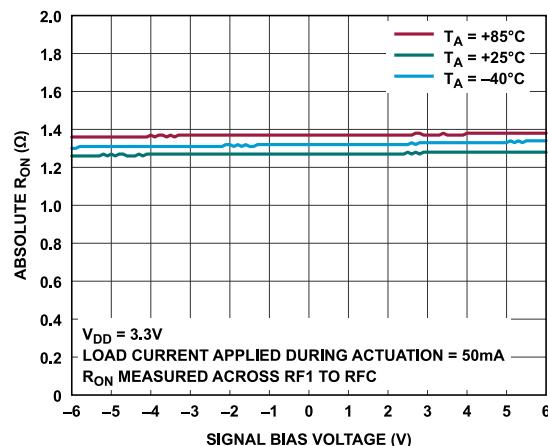


Figure 22. Absolute R_{ON} vs. Signal Bias Voltage over Temperature

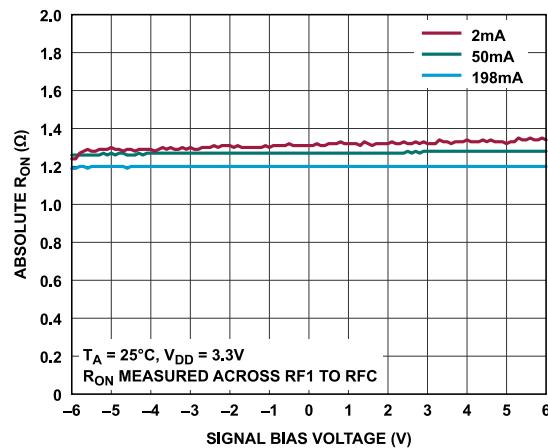


Figure 23. Absolute R_{ON} vs. Signal Bias Voltage over Different Current Levels

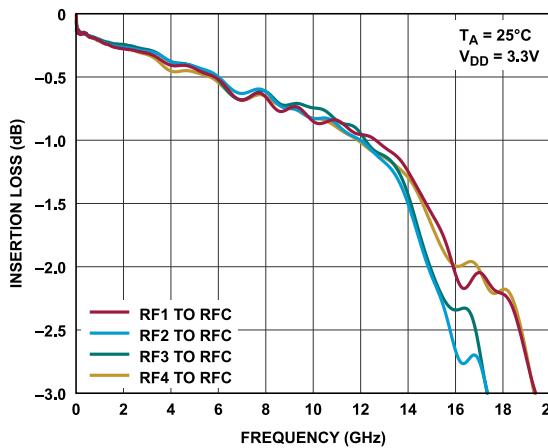


Figure 24. Insertion Loss vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

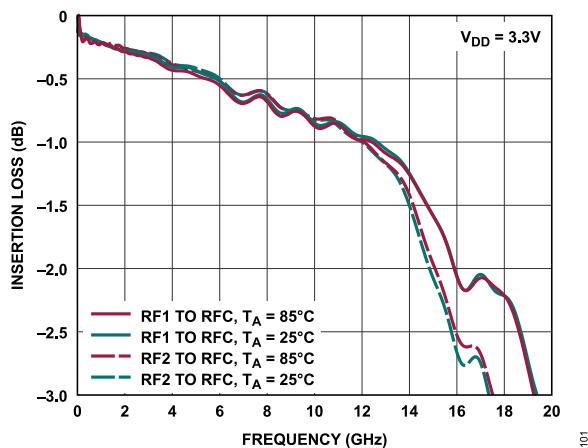


Figure 25. Insertion Loss vs. Frequency over Temperature (RF1 to RFC, RF2 to RFC)

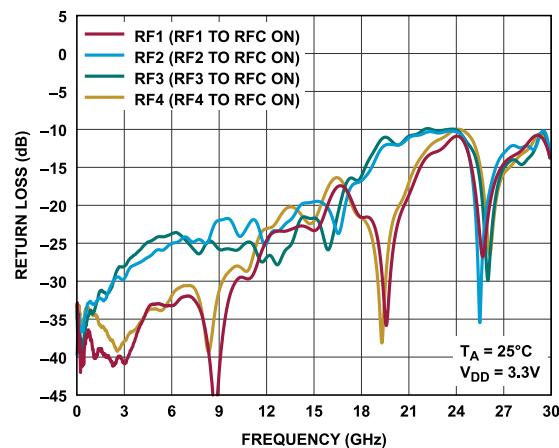


Figure 28. Return Loss vs. Frequency (Measuring from RF1, RF2, RF3, and RF4)

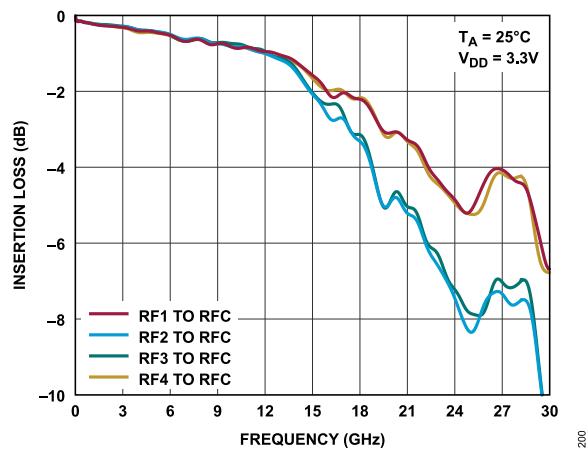


Figure 26. Insertion Loss vs. Frequency

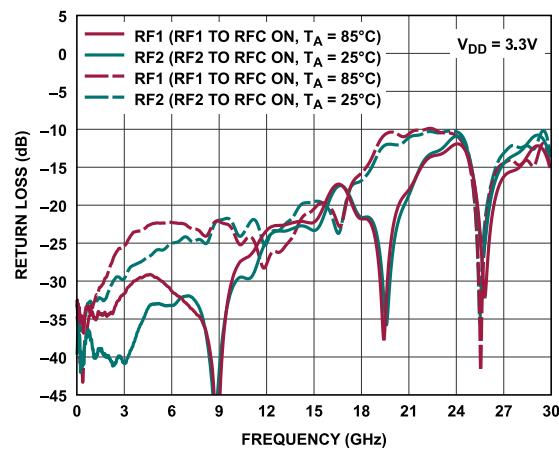


Figure 29. Return Loss vs. Frequency over Temperature (Measuring from RF1, RF2, RF3, and RF4)

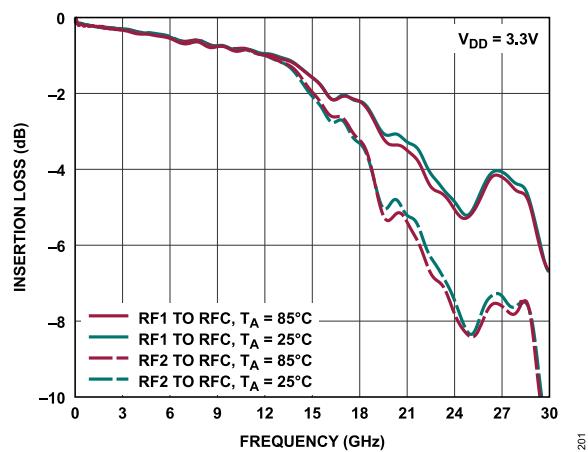


Figure 27. Insertion Loss vs. Frequency over Temperature (RF1 to RFC, RF2 to RFC)

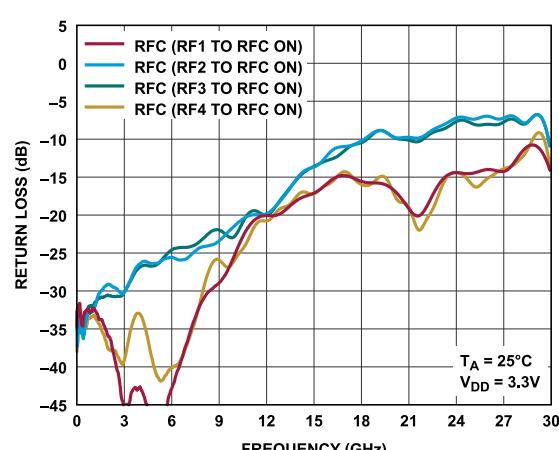


Figure 30. Return Loss vs. Frequency (Measuring from RFC)

TYPICAL PERFORMANCE CHARACTERISTICS

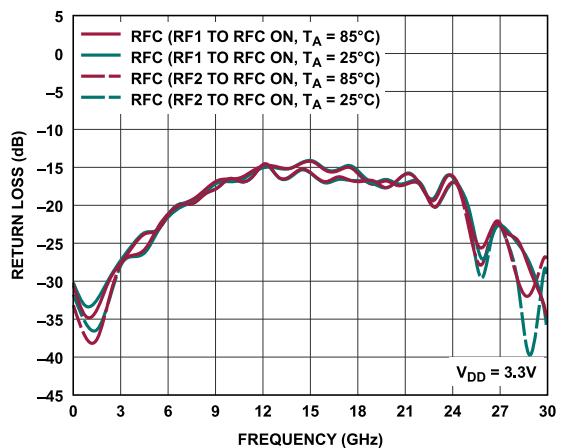


Figure 31. Return Loss vs. Frequency over Temperature (Measuring from RFC)

205

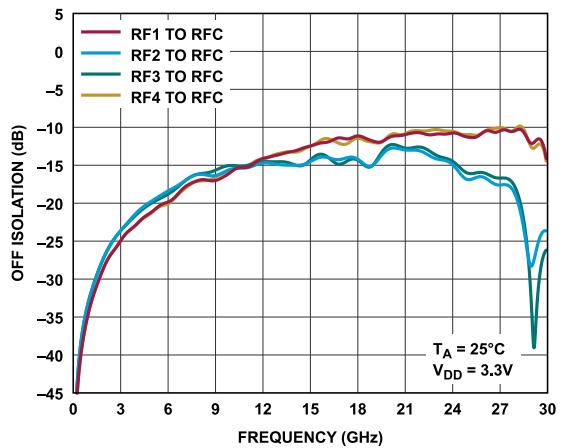
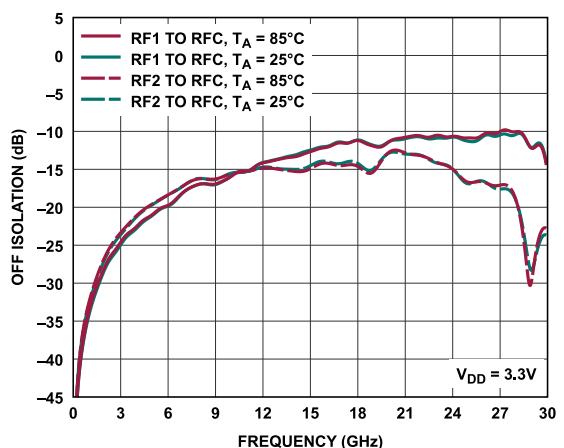
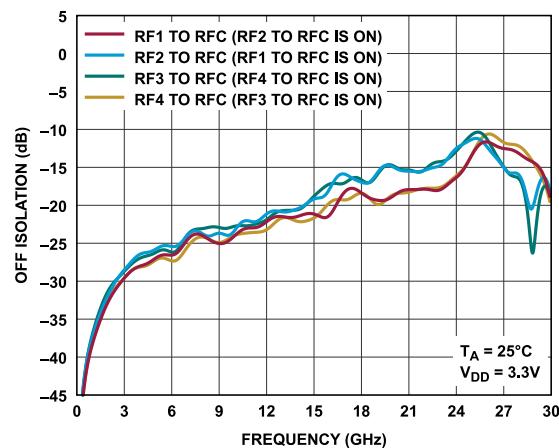
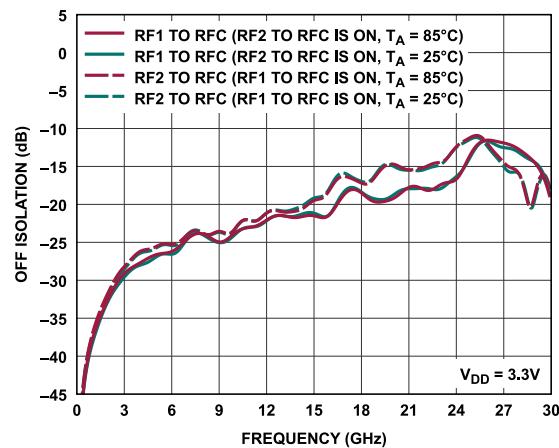



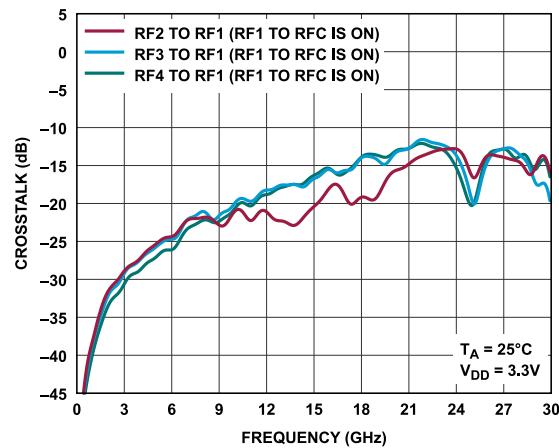
Figure 32. Off Isolation vs. Frequency (All Channels Off)

206

207

Figure 33. Off Isolation vs. Frequency over Temperature (All Channels Off)


Figure 34. Off Isolation vs. Frequency (One Channel On)

208

209

Figure 35. Off Isolation vs. Frequency over Temperature (One Channel On)

211

Figure 36. Crosstalk vs. Frequency (RF1 to RFC Is On)

TYPICAL PERFORMANCE CHARACTERISTICS

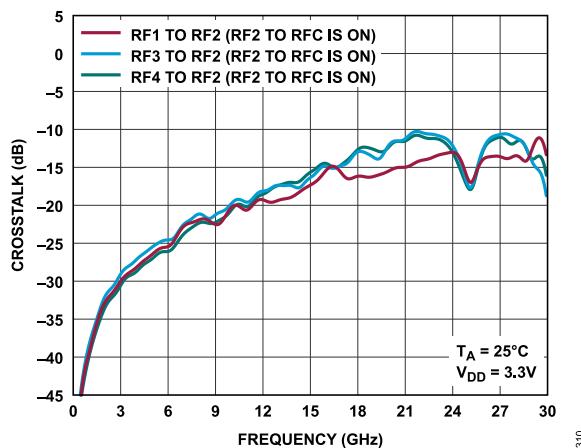


Figure 37. Crosstalk vs. Frequency (RF2 to RFC Is On)

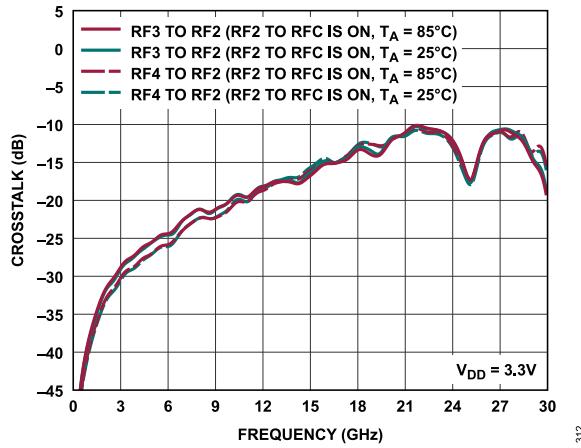


Figure 38. Crosstalk vs. Frequency over Temperature (RF2 to RFC Is On)

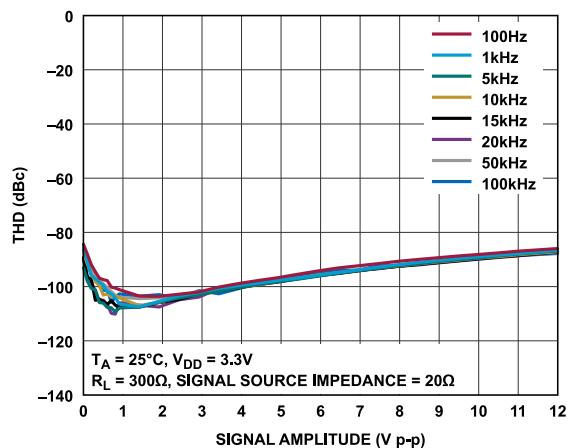


Figure 39. THD vs. Signal Amplitude

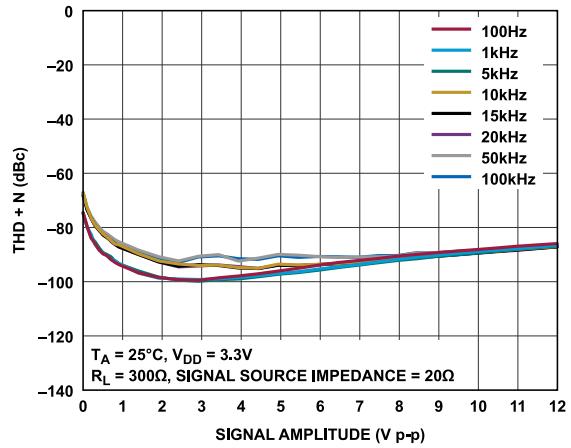


Figure 40. THD + N vs. Signal Amplitude

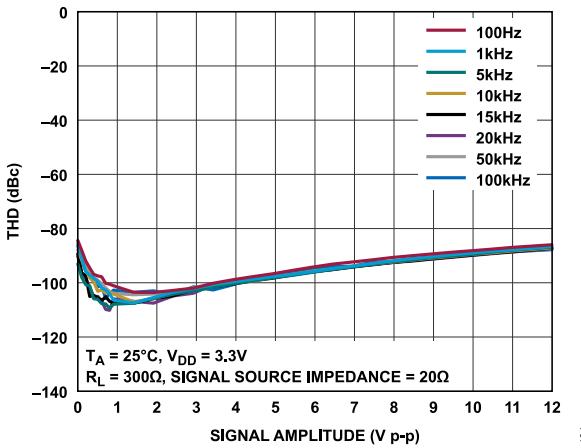
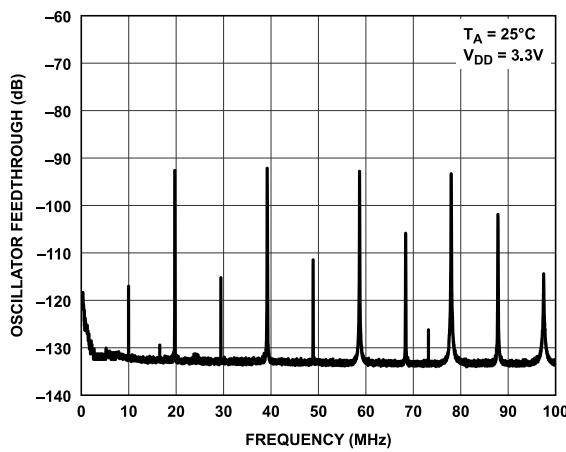
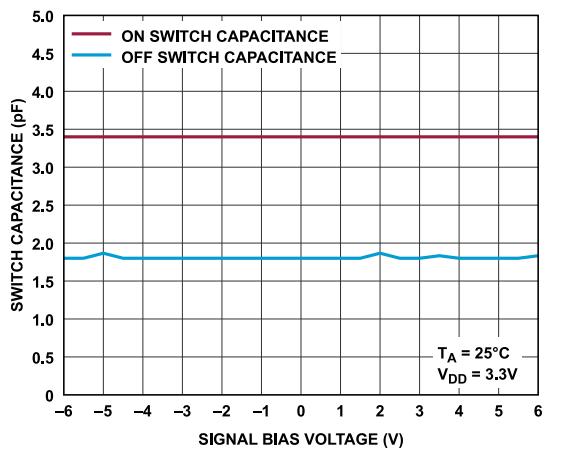
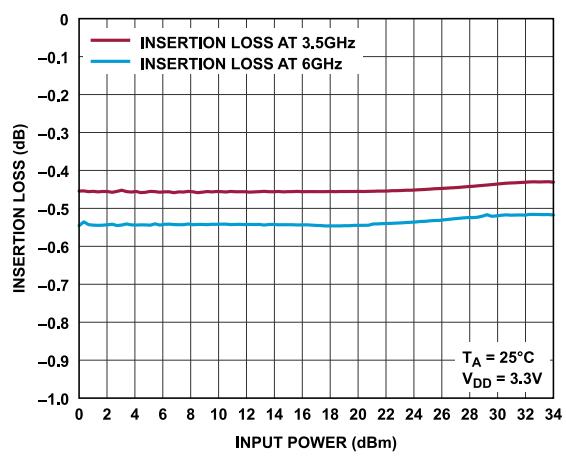
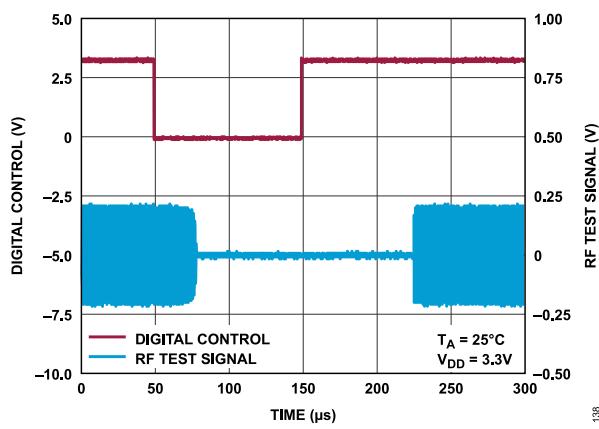
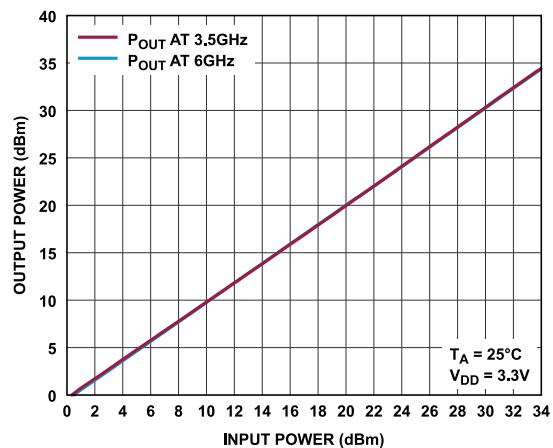
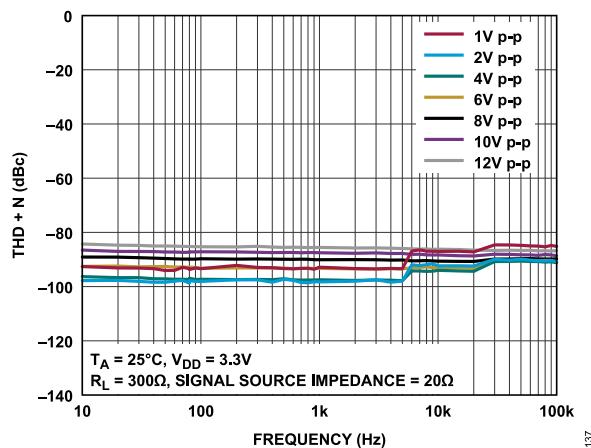








Figure 41. THD vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

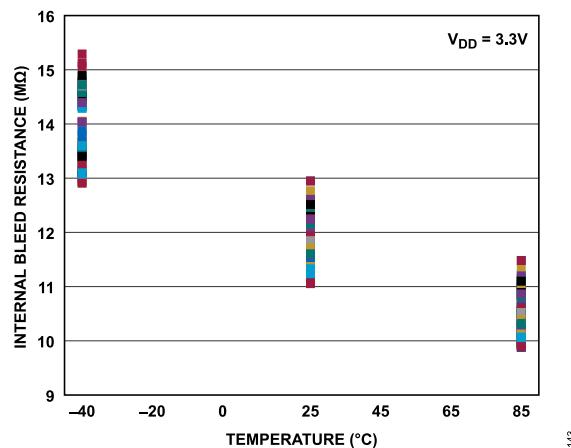
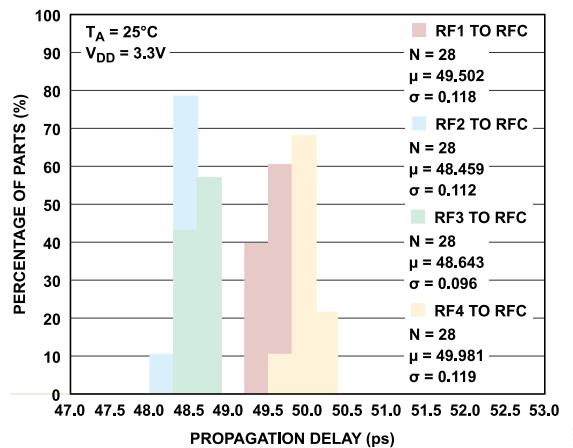
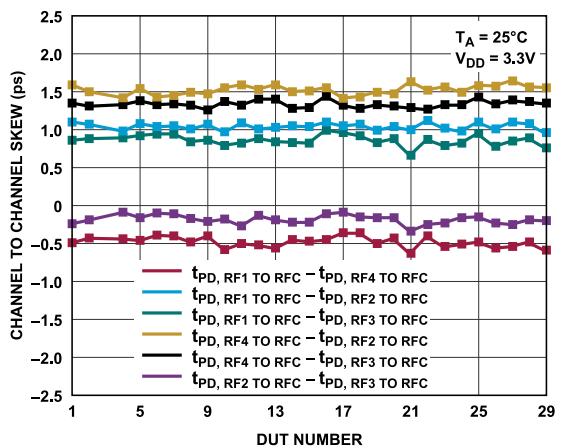
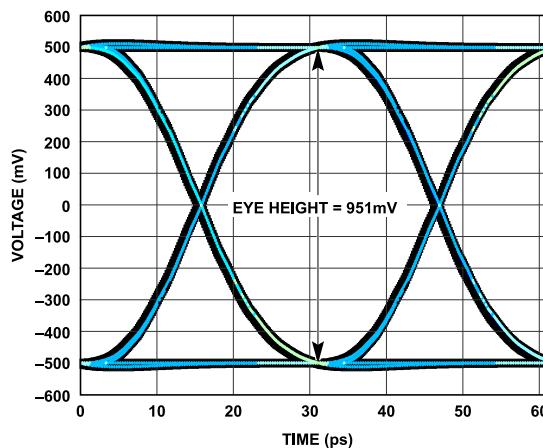


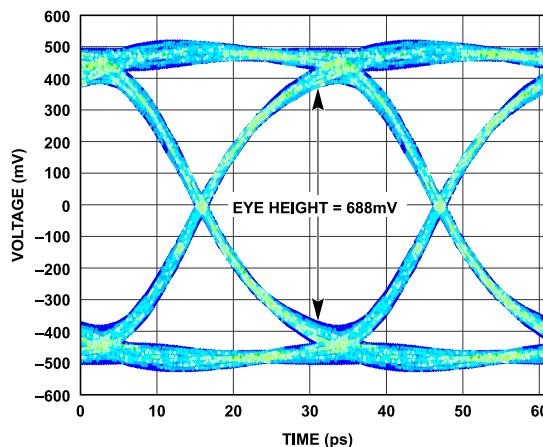
Figure 48. Internal Bleed Resistor Distribution over Temperature

143


Figure 49. Propagation Delay Histogram

400



401

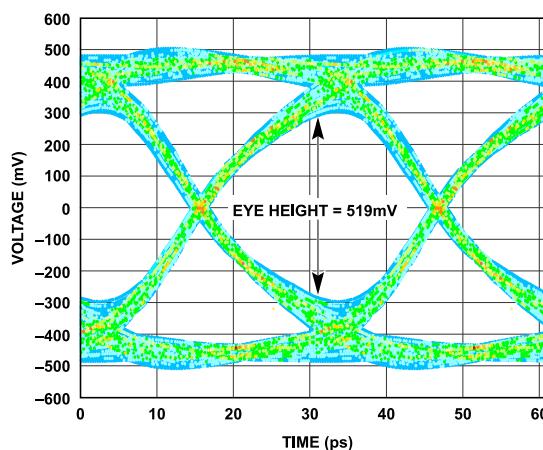
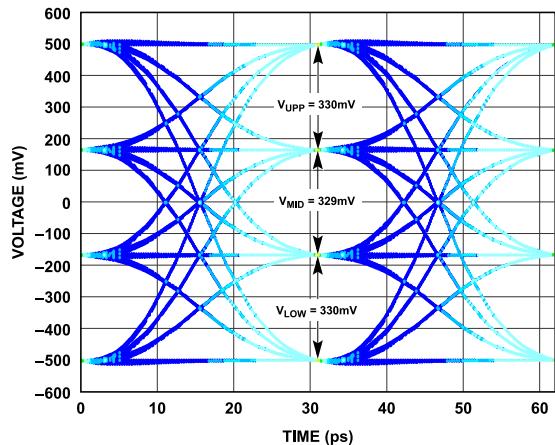

Figure 50. Channel-to-Channel Propagation Delay Skew Across Multiple Devices

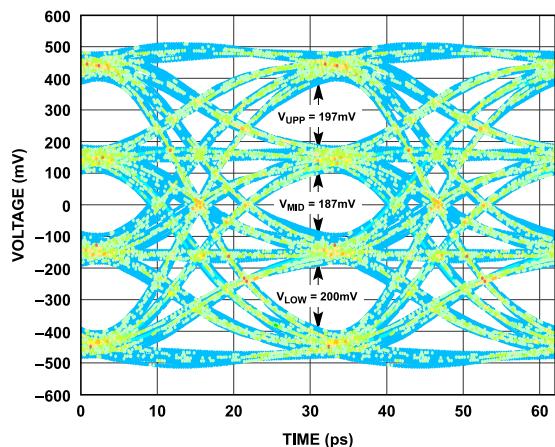
Figure 51. Reference Eye Diagram at 32Gbps (Non-Return-to-Zero (NRZ), $T_{RISE}/T_{FALL} = 12\text{ps}$)

220

Figure 52. Eye Diagram at 32Gbps (NRZ, $T_{RISE}/T_{FALL} = 12\text{ ps}$, Signal Thru 1 \times ADGM3144)


221

222


Figure 53. Eye Diagram at 32Gbps (NRZ, $T_{RISE}/T_{FALL} = 12\text{ps}$, Signal Thru 2 \times ADGM3144 in Loopback Configuration)

TYPICAL PERFORMANCE CHARACTERISTICS

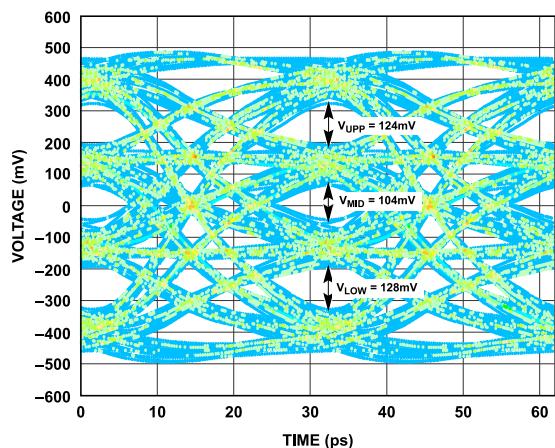

223

Figure 54. Reference Eye Diagram at 64Gbps (Pattern Used Pulse Amplitude Modulation 4-Level (PAM4), $T_{RISE}/T_{FALL} = 12\text{ps}$)

224

Figure 55. Eye Diagram at 64Gbps (PAM4, $T_{RISE}/T_{FALL} = 12\text{ps}$, Signal Thru 1 x ADGM3144)

225

Figure 56. Eye Diagram at 64Gbps (PAM4, $T_{RISE}/T_{FALL} = 12\text{ps}$, Signal Thru 2 x ADGM3144 in Loopback Configuration)

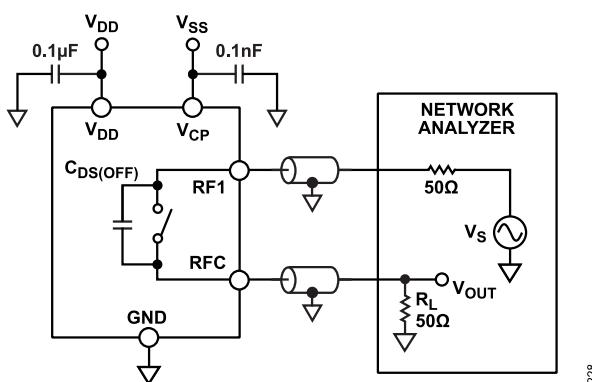
TEST CIRCUITS

DERIVING $C_{DS(OFF)}$ FROM OFF ISOLATION

The following equations are used to derive $C_{DS(OFF)}$ from off isolation measurements taken using the test circuit in Figure 57.

$$OFF\ ISOLATION = 20\log\frac{V_{OUT}}{V_S} \quad (1)$$

$$C_{DS(OFF)} = \frac{1}{2\pi f R_L} \left(\frac{2}{10^{OFFISO/20} - 1} \right) \quad (2)$$


where:

$C_{DS(OFF)}$ is the switch capacitance seen through the switch when all switches are off.

f is the signal frequency.

R_L is the 50 Ω load resistance.

$OFFISO$ is the measured off isolation.

228

Figure 57. Off Isolation Measurement Test Circuit and $C_{DS(OFF)}$ Derivation

THEORY OF OPERATION

SWITCH DESIGN

The ADGM3144 is a wideband SP4T switch fabricated using Analog Devices' MEMS switch technology. This technology enables high power, low loss, low distortion gigahertz switches to be realized for demanding RF applications.

A key strength of the MEMS switch is that it simultaneously brings together best-in-class high frequency RF performance and 0Hz/DC precision performance. This combination coupled with superior reliability and a tiny surface mountable form factor make the MEMS switch the ideal switching solution for all RF and precision signal instrumentation needs.

The switches are electrostatically actuated MEMS structures. An on board charge pump internally generates the bias voltage (80V) used for actuation of the switch.

Table 7. Truth Table in Parallel Digital Interface Mode

IN1	IN2	IN3	IN4	RF1 to RFC	RF2 to RFC	RF3 to RFC	RF4 to RFC
0	0	0	0	Off	Off	Off	Off
0	0	0	1	Off	Off	Off	On
0	0	1	0	Off	Off	On	Off
0	0	1	1	Off	Off	On	On
0	1	0	0	Off	On	Off	Off
0	1	0	1	Off	On	Off	On
0	1	1	0	Off	On	On	Off
0	1	1	1	Off	On	On	On
1	0	0	0	On	Off	Off	Off
1	0	0	1	On	Off	Off	On
1	0	1	0	On	Off	On	Off
1	0	1	1	On	Off	On	On
1	1	0	0	On	On	Off	Off
1	1	0	1	On	On	On	Off
1	1	1	0	On	On	On	Off
1	1	1	1	On	On	On	On

PARALLEL DIGITAL INTERFACE

The ADGM3144 can be controlled through a parallel interface. Standard complementary metal-oxide semiconductor (CMOS) or low voltage transistor-transistor logic (LVTTL) signals applied through this interface control the independent actuation or release of all the switch channels of the ADGM3144.

Setting Pin 19 (PIN/SPI) low enables the parallel control interface. Pin 20, Pin 21, Pin 22, and Pin 23 (IN1, IN2, IN3, and IN4) control the switching functions of the ADGM3144. When a Logic 1 is applied to one of these pins, the corresponding switch turns on. Conversely, when a Logic 0 is applied, the switch turns off. See [Table 7](#) for the truth table.

When no supply voltage is applied to Pin 1 (V_{DD}), all switches are in an indeterminate state.

THEORY OF OPERATION

SPI DIGITAL INTERFACE

The ADGM3144 can be controlled through an SPI digital interface when Pin 19 (PIN/SPI) is high. SPI Mode 0 or Mode 3 can be used with the device, and it operates with SCLK frequencies up to 10MHz. The default mode when the SPI is active is the addressable mode, in which the devices registers are accessed by a 16-bit SPI command bounded by the state of \overline{CS} . The ADGM3144 can also operate in the daisy-chain mode.

The SPI pins of the ADGM3144 are \overline{CS} , SCLK, SDI, and SDO. Hold \overline{CS} low when using the SPI. Data is captured on SDI on the rising edge of SCLK and data is propagated out on SDO on the falling edge of SCLK. SDO has a push-pull output driver architecture. So, it does not require pull-up resistors. When not pulled low by the ADGM3144, SDO is in a high-impedance state.

Addressable Mode

The addressable mode is the default mode for the ADGM3144 upon power up. A single SPI frame in the addressable mode is bound by a \overline{CS} falling edge and the succeeding \overline{CS} rising edge. It comprises 16 SCLK cycles. [Figure 58](#) shows the timing diagram for addressable mode for SPI Mode 0.

The first SDI bit indicates if the SPI command is a read or write command. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command as during these clock cycles SDO propagates out the data contained in the addressed register.

In Mode 0, during any SPI command, SDO sends out eight alignment bits on the \overline{CS} falling edge and the first seven SCLK falling edges (in Mode 3, the first SCLK falling edge is ignored, as shown in [Figure 59](#)). The alignment bits observed at SDO are 0x25.

The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from this register propagates out on SDO from the eighth to the fifteenth SCLK falling edge during SPI reads. A register write occurs on the 16th SCLK rising edge during SPI writes.

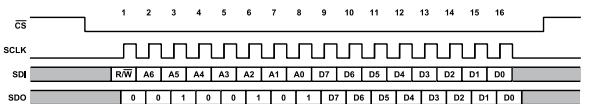


Figure 58. Addressable Mode Timing Diagram (Mode 0)

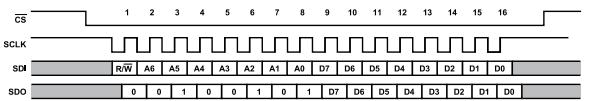


Figure 59. Addressable Mode Timing Diagram (Mode 3)

Daisy-Chain Mode

The connection of several ADGM3144 devices in a daisy-chain configuration is possible. All devices share the same \overline{CS} and SCLK line while the SDO of a device forms a connection to the SDI of the next device, creating a shift register. In the daisy-chain mode, SDO is an 8-cycle delayed version of SDI.

The ADGM3144 may only enter the daisy-chain mode from the addressable mode by sending the 16-bit SPI command, 0x2500. See [Figure 60](#) for an example of this. When the ADGM3144 receives this command, the SDO of devices sends out the same command. This is because the alignment bits at SDO are 0x25. This allows multiple daisy-connected devices to enter the daisy-chain mode in a single SPI frame. A hardware reset is required to exit the daisy-chain mode.

For the timing diagram of a typical daisy-chain SPI frame, see [Figure 61](#). When \overline{CS} goes high, Device1 writes Command0 [7:0] to its switch data register, Device 2 writes Command1 [7:0] to its switches, and so on. The SPI block uses the last eight bits it received through SDI to update the switches. After entering the daisy-chain mode, the first eight bits sent out by SDO are 0x00. When \overline{CS} goes high, the internal shift register value does not reset to zero.

An SCLK rising edge reads in data on SDI while data is propagated out SDO on an SCLK falling edge. The expected number of SCLK cycles should be a multiple of eight before \overline{CS} goes high. When this is not the case, the SPI sends the last eight bits received to the switch data register.

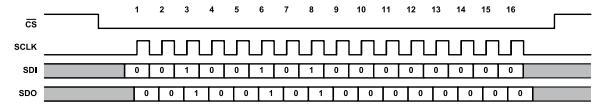


Figure 60. SPI Command to Enter the Daisy-Chain Mode

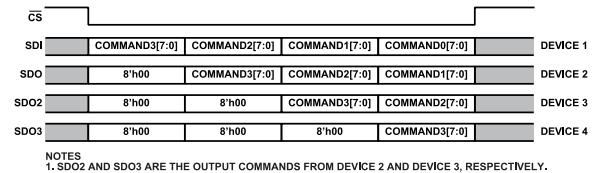


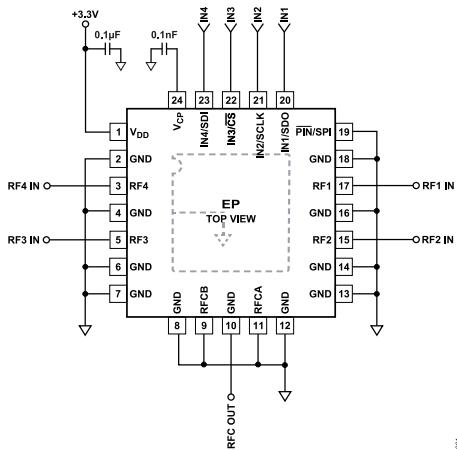
Figure 61. Example of an SPI Frame When Three ADGM3144 are Connected in the Daisy-Chain Mode

Hardware Reset

The digital section of the ADGM3144 goes through an initialization phase during V_{DD} power up. To hardware reset the part, power cycle the V_{DD} input. After power-up or a hardware reset, ensure there is a minimum of 10 μ s from the time of power-up or reset before any SPI command is issued. Ensure that V_{DD} does not drop out during the 10 μ s initialization phase because it may result in incorrect operation of the ADGM3144.

THEORY OF OPERATION

Internal Error Status


Where an internal error is detected in the part, it is flagged in the internal error status bits [7:6] of the SWITCH_DATA register. An internal error results from an error in the configuration of the part at power-up.

INTERNAL OSCILLATOR FEEDTHROUGH

The ADGM3144 has an internal oscillator running at a nominal 10MHz. This oscillator drives the charge pump circuitry that provides the actuation voltage for each of the switch gate electrodes. Although this oscillator is very low power, the 10MHz signal is coupled to the switch and can be considered a noise spur on the switch channels. The magnitude of this feedthrough noise spur is specified in [Table 1](#) and is typically -92.5dBm when one switch is on. The V_{DD} level and temperature changes affect the frequency of the noise spur. For the maximum and minimum frequency ranges over temperature and voltage supply range, see [Table 1](#).

TYPICAL OPERATING CIRCUIT

[Figure 62](#) shows the typical operating circuit for the ADGM3144. V_{DD} is connected to 3.3V. EP connects to GND internally. It is recommended to connect GND using one large pad on the PCB to short together GND with EP. [Figure 62](#) shows the ADGM3144 configured to use the internal oscillator as the reference clock to the driver IC control circuit. Decoupling capacitors are required on V_{CP} and V_{DD} . Place a 0.1nF capacitor rated to at least 100V DC as close as possible to V_{CP} . Place a 0.1 μ F capacitor rated to at least 16V DC as close as possible to V_{DD} .

[Figure 62. Typical Operating Circuit in the Parallel Digital Interface Mode](#)

APPLICATIONS INFORMATION

POWER SUPPLY RAILS

The ADGM3144 can operate with unipolar supplies between 3.0V and 3.6V. The device is fully specified at a 3.3V analog supply voltage.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

Figure 63 shows an example of a unipolar solution for the ADGM3144. The [ADP7142](#) is a low dropout linear regulator that operates from 2.7V to 40V and is ideal for the regulation of high performance analog and mixed-signal circuits operating from 3.9V down to 1.2V rails. The ADP7142 has 11 μ V rms output noise independent of the output voltage. The ADP7142 can be used to power the supply rail for the ADGM3144, a microcontroller, and/or other devices in the signal chain.

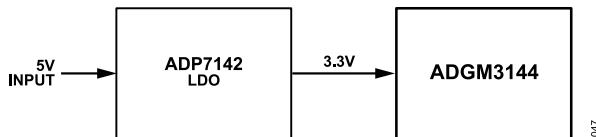


Figure 63. Unipolar Power Solution

If low noise performance at the power supply is required, the ADP7142 can be replaced by the [LT1962](#) or [LT3045-1](#).

Table 8. Recommended Power Management Devices

Product	Description
ADP7142	40V, 200mA, low noise, CMOS low dropout (LDO) linear regulator
LT1962	300mA, low noise, micropower, LDO regulator
LT3045-1	20V, 500mA, ultra-low noise, ultra-high power supply rejection ratio (PSRR) linear regulator with voltage for input to output control (VIOC)

HIGH-SPEED DIGITAL LOOPBACK

Testing high-speed input and output (HSIO) interfaces, such as peripheral component interconnect express (PCIe) Gen 4.0 and PCIe Gen 5.0, in a high volume manufacturing environment is a challenge. A common approach to validate an HSIO interface is the implementation of a high-speed loopback test method. This incorporates both high-speed and DC test paths in one configuration.

To perform high-speed loopback testing, generally a pseudorandom bit sequence (PRBS) is transmitted at high speed from the transmitter and received at the receiver end after being looped back on the load board or test board. At the receiver end, the sequence is analyzed to calculate the bit error rate (BER).

DC parametric tests are performed on the input and output pins, such as a continuity test and a leakage test, to ensure device

functionality. To perform these tests, the input/output pins of the DUT must be connected directly to a DC instrument where the DC measurement of the input/output pin is executed.

The ADGM3144 offers both high speed digital and DC testing capability with superior density in a small 3mm × 3mm × 1.5mm LGA package, as shown in **Figure 64**. The MEMS switch also enables communication from the tester to the device under test (DUT). The ADGM3144 provides excellent performance from DC to 16GHz, which allows the switch to handle both high-speed signals up to 64Gbps and precision DC signals.

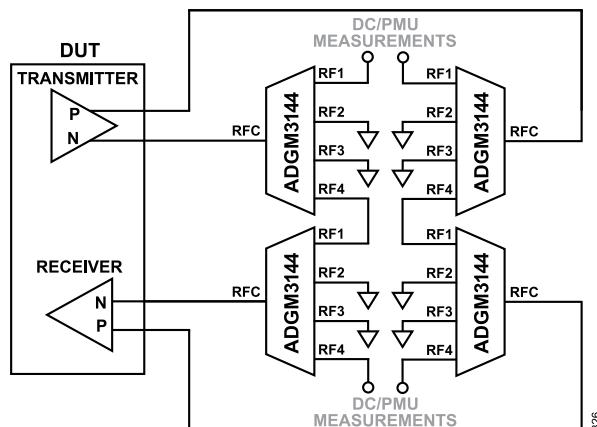


Figure 64. ADGM3144 Enabling Both High-Speed Digital and DC Testing

SWITCHABLE RF ATTENUATOR

It is common to see RF attenuator networks used in RF instrumentation equipment, such as vector network analyzers, spectrum analyzers, and signal generators. Routing RF signals through an attenuator enables the equipment to accept higher power signals and increase the dynamic range of the instrument. In RF attenuation applications, such as vector network analyzers, spectrum analyzers, and signal generators, maintaining the bandwidth of the signal after it passes through the network is critical. Any degradation of the signal reduces the performance of the equipment. Therefore, the RF characteristics of the switches used for routing are integral to the quality of an attenuator network.

The ADGM3144 MEMS switch is suited for use as a switchable RF attenuator due to its low flat insertion loss, wide RF bandwidth, and high reliability. The ADGM3144, as an SP4T switch, also provides added flexibility. **Figure 65** shows an example of an attenuation network configuration using two ADGM3144 switches and three different attenuators. The fourth channel of the switches is used as a nonattenuated route.

APPLICATIONS INFORMATION

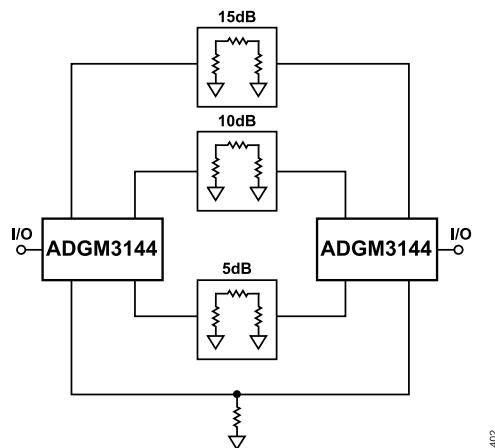


Figure 65. Switching RF Attenuators Using ADGM3144 MEMS Switches

CRITICAL OPERATIONAL REQUIREMENTS

SYSTEM ERROR CONSIDERATIONS DUE TO ON-RESISTANCE DRIFT

The on-resistance (R_{ON}) performance of the ADGM3144 is affected by part-to-part variation, channel-to-channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

In a 50Ω system, the on-resistance drift over switch actuations (ΔR_{ON}) can introduce system inaccuracy. Figure 66 shows the ADGM3144 connected with the load in a 50Ω system, where R_S is the source impedance. To calculate the system error caused by the ADGM3144 ΔR_{ON} , use the following equation:

$$\text{System Error (\%)} = \Delta R / R_{LOAD}$$

where:

ΔR is the ADGM3144 ΔR_{ON} .

R_{LOAD} is the load impedance.

The ADGM3144 ΔR_{ON} also affects insertion loss, which must be considered when using the device. To calculate the on-resistance impact on insertion loss, use the following equation:

$$\text{Insertion Loss} = 10\log (1 + (\Delta R / R_{LOAD}))$$

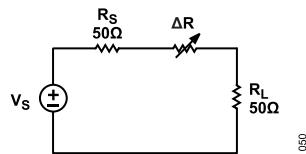


Figure 66. 50Ω System Representation Where the ADGM3144 Is Connected with the Load

Table 9. System Error and Insertion Loss Error Due to ADGM3144 R_{ON} Drift

System Error		
On-Resistance Drift (%)		Insertion Loss Error (dB)
0.7	1.4	0.06
2	4	0.17

The ΔR_{ON} over time specification is -0.32Ω (maximum) measured after 100ms, as shown in Figure 13 to Figure 20. According to the plots, the R_{ON} drifts over time is -0.06Ω (typical) after 100ms. The R_{ON} of the ADGM3144 typically drifts by -0.04Ω per decade. For example, after 100ms, the R_{ON} drifts -0.06Ω . After 1s, the R_{ON} drifts -0.1Ω . And after 10s, it drifts -0.14Ω . Therefore, after 1000s, the R_{ON} is expected to drift by -0.22Ω .

ON-RESISTANCE SHIFT DUE TO TEMPERATURE SHOCK POST ACTUATIONS

When the switch is actuated multiple times at one temperature, if there is a sudden shift from this temperature, a large shift is shown in the switch R_{ON} . Figure 67 shows the absolute R_{ON} performance of the population of devices over different number of actuations. During this measurement, the switch is actuated at 85°C and the switch R_{ON} is measured at 25°C . Actuating the switch at 85°C

and measuring R_{ON} at 25°C is the most severe condition for the ADGM3144 ΔR_{ON} over actuations.

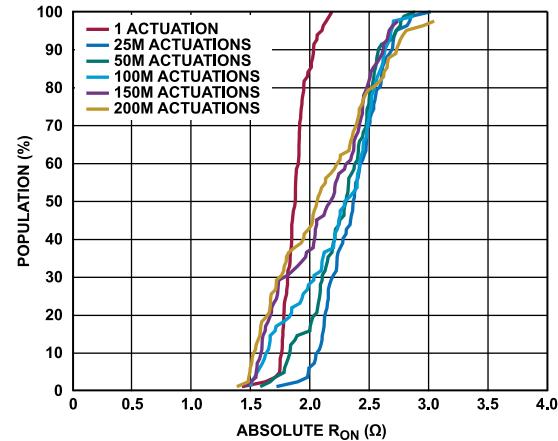
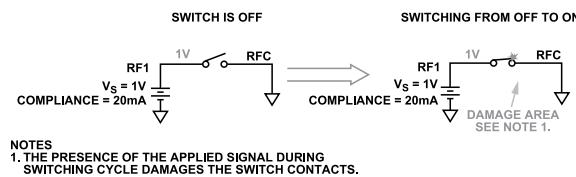
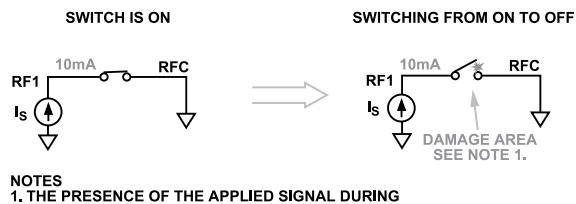



Figure 67. Population vs. Absolute R_{ON} , Switch Actuated at 85°C and R_{ON} Measured at 25°C , Actuation Frequency = 289Hz, V_{DD} = 3.3V

HOT SWITCHING

Hot switching occurs by cycling the switch on or off with an excessive voltage or current applied to the switch. The presence of the applied signal during the switching cycle damages the switch contacts. Hot switching damage is dependent on the current or the voltage levels. Hot switching causes a significant reduction in the cycle lifetime of the switch, as shown in Figure 71 and Figure 73. Figure 68 shows the hot switching condition when the switch is turned on with 1V present at the switch terminal during switching. With a voltage across an off switch, damage can occur as the contact or switch closes.



NOTES
1. THE PRESENCE OF THE APPLIED SIGNAL DURING SWITCHING CYCLE DAMAGES THE SWITCH CONTACTS.

052

Figure 68. Hot Switching Condition When Turning the Switch from Off to On

Figure 69 shows the hot switching condition when the switch is turned off with 10mA passing through the switch during switching. With current passing through an on switch, damage can occur as the contact or switch opens.

NOTES
1. THE PRESENCE OF THE APPLIED SIGNAL DURING SWITCHING CYCLE DAMAGES THE SWITCH CONTACTS.

053

Figure 69. Hot Switching Condition When Turning the Switch from On to Off

CRITICAL OPERATIONAL REQUIREMENTS

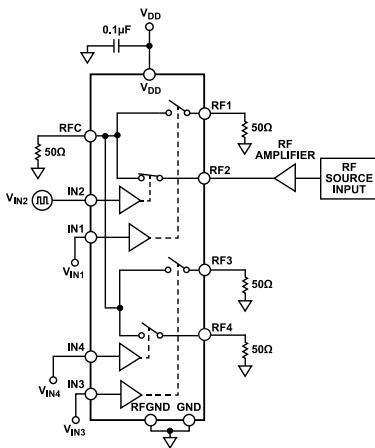


Figure 70. RF Hot Switching Setup

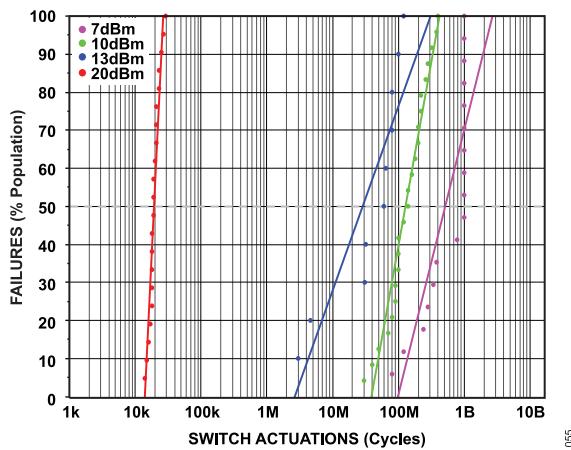


Figure 71. RF Hot Switching Probability Distribution on Log Normal (RF Power = Continuous Wave, Terminated into 50 Ή, T_A = 25°C, V_DD = 3.3 V)

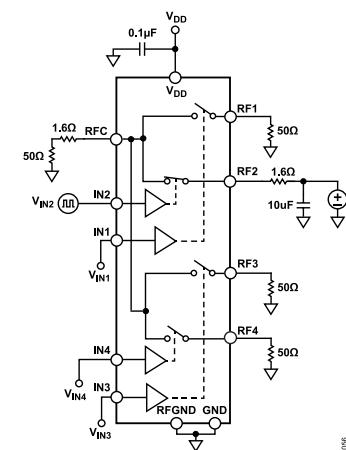


Figure 72. DC Hot Switching Setup

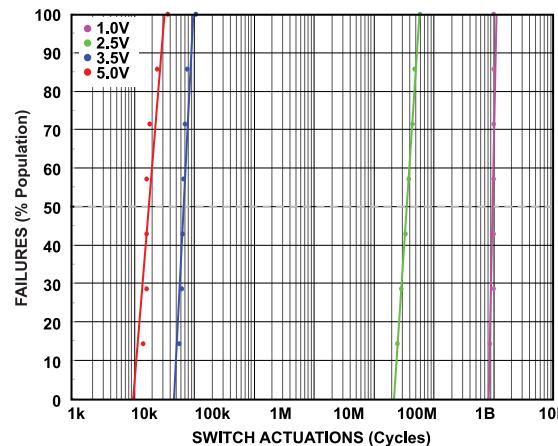


Figure 73. DC Hot Switching Probability Distribution on Log Normal (Terminated into 50 Ή, T_A = 25°C, V_DD = 3.3 V)

HANDLING PRECAUTIONS

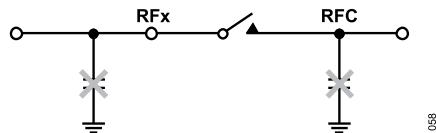
ESD Precautions

All RFx and RFC pins of the ADGM3144 pass the following ESD limits:

- ▶ 150V, Class 0B HBM, ANSI/ESDA/JEDEC JS-001-2010
- ▶ 1kV Class C3 FICDM ANSI/ESDA/JEDEC JS-002

All RFx and RFC¹ pins are rated to 1kV FICDM, making the device safe for automated handling and assembly process. Standard ESD precautions should be taken during manufacturing.

150V HBM rating of ADGM3144 is susceptible to ESD surge due to human body contact. ESD protection should be added if human body contact is expected.

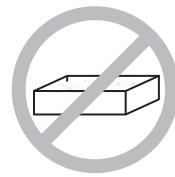

¹ RFx is RF1, RF2, RF3, and RF4.

CRITICAL OPERATIONAL REQUIREMENTS

Electrical Overstress (EOS) Precautions

ADGM3144 is susceptible to EOS. Therefore, observe the following precautions:

- ▶ The ADGM3144 is an ESD-sensitive device. Observe all normal handling precautions, including working only on static dissipative surfaces, wearing wrist straps or other ESD control devices, and storing unused devices in conductive foam.
- ▶ Avoid running measurement instruments, such as digital multimeters (DMMs), in autorange modes. Some instruments can generate large transient compliance voltages when switching between ranges.
- ▶ Use the highest practical DMM range setting (the lowest resolution) for resistance measurements to minimize compliance voltages, particularly during switching.
- ▶ Coaxial cables can store charge and lead to EOS when directly connected to the switch. Discharge cables before connecting directly to the switch.
- ▶ Avoid connecting capacitive terminations directly to the switch, as shown in [Figure 74](#). A shunt capacitor can store a charge that can potentially lead to hot switching events when the switch opens or closes, affecting the lifetime of the switch.


Figure 74. Avoid Large Capacitor Directly Connected to the Switch

Mechanical Shock Precautions

The ADGM3144 passes Group D mechanical shocks tests, as detailed in [Absolute Maximum Ratings](#). These tests validate the robustness of the device to normal mechanical shocks.

The device should not be used if dropped. To reduce excessive mechanical shock and ESD events, avoid handling of loose devices, as outlined in [Figure 75](#).

NOT RECOMMENDED

DEVICES STORED BULK
IN BINS

DEVICES DUMPED OUT
ON BENCHTOP

DEVICE DROPPED

058

Figure 75. Situations to Avoid During Handling

REGISTER SUMMARY**Table 10. Register Summary**

Register (Hex)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	R/W
0x20	SWITCH_DATA		INTERNAL_ERROR		RESERVED			SWITCH_DATA		0x00	R/W

REGISTER DETAILS

SWITCH DATA REGISTER

Address: 0x20, Reset: 0x00, Name: SWITCH_DATA

The switch data register controls the status of the four switches of the ADGM3144.

Table 11. Bit Descriptions for SWITCH_DATA

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	INTERNAL_ERROR		<p>These bits determine if an internal error has occurred.</p> <p>00 No error detected.</p> <p>01 Error detected.</p> <p>10 Error detected.</p> <p>11 Error detected.</p>	0x0	R
[5:4]	RESERVED		These bits are reserved; set these bits to 0.	0x0	R
3	SW1_EN		<p>Enable bit for Switch 1.</p> <p>0 Switch RF1 open.</p> <p>1 Switch RF1 closed.</p>	0x0	R/W
2	SW2_EN		<p>Enable bit for Switch 2.</p> <p>0 Switch RF2 open.</p> <p>1 Switch RF2 closed.</p>	0x0	R/W
1	SW3_EN		<p>Enable bit for Switch 3.</p> <p>0 Switch RF3 open.</p> <p>1 Switch RF3 closed.</p>	0x0	R/W
0	SW4_EN		<p>Enable bit for Switch 4.</p> <p>0 Switch RF4 open.</p> <p>1 Switch RF4 closed.</p>	0x0	R/W

OUTLINE DIMENSIONS

Package Drawing Option	Package Type	Package Description
CC-24-23	LGA	24-Lead Land Grid Array Package

For the latest package outline information and land patterns (footprints), go to [Package Index](#).

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADGM3144BCCZ	-40°C to +85°C	24-Terminal Land Grid Array [LGA]	Tray, 490	CC-24-23
ADGM3144BCCZ-R2	-40°C to +85°C	24-Terminal Land Grid Array [LGA]	Reel, 250	CC-24-23
ADGM3144BCCZ-RL7	-40°C to +85°C	24-Terminal Land Grid Array [LGA]	Reel, 1500	CC-24-23

¹ Z = RoHS Compliant Part.

Legal Terms and Conditions

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. All Analog Devices products contained herein are subject to release and availability.