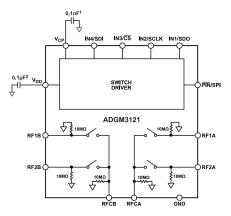


3mm × 3mm DPDT MEMS Switch, 0Hz/DC to 24GHz


FEATURES

- ► -3dB frequency bandwidth:
 - ▶ RF1A and RF1B: 24GHz
 - ▶ RF2A and RF2B: 22GHz
- ▶ High bit rate capability up to 64Gbps
- ▶ RF performance characteristics
 - ▶ Channel RF1A and Channel RF1B:
 - ▶ Insertion loss: 0.5dB (typical) at 6GHz
 - Return loss: 24dB (typical) at 6GHz
 - ▶ Isolation: 24dB (typical) at 6GHz
 - Channel RF2A and Channel RF2B:
 - Insertion loss: 0.4dB (typical) at 6GHz
 - ▶ Return loss: 29dB (typical) at 6GHz
 - ▶ Isolation: 26dB (typical) at 6GHz
- ▶ High input IIP3: 70dBm (typical)
- ▶ High RF power handling: 33dBm (maximum)
- ► On resistance: 1.9Ω (typical)
- ▶ High DC current handling: 200mA
- ► High switch cycle count: 100 million cycles (minimum at +85°C)
- ► Fast switching time: 200µs T_{ON} (maximum)
- Integrated 3.3V driver for simple control with parallel interface and SPI
- Space saving integrated passive shunt resistors
- ► Small 3mm × 3mm × 1.5mm, 24-lead land grid array package
- ▶ Temperature range: -40°C to +85°C

APPLICATIONS

- ATE load and probe boards
- ▶ DC with high speed loopback testing
- Supports digital standards: high speed serialization/deserialization, PCle Gen4/Gen5/Gen6, USB 4, and PAM 4
- ▶ Relay replacements
- Reconfigurable filters and attenuators
- Military and microwave radios
- ▶ Cellular infrastructure: 5G mmWave

FUNCTIONAL BLOCK DIAGRAM

10.1nF DECOUPLING CAPACITOR ON V_{CP} SHOULD BE RATED UP TO AT LEAST 100V DC.
20.1µF DECOUPLING CAPACITOR ON V_{DD} SHOULD BE RATED UP TO AT LEAST 16V DC.

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADGM3121 is a wideband, double-pole, double-throw (DPDT) switch, fabricated using Analog Devices, Inc., microelectromechanical system (MEMS) switch technology. This technology enables a small form factor, wide RF bandwidth, highly linear, low insertion loss switch that is operational down to 0Hz/DC, making it an ideal solution for a wide range of RF and precision equipment switching needs.

An integrated driver chip generates a high voltage to electrostatically actuate switch that can be controlled by a parallel interface or a serial peripheral interface (SPI). All switches are independently controllable.

The device is packaged in a 24-lead, 3mm × 3mm × 1.5mm land grid array package. To ensure optimum operation of the ADGM3121 refer to the Critical Operational Requirements section.

The on-resistance (R_{ON}) performance of the ADGM3121 is affected by part-to-part variation, channel-to-channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

COMPANION PRODUCTS

- ▶ Quad PMU : AD5522
- ► SP4T MEMS switch: ADGM3144, ADGM1144, ADGM1304, ADGM1004
- ▶ Low noise, LDO regulators: ADP7142, LT1962, LT3045-1

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Companion Products	1
Specifications	3
Timing Characteristics	8
Absolute Maximum Ratings	10
Thermal Resistance	10
Electrostatic Discharge (ESD) Ratings	10
ESD Caution	10
Pin Configuration and Function Descriptions	11
Typical Performance Characteristics	12
Test Circuits	22
Deriving C _{DS(OFF)} from Off Isolation	22
Theory of Operation	
Switch Design	23
Parallel Digital Interface	23
SPI Digital Interface	24
Internal Oscillator Feedthrough	25
Typical Operating Circuit	25

Applications Information	26
Power Supply Rails	26
Power Supply Recommendations	26
High-Speed Digital Loopback	
Pin Electronics (PE) and Parametric	
Measurement Unit (PMU) Signal Switching	26
General RF, DC, and Mixed Signal Switching	. 27
Critical Operational Requirements	.28
System Error Considerations Due to	
On-Resistance Drift	.28
On-Resistance Shift Due To Temperature	
Shock Post Actuations	28
Hot Switching	28
Handling Precautions	29
Register Summary	.31
Register Details	32
Switch Data Register	
Outline Dimensions	33
Ordering Guide	.33
Evaluation Board	3.3

REVISION HISTORY

12/2025—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 33

SPECIFICATIONS

 V_{DD} = 3.0V to 3.6V, GND = 0V, and all specifications at 25°C, unless otherwise noted.

Table 1. Specifications

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
ON-RESISTANCE PROPERTIES						
Initial On-Resistance Properties						
On-Resistance	R _{ON}		1.9	3	Ω	Drain source current (I _{DS}) = 50mA, 0V input bias, at 1ms after first actuation, maximum specification from -40°C to 85°C
On-Resistance Match Between Channels	ΔR _{ON} ch_ch			0.8	Ω	Maximum value tested from −40°C to 85°C
On-Resistance Drift	_					
Over Time	ΔR _{ON TIME}			-0.32	Ω	R _{ON} changed from 1ms to 100ms after first actuation, maximum value tested from -40°C to 85°C
Over Actuations	ΔR _{ON}		0.2	0.32	Ω	Absolute change after 10 ⁶ actuations, switch is actuated at 25°C and R _{ON} is measured at 25°C
			±0.7		Ω	Absolute change after 100 × 10^6 actuations, switch is actuated at 25°C and R $_{ON}$ is measured at 25°C
				2	Ω	Absolute change after 100×10^6 actuations, switch is actuated at 85° C and R_{ON} is measured at 25° C, actuation frequency = 289 Hz
RELIABILITY PROPERTIES						
Continuously On Lifetime			10		Years	Time before failure ³ at 85°C
Actuation Lifetime						
Cold Switched		100 × 10 ⁶	500 × 10 ⁶		Actuations	Load between toggling is 150mA, tested at 85°C.
RF Hot Switched						RF power = continuous wave (CW), terminated into 50Ω , 50% of test population failure point (T50)
7dBm			500 × 10 ⁶		Actuations	
10dBm			150 × 10 ⁶		Actuations	
13dBm			30 × 10 ⁶		Actuations	
20dBm			20×10^{3}		Actuations	
DC Hot Switched						Terminated into 50Ω , RFxx load capacitance = 10μ F, 50% of test population failure point (T50)
0.5V or 9mA			500 × 10 ⁶		Actuations	
1V or 18mA			500 × 10 ⁶		Actuations	
2.5V or 46mA			35 × 10 ⁶		Actuations	
3.5V or 65mA			6.5 × 10 ³		Actuations	
5V or 93mA			2 × 10 ³		7 10100110110	
DYNAMIC CHARACTERISTICS						
Single-Ended Performance (RF1A/RF1B)						
Operational Frequency Range			24		GHz	RF1A/RF1B, -3dB bandwidth
Insertion Loss	IL		- 1		0112	RF1A to RFCA, RF1B to RFCB
			0.27		dB	DC to 2.5GHz
			0.5		dB	2.5GHz to 6GHz
			0.3		dB	6GHz to 10GHz
			1.42		dB	10GHz to 16GHz
			2.8		dB	16GHz to 24GHz
			۷.0		UD	100072 10 24072

analog.com Rev. 0 | 3 of 33

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
Isolation	ISO					RF1A to RFCA, RF1B to RFCB, with at least
						one switch on
			29		dB	DC to 2.5GHz
			24		dB	2.5GHz to 6GHz
			20		dB	6GHz to 10GHz
			16		dB	10GHz to 16GHz
			11		dB	16GHz to 24GHz
Crosstalk	СТК					RF1A to RF1B, RFCA to RFCB
			29		dB	DC to 2.5GHz
			23		dB	2.5GHz to 6GHz
			20		dB	6GHz to 10GHz
			17		dB	10GHz to 16GHz
			12		dB	16GHz to 24GHz
Return Loss	RL		12		ub	Measured at RF1A and RF1B
Noturn 2033	IXL		34		dB	DC to 2.5GHz
			24		dB	2.5GHz to 6GHz
			17		dB	6GHz to 10GHz
		1	13		dB	10GHz to 16GHz
0: 5 0 (0504/0500)			13		dB	16GHz to 24GHz
Single-Ended Performance (RF2A/RF2B)						
Operational Frequency Range			22		GHz	RF2A/RF2B, -3dB bandwidth
Insertion Loss	IL					RF2A to RFCA, RF2B to RFCB
			0.2		dB	DC to 2.5GHz
			0.4		dB	2.5GHz to 6GHz
			0.56		dB	6GHz to 10GHz
			1.32		dB	10GHz to 16GHz
			4.12		dB	16GHz to 24GHz
Isolation	ISO					RF2A to RFCA, RF2B to RFCB, with at least one switch on
			31		dB	DC to 2.5GHz
			26		dB	2.5GHz to 6GHz
			23		dB	6GHz to 10GHz
			19		dB	10GHz to 16GHz
			13		dB	16GHz to 24GHz
Crosstalk	СТК					RF2A to RF2B, RFCA to RFCB
			31		dB	DC to 2.5GHz
			25		dB	2.5GHz to 6GHz
			20		dB	6GHz to 10GHz
			15		dB	10GHz to 16GHz
			9		dB	16GHz to 24GHz
Return Loss	DI		J		ub	
Return LOSS	RL		22		4D	Measured at RF2A and RF2B
			33		dB	DC to 2.5GHz
			29		dB	2.5GHz to 6GHz
		1	21		dB	6GHz to 10GHz
			17		dB	10GHz to 16GHz
			17		dB	16GHz to 24GHz

analog.com Rev. 0 | 4 of 33

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
Differential Performance (RF1A/RF1B)						
Insertion Loss	IL					RF1A/RF1B to RFCA/RFCB
			0.24		dB	DC to 2.5GHz
			0.4		dB	2.5GHz to 6GHz
			0.62		dB	6GHz to 10GHz
			1.29		dB	10GHz to 16GHz
			2.97		dB	16GHz to 24GHz
Isolation	ISO					RF1A/RF1B to RFCA/RFCB, with RF2A/RF2B to RFCA/RFCB on
			29		dB	DC to 2.5GHz
			24		dB	2.5GHz to 6GHz
			22		dB	6GHz to 10GHz
			18		dB	10GHz to 16GHz
			11		dB	16GHz to 24GHz
Return Loss	RL					Measured at RF1A/RF1B
			36		dB	DC to 2.5GHz
			26		dB	2.5GHz to 6GHz
			18		dB	6GHz to 10GHz
			14		dB	10GHz to 16GHz
			14		dB	16GHz to 24GHz
Return Loss	RL				"-	Measured at RFCA/RFCB
Notalli 2000	'\-		35		dB	DC to 2.5GHz
			27		dB	2.5GHz to 6GHz
			19		dB	6GHz to 10GHz
			15		dB	10GHz to 16GHz
			16		dB	16GHz to 24GHz
Differential Performance (RF2A/RF2B)			10		ub	100112 to 240112
Insertion Loss	IL					RF2A/RF2B to RFCA/RFCB
Iliseluoli Eoss	IL.		0.2		dB	DC to 2.5GHz
			0.2		dB	2.5GHz to 6GHz
			0.51		dB	6GHz to 10GHz
			1.09		dB	10GHz to 16GHz
Isolation	ISO		4.8		dB	16GHz to 24GHz RF2A/RF2B to RFCA/RFCB, with RF1A/RF1B
			0.4		ID.	to RFCA/RFCB on
			31		dB	DC to 2.5GHz
			26		dB	2.5GHz to 6GHz
			24		dB	6GHz to 10GHz
			21		dB	10GHz to 16GHz
			14		dB	16GHz to 24GHz
Return Loss	RL					Measured at RF2A/RF2B
			34		dB	DC to 2.5GHz
			30		dB	2.5GHz to 6GHz
			22		dB	6GHz to 10GHz
			18		dB	10GHz to 16GHz
			16		dB	16GHz to 24GHz

analog.com Rev. 0 | 5 of 33

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
Return Loss	RL					Measured at RFCA/RFCB
			33		dB	DC to 2.5GHz
			32		dB	2.5GHz to 6GHz
			24		dB	6GHz to 10GHz
			19		dB	10GHz to 16GHz
			10		dB	16GHz to 24GHz
Third-Order Intermodulation Intercept	IIP3		70		dBm	Input: 2110MHz and 2170MHz, 3510MHz and 3570MHz; input power = 30dBm
Second Harmonic	HD2		-107		dBc	Input: 5.4MHz; input power = 0dBm
			-88		dBc	Input: 150MHz, 800MHz; input power = 33dBm
Third Harmonic	HD3		-88		dBc	Input: 150MHz, 800MHz; input power = 33dBm
Total Harmonic Distortion	THD		-103		dBc	$R_1 = 300\Omega$, f = 1kHz, RFxx = 2.5V p-p
Total Harmonic Distortion Plus Noise	THD + N		-99		dBc	$R_L = 300\Omega$, f = 1kHz, RFxx = 2.5V p-p
Maximum RF Power				33	dBm	RF power = CW, terminated into 50Ω termination; -40° C to $+85^{\circ}$ C
DC Signal Range		-6		+6	V	On switch DC input bias voltage signal range; -40°C to +85°C
Stand Off Voltage		-6		+6	V	-40°C to +85°C, this specification is applied when the switch is in the off position with no RF signal applied
Maximum DC Current				200	mA	-40°C to +85°C
On Switching Time ⁴	t _{ON}			200	μs	50% INx to 90% (0.05dB of final IL value) RFxx, 50Ω termination, -40° C to 85°C (see Figure 5 for details)
Off Switching Time ^{4, 5}	t _{OFF}			200	μs	50% INx to 10% (0.05dB of final IL value) RFxx, 50Ω termination, -40° C to 85°C (see Figure 5 for details)
Power-Up Time			4	5	ms	V _{CP} cap = 100 pF, −40°C to +85°C
Video Feedthrough			10		mV peak	$1M\Omega$ termination at RFxx and 50Ω termination at RFC
Actuation Frequency				2	kHz	Both switches toggled simultaneously
Internal Oscillator Frequency		8.6	10	11	MHz	
Internal Oscillator Feedthrough			-92.5		dBm	See note ⁶ for measurement setup details
•			-115.5		dBm/Hz	This value comes from calculations
Signal Timing Parameters						Simulated using measured s-parameter models with an input signal with T _{RISE} = 10ps
Phase Delta Between Channels			1.2		degree	RF1A and RF1B
			0.7		degree	RF2A and RF2B
Propagation Delay			46.17		ps	RF1A and RF1B
. 0			44.95		ps	RF2A and RF2B
Channel-to-Channel Skew			0.15		ps	RF1A to RF1B, RF2A to RF2B
			1.22		ps	RF1A/RF1B to RF2A/2B
CAPACITANCE PROPERTIES						At 1MHz, includes LGA package capacitance
Input to Output Capacitance	C _{DS(OFF)}		35		fF	Capacitance from input to output derived from off isolation measurements, see the Deriving CDS(OFF) from Off Isolation section
On Switch Channel Capacitance	C _{ON}		2.64		pF	Capacitance measured on RFxx with respect to ground when RFxx to RFCx is on
Off Switch Channel Capacitance	C _{OFF}		1.51		pF	Capacitance measured on RFxx with respect to ground when all switches are off

analog.com Rev. 0 | 6 of 33

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments ²
LEAKAGE PROPERTIES						
On Leakage ⁷		0.7	1.1	1.39	μА	RFxx(off channels) = +6V; RFCx/RFxx (on channel) = -6V; maximum value tested from -40°C to +85°C
Off Leakage ⁷		0.34	0.6	0.77	μA	RFxx = +6V; RFCx = -6V; maximum value tested from -40° C to +85 $^{\circ}$ C
Internal Shunt Resistor		8.7	11.5	15.2	ΜΩ	Typical temperature coefficient = 27.5 k Ω /°C, maximum and minimum value tested at 25°C
DIGITAL INPUTS						Minimum and maximum over −40°C to 85°C
Input High Voltage	V _{INH}	2			V	
Input Low Voltage	V _{INL}			8.0	V	
Input Current	I _{INL} /I _{INH}		0.025	1	μA	$V_{IN} = V_{INL}$ or V_{INH}
Capacitance			5		pF	
DIGITAL OUTPUTS						Minimum and maximum over −40°C to 85°C
Output Low Voltage	V _{OL}			0.4	V _{MAX}	I _{SINK} = 1mA
Output High Voltage	V _{OH}	V _{DD} - 0.4V			V _{MIN}	I _{SOURCE} = 1mA
Capacitance			5		pF	
POWER REQUIREMENTS						Minimum and maximum over −40°C to 85°C
Supply Voltage	V _{DD}	3.0		3.6	V	
Supply Current	I _{DD}			2.5	mA	Digital inputs = 0V or V _{DD} , SDO floating in SPI mode

¹ Typical specifications tested at 25°C with V_{DD} = 3.3V.

analog.com Rev. 0 | 7 of 33

² RFxx is RF1A, RF1B, RF2A, and RF2B. RFCx is RFCA or RFCB. INx is IN1, IN2, IN3, and IN4.

³ This value shows the time it takes for 1% of a sample lot to fail.

⁴ Switch is settled after 200μs. Do not apply RF power between 0μs to 200μs.

⁵ RF power should be removed or less than 5dBm, 50µs before turning the switch off.

⁶ Spectrum analyzer setup: resolution bandwidth (RBW) = 200Hz, video bandwidth (VBW) = 2Hz, span = 100kHz, input attenuator = 0dB, detector type = peak, and max hold = off. Measurements taken with one switch on and off switch port terminated into 50 Ω. The fundamental feedthrough noise or harmonic thereof is tested (whichever is the highest).

The on leakage and off leakage specifications depend on the DC voltage level applied to the switch node. For example, if 1V is applied at RFxx to RFCx, the on leakage specification is 0.2μ A and off leakage specification is 0.1μ A. The leakage specification of the switch is mainly driven by the internal $10M\Omega$ resistors to ground connected on all the RF nodes to avoid floating nodes.

SPECIFICATIONS

TIMING CHARACTERISTICS

 V_{DD} = 3.0V to 3.6V, GND = 0V and all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2. Timing Characteristics

Parameter	Limit at T _{MIN}	Limit at T _{MAX}	Unit	Conditions	
t ₁	100		ns	SCLK period	
t_2	45		ns	SCLK high pulse width	
t_3	45		ns	SCLK low pulse width	
t_4	25		ns	CS falling edge to SCLK active edge	
t_5	20		ns	Data setup time	
t_6	20		ns	ns Data hold time	
t ₇	25		ns SCLK active edge to $\overline{\text{CS}}$ rising edge		
t_8		20	ns	ns	
t_9^1		40	ns	ns SCLK falling edge to SDO data available	
t ₁₀		25	ns	CS rising edge to SDO data available	
t ₁₁	100		ns	CS high time between SPI commands	
t ₁₂	25		ns	SCLK edge rejection to $\overline{\text{CS}}$ falling edge	
t ₁₃	25		ns	CS rising edge to SCLK edge rejection	

 $^{^{\}rm 1}$ Measured with a 20pF load. $\rm t_{\rm 9}$ determines the maximum SCLK frequency when SDO is used.

Timing Diagrams

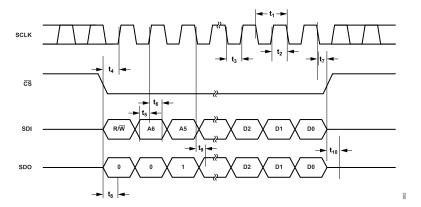


Figure 2. Addressable Mode Timing

analog.com Rev. 0 | 8 of 33

SPECIFICATIONS

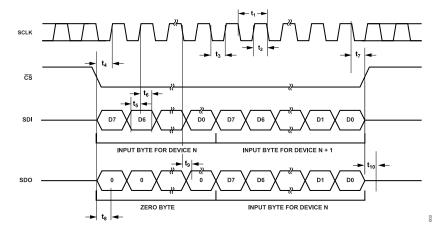


Figure 3. Daisy Chain Timing

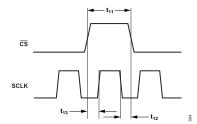


Figure 4. SCLK and CS Timing Relationship

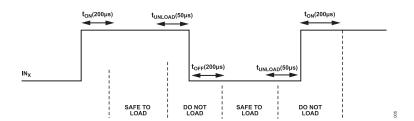


Figure 5. Switch Loading Profile

analog.com Rev. 0 | 9 of 33

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3. Absolute Maximum Ratings

Parameter	Rating
V _{DD} to AGND	-0.3V to +6V
Digital Inputs ¹	$-0.3V$ to V_{DD} + 0.3V or 30mA (whichever occurs first).
Switch DC Rating ²	
Voltage	±7V
Current	220mA
V_{CP}	82V
Stand Off Voltage ³	±10V
RF Power Rating ⁴	34dBm
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Reflow Soldering (Pb-Free)	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10sec to 30sec
Group D	
Mechanical Shock ⁵	1500 <i>g</i> with 0.5ms pulse
Vibration	20Hz to 2000Hz acceleration at 50g
Constant Acceleration	30,000 <i>g</i>

- ¹ Limit the current to the maximum ratings shown.
- This rating is with respect to the switch in the on position with no RF signal applied.
- 3 This rating is with respect to the switch in the off position with no RF signal applied.
- 4 This rating is with respect to the switch in the on position and terminated into 500
- ⁵ If a device is dropped during handling, do not use the device.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 θ_{ICT} is the junction to the top of the case thermal resistance.

 θ_{JCB} is the junction to the bottom of the case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JA}	θ_{JCT}	θ_{JCB}	Unit
CC-24-23	68.1	161.7	93.7	°C/W

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for the handling of ESD-sensitive devices in an ESD-protected area only.

Human body model (HBM) as per ANSI/ESDA/JEDEC JS-001. Field-induced charged device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for the ADGM3121

Table 5. ADGM3121, 24-Lead LGA

ESD Model	Withstand Threshold	Class
HBM ¹	150V for RFxx and RFCx ² pins	0B
	2kV for all other pins	
FICDM ³	1kV	C3

Take proper precautions during handling, as outlined in the Handling Precautions section.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 10 of 33

² RFxx is RF1A, RF1B, RF2A, and RF2B. RFCx is RFCA and RFCB.

³ A safe automated handling and assembly process is achieved at this rating level by implementing industry standard ESD controls.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

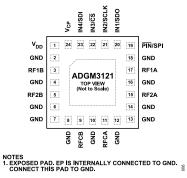


Figure 6. ADGM3121 Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V_{DD}	Positive Power Supply Input. For the recommended input voltage see Table 1. Place a 0.1µF decoupling capacitor to GNE as close to this pin as possible. The decoupling capacitor should be rated to at least 16V DC.
2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18	GND	Ground Return.
3	RF1B	RF1B Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
5	RF2B	RF2B Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
9	RFCB	Common RFCB Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
11	RFCA	Common RFCA Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
15	RF2A	RF2A Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
17	RF1A	RF1A Port. This pin can be an input or an output. If the pin is unused, it is recommended to either terminate it with a 50Ω resistor to GND (to prevent resonances in high-speed and RF applications) or tie it directly to GND (for DC-only applications).
19	PIN/SPI	Parallel Mode Enable/SPI Mode Enable. The SPI interface is enabled when this pin is high, and the parallel interface (IN1, IN2, IN3, IN4) is enabled when this pin is low.
20	IN1/SDO	Parallel Logic Digital Control Input 1. The voltage applied to this pin controls the gate of the RF1A to RFCA MEMS switch. In SPI mode, this pin is the serial data output (SDO) pin.
21	IN2/SCLK	Parallel Logic Digital Control Input 2. The voltage applied to this pin controls the gate of the RF2A to RFCA MEMS switch. In SPI mode, this pin is the serial clock (SCLK) pin that synchronizes the target device(s) to the controller device.
22	IN3/CS	Parallel Logic Digital Control Input 3. The voltage applied to this pin controls the gate of the RF2B to RFCB MEMS switch. In SPI mode, this pin is the chip select (\overline{CS}) pin. \overline{CS} is an active low signal that selects the target device with which the controller device intends to communicate.
23	IN4/SDI	Parallel Logic Digital Control Input 4. The voltage applied to this pin controls the gate of the RF1B to RFCB MEMS switch. In SPI mode, this pin is the serial data input (SDI) pin.
24	V _{CP}	Driver IC Input/Output. In normal operating mode this pin outputs 80V DC. Place a 0.1nF decoupling capacitor to GND as close to this pin as possible. The decoupling capacitor should be rated to at least 100V DC.
	EP	Exposed Pad. EP is internally connected to GND. Connect this pad to GND.

analog.com Rev. 0 | 11 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

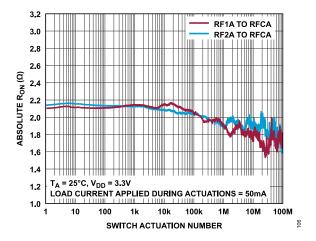


Figure 7. Absolute R_{ON} vs. Switch Actuation Number

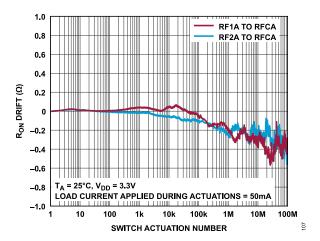


Figure 8. R_{ON} Drift vs. Switch Actuation Number, Normalized at Zero

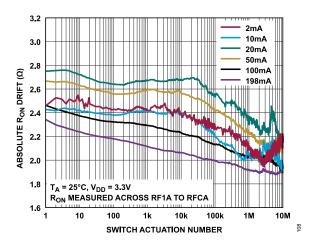


Figure 9. Absolute R_{ON} vs. Switch Actuation Number over Different Currents Applied During Actuations

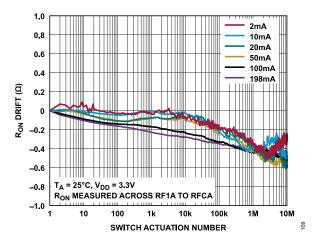


Figure 10. R_{ON} Drift vs. Switch Actuation Number over Different Currents Applied During Actuations, Normalized at Zero

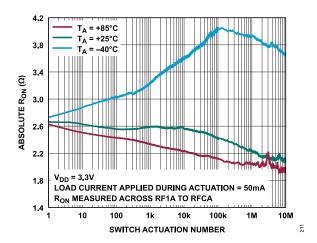


Figure 11. Absolute R_{ON} vs. Switch Actuation Number over Temperature

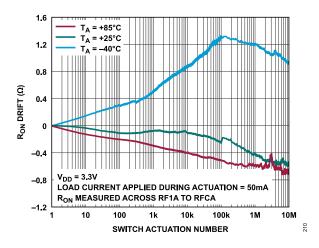


Figure 12. R_{ON} Drift vs. Switch Actuation Number over Temperature, Normalized at Zero

analog.com Rev. 0 | 12 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

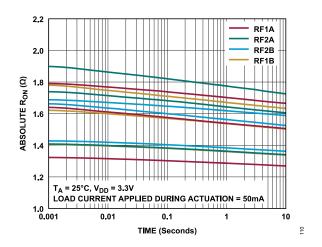


Figure 13. Absolute R_{ON} vs. Time (1ms to 10sec) over Different Channels, Multiple Devices

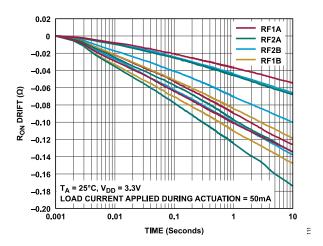


Figure 14. R_{ON} Drift vs. Time (1ms to 10sec) over Different Channels, Multiple Devices, Normalized at Zero

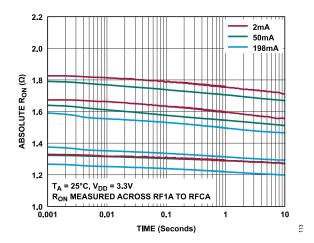


Figure 15. Absolute R_{ON} vs. Time (1ms to 10sec) over Different Current Levels, Multiple Devices

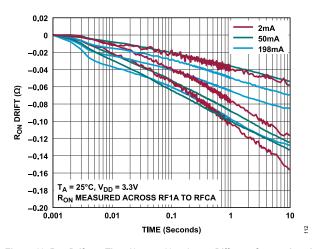


Figure 16. R_{ON} Drift vs. Time (1ms to 10sec) over Different Current Levels, Multiple Devices, Normalized at Zero

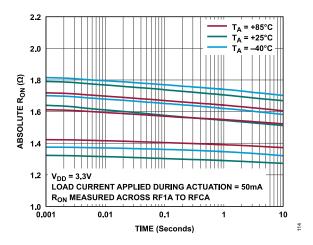


Figure 17. Absolute R_{ON} vs. Time (1ms to 10sec) over Temperature, Multiple Devices

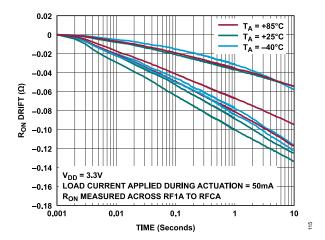


Figure 18. R_{ON} Drift vs. Time (1ms to 10sec) over Temperature, Multiple Devices, Normalized at Zero

analog.com Rev. 0 | 13 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

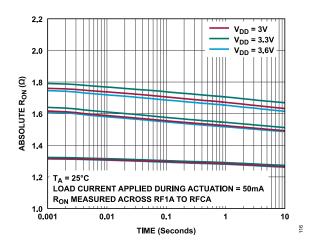


Figure 19. Absolute R_{ON} vs. Time (1ms to 10sec) over Supplies, Multiple Devices

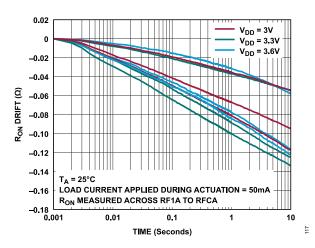


Figure 20. R_{ON} Drift vs. Time (1ms to 10sec) over Supplies, Multiple Devices, Normalized at Zero

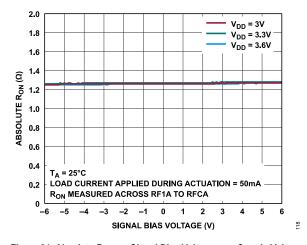


Figure 21. Absolute R_{ON} vs. Signal Bias Voltage over Supply Voltages

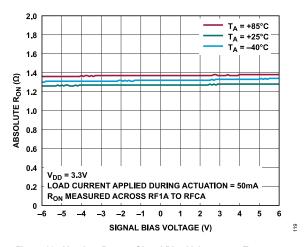


Figure 22. Absolute R_{ON} vs. Signal Bias Voltage over Temperature

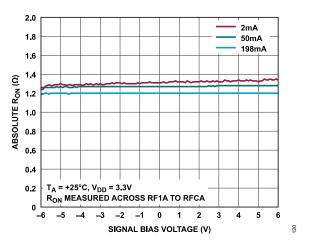


Figure 23. Absolute R_{ON} vs. Signal Bias Voltage over Different Current Levels

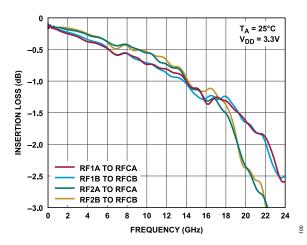


Figure 24. Insertion Loss vs. Frequency (Single-Ended Performance, DC to 24GHz, RFXA to RFCA, RFXB to RFCB)

analog.com Rev. 0 | 14 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

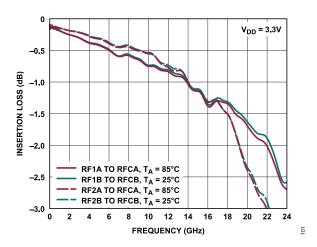


Figure 25. Insertion Loss vs. Frequency over Temperature (Single-Ended Performance, DC to 24GHz, RF1A to RFCA, RF2A to RFCA)

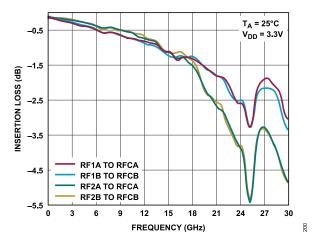


Figure 26. Insertion Loss vs. Frequency (Single-Ended Performance, DC to 30GHz, RFXA to RFCA, RFXB to RFCB)

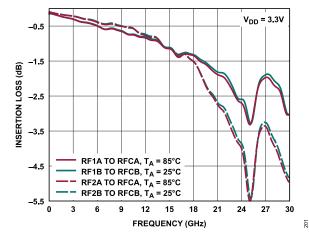


Figure 27. Insertion Loss vs. Frequency over Temperature (Single-Ended Performance, DC to 30GHz, RF1A to RFCA, RF2A to RFCA)

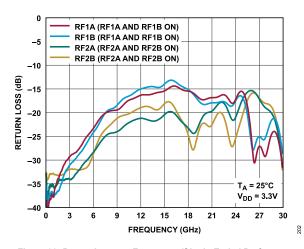


Figure 28. Return Loss vs. Frequency (Single-Ended Performance, Measuring from RF1A, RF2A, RF1B, and RF2B)

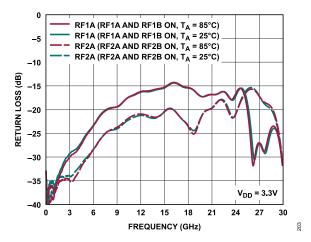


Figure 29. Return Loss vs. Frequency over Temperature (Single-Ended Performance, Measuring from RF1A and RF2A)

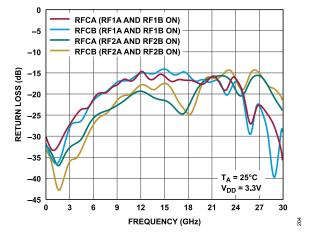


Figure 30. Return Loss vs. Frequency (Single-Ended Performance, Measuring from RFCA and RFCB)

analog.com Rev. 0 | 15 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

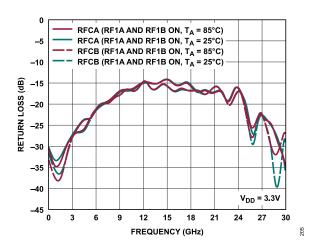


Figure 31. Return Loss vs. Frequency over Temperature (Single-Ended Performance, Measuring from RFCA and RFCB)

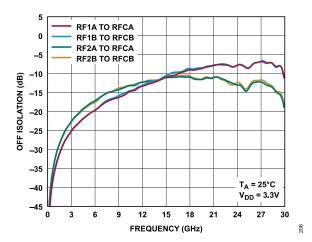


Figure 32. Off Isolation vs. Frequency (Single-Ended Performance, All Channels Off)

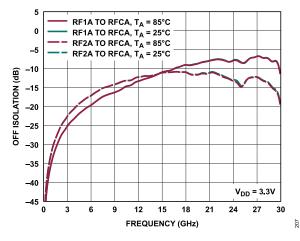


Figure 33. Off Isolation vs. Frequency over Temperature (Single-Ended Performance, All Channels Off)

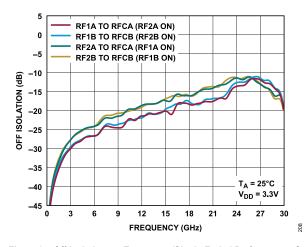


Figure 34. Off Isolation vs. Frequency (Single-Ended Performance, One Channel On)

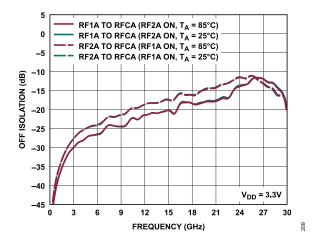


Figure 35. Off Isolation vs. Frequency over Temperature (Single-Ended Performance, One Channel On)

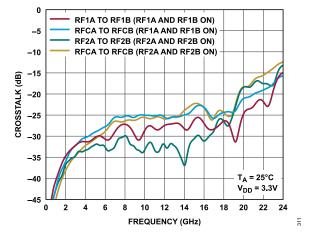


Figure 36. Crosstalk vs. Frequency (Single-Ended Performance, DC to 24GHz)

analog.com Rev. 0 | 16 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

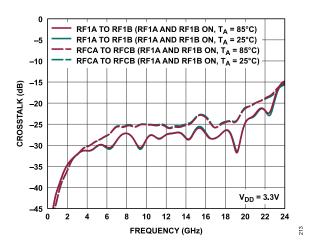


Figure 37. Crosstalk vs. Frequency over Temperature (Single-Ended Performance, DC to 24GHz)

Figure 38. Crosstalk vs. Frequency (Single-Ended Performance, DC to 30GHz)

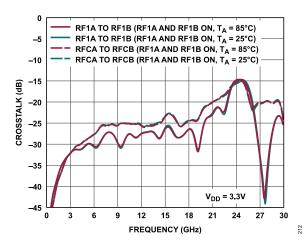


Figure 39. Crosstalk vs. Frequency over Temperature (Single-Ended Performance, DC to 30GHz)

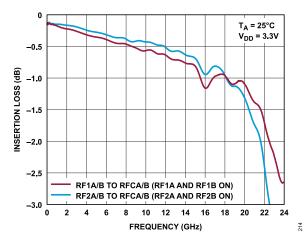


Figure 40. Insertion Loss vs. Frequency (Differential Performance, DC to 24 GHz, RF1A/B to RFCA/B and RF2A/B to RFCA/B)

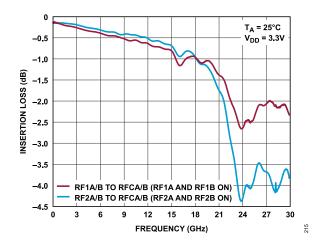


Figure 41. Insertion Loss vs. Frequency (Differential Performance, DC to 30 GHz, RF1A/B to RFCA/B and RF2A/B to RFCA/B)

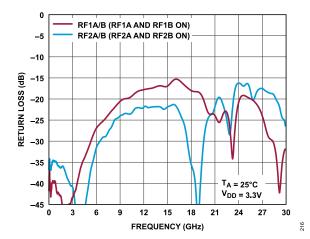


Figure 42. Return Loss vs. Frequency (Differential Performance, Measuring from RF1A/B and RF2A/B)

analog.com Rev. 0 | 17 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

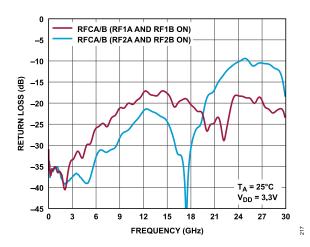


Figure 43. Return Loss vs. Frequency (Differential Performance, Measuring from RFCA/RFCB)

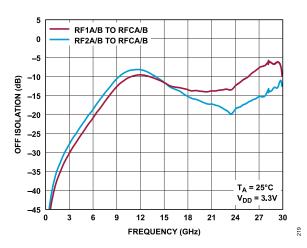


Figure 44. Off Isolation vs. Frequency (Differential Performance, All Channels Off)

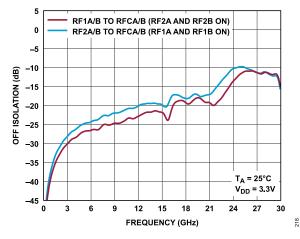


Figure 45. Off Isolation vs. Frequency (Differential Performance, Two Channels On)

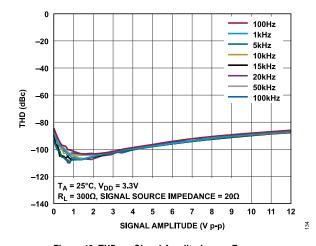


Figure 46. THD vs. Signal Amplitude over Frequency

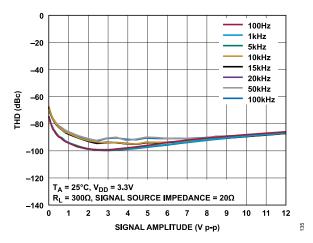


Figure 47. THD + N vs. Signal Amplitude over Frequency

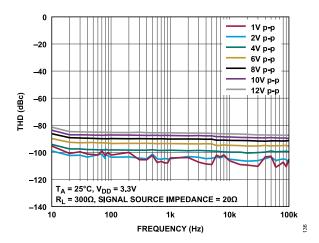


Figure 48. THD vs. Frequency over Signal Amplitude

analog.com Rev. 0 | 18 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 49. THD + N vs. Frequency Over Signal Amplitude

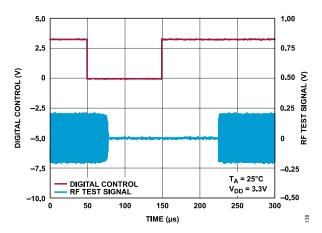


Figure 50. Digital Control and RF Test Signal vs. Time

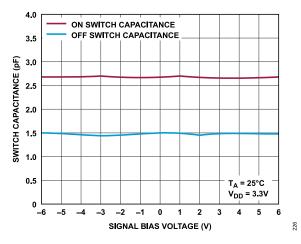


Figure 51. Switch Capacitance vs. Signal Bias Voltage (V_{DD} = 3.3V, T_A = 25°C)

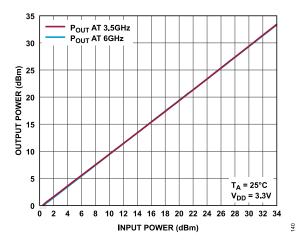


Figure 52. Output Power (POUT) vs. Input Power (PIN)

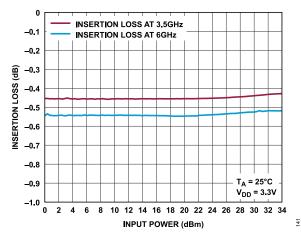


Figure 53. Insertion Loss vs. PIN

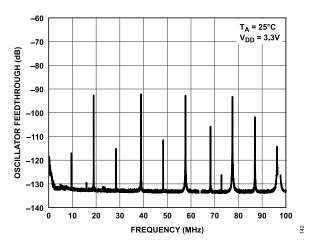


Figure 54. Oscillator Feedthrough vs. Frequency, Wide Bandwidth ($V_{DD} = 3.3V$)

analog.com Rev. 0 | 19 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

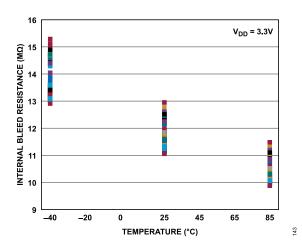


Figure 55. Internal Bleed Resistor Distribution over Temperature, Multiple Devices

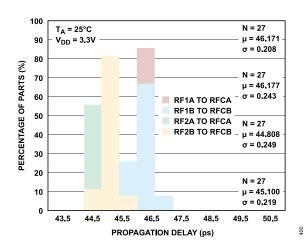


Figure 56. Propagation Delay Histogram

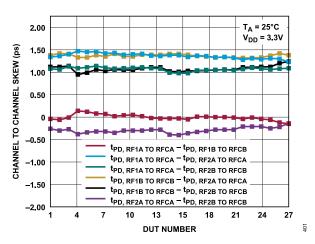


Figure 57. Channel-to-Channel Propagation Delay Skew Over Multiple Devices

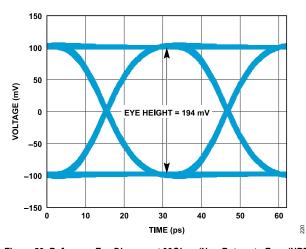


Figure 58. Reference Eye Diagram at 32Gbps (Non-Return-to-Zero (NRZ), $T_{RISE}/T_{FALL} = 10$ ps)

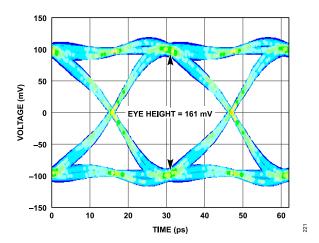


Figure 59. Eye Diagram at 32Gbps (NRZ, T_{RISE}/T_{FALL} = 10ps, Signal Through 1 × ADGM3121)

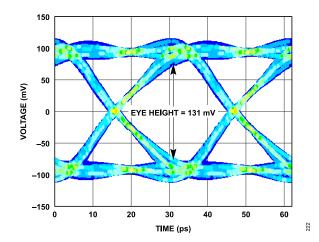


Figure 60. Eye Diagram at 32Gbps (NRZ, T_{RISE}/T_{FALL} = 10ps, Signal Through 2 × ADGM3121 in Loopback Configuration)

analog.com Rev. 0 | 20 of 33

TYPICAL PERFORMANCE CHARACTERISTICS

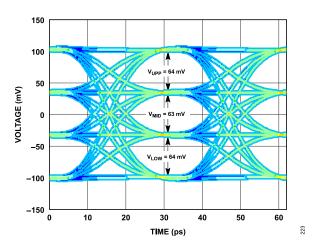


Figure 61. Reference Eye Diagram at 64Gbps (Pattern Used Pulse Amplitude Modulation 4-Level (PAM4), $T_{RISE}/T_{FALL} = 10ps$)

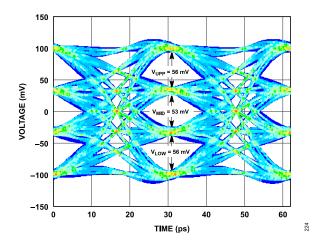


Figure 62. Eye Diagram at 64Gbps (PAM4, T_{RISE}/T_{FALL} = 10ps, Signal Through 1 × ADGM3121)

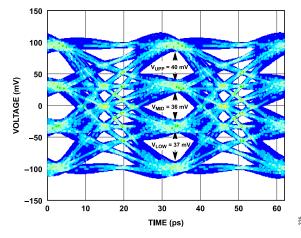


Figure 63. Eye Diagram at 64Gbps (PAM4, T_{RISE}/T_{FALL} = 10 ps, Signal Through 2 × ADGM3121 in Loopback Configuration)

analog.com Rev. 0 | 21 of 33

Data Sheet ADGM312'

TEST CIRCUITS

DERIVING $C_{DS(OFF)}$ FROM OFF ISOLATION

The following equations is used to derive $C_{DS(OFF)}$ from off isolation measurements taken using the test circuit in Figure 64.

$$OFF \, ISOLATION = 20 \log \frac{V_{OUT}}{V_S} \tag{1}$$

$$C_{DS(OFF)} = \frac{1}{2\pi f R_L \left(\frac{2}{10^{OFFISO/20}} - 1\right)}$$
 (2)

where:

 $C_{DS(OFF)}$ is the switch capacitance seen through the switch when all switches are off.

f is the signal frequency.

 R_L is the 50 Ω load resistance.

OFFISO is the measured off isolation.

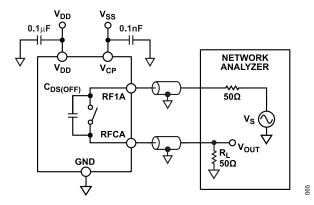


Figure 64. Off Isolation Measurement Test Circuit and $C_{DS(OFF)}$ Derivation

analog.com Rev. 0 | 22 of 33

THEORY OF OPERATION

SWITCH DESIGN

The ADGM3121 is a wideband DPDT switch fabricated using Analog Devices' MEMS switch technology. This technology enables high power, low loss, low distortion gigahertz switches to be realized for demanding RF applications.

A key strength of the MEMS switch is that it simultaneously brings together best-in-class high frequency RF performance and 0Hz/DC precision performance. This combination coupled with superior reliability and a tiny surface mountable form factor make the MEMS switch the ideal switching solution for all RF and precision signal instrumentation needs.

The switches are electrostatically actuated MEMS structures. An on board charge pump internally generates the bias voltage (80V) used for actuation of the switch.

Table 7. Truth Table in Parallel Digital Interface Mode

PARALLEL DIGITAL INTERFACE

The ADGM3121 can be controlled through a parallel interface. Standard complementary metal-oxide semiconductor (CMOS) or low voltage transistor to transistor logic (LVTTL) signals applied through this interface control the independent actuation or release of all the switch channels of the ADGM3121.

Setting Pin 19 (PIN/SPI) low enables the parallel control interface. Pin 20, Pin 21, Pin 22, and Pin 23 (IN1, IN2, IN3, and IN4) control the switching functions of the ADGM3121. When a Logic 1 is applied to one of these pins, the corresponding switch turns on. Conversely, when a Logic 0 is applied, the switch turns off. See Table 7 for the truth table.

When no supply voltage is applied to Pin 1 (V_{DD}), all switches are in an indeterminate state.

IN1	IN2	IN3	IN4	RF1A to RFCA	RF2A to RFCA	RF2B to RFCB	RF1B to RFCB
0	0	0	0	Off	Off	Off	Off
)	0	0	1	Off	Off	Off	On
)	0	1	0	Off	Off	On	Off
)	0	1	1	Off	Off	On	On
	1	0	0	Off	On	Off	Off
)	1	0	1	Off	On	Off	On
	1	1	0	Off	On	On	Off
	1	1	1	Off	On	On	On
	0	0	0	On	Off	Off	Off
	0	0	1	On	Off	Off	On
	0	1	0	On	Off	On	Off
	0	1	1	On	Off	On	On
	1	0	0	On	On	Off	Off
	1	0	1	On	On	Off	On
	1	1	0	On	On	On	Off
	1	1	1	On	On	On	On

analog.com Rev. 0 | 23 of 33

THEORY OF OPERATION

SPI DIGITAL INTERFACE

The ADGM3121 can be controlled through an SPI digital interface when Pin 19 (PIN/SPI) is high. SPI Mode 0 or Mode 3 can be used with the device, and it operates with SCLK frequencies up to 10MHz. The default mode when the SPI is active is the addressable mode, in which the devices registers are accessed by a 16-bit SPI command bounded by the state of CS. The ADGM3121 can also operate in the daisy-chain mode.

The SPI pins of the ADGM3121 are $\overline{\text{CS}}$, SCLK, SDI, and SDO. Hold $\overline{\text{CS}}$ low when using the SPI. Data is captured on SDI on the rising edge of SCLK and data is propagated out on SDO on the falling edge of SCLK. SDO has a push-pull output driver architecture. So, it does not require pull-up resistors. When not pulled low by the ADGM3121, SDO is in a high-impedance state.

Addressable Mode

The addressable mode is the default mode for the ADGM3121 upon power up. A single SPI frame in the addressable mode is bound by a $\overline{\text{CS}}$ falling edge and the succeeding $\overline{\text{CS}}$ rising edge. It comprises 16 SCLK cycles. Figure 65 shows the timing diagram for addressable mode for SPI Mode 0.

The first SDI bit indicates if the SPI command is a read or write command. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command as during these clock cycles SDO propagates out the data contained in the addressed register.

In Mode 0, during any SPI command, SDO sends out eight alignment bits on the CS falling edge and the first seven SCLK falling edges (in Mode 3, the first SCLK falling edge is ignored, as shown in Figure 66). The alignment bits observed at SDO are 0x25.

The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from this register propagates out on SDO from the eighth to the fifteenth SCLK falling edge during SPI reads. A register write occurs on the 16th SCLK rising edge during SPI writes.

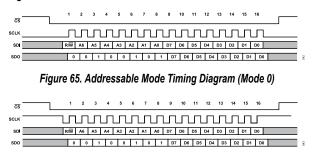


Figure 66. Addressable Mode Timing Diagram (Mode 3)

Daisy-Chain Mode

The connection of several ADGM3121 devices in a daisy-chain configuration is possible. All devices share the same $\overline{\text{CS}}$ and SCLK line while the SDO of a device forms a connection to the SDI of the next device, creating a shift register. In the daisy-chain mode, SDO is an 8-cycle delayed version of SDI.

The ADGM3121 may only enter the daisy-chain mode from the addressable mode by sending the 16-bit SPI command, 0x2500. See Figure 67 for an example of this. When the ADGM3121 receives this command, the SDO of devices sends out the same command. This is because the alignment bits at SDO are 0x25. This allows multiple daisy-connected devices to enter the daisy-chain mode in a single SPI frame. A hardware reset is required to exit the daisy-chain mode.

For the timing diagram of a typical daisy-chain SPI frame, see Figure 68. When \overline{CS} goes high, Device1 writes Command0 [7:0] to its switch data register, Device 2 writes Command1 [7:0] to its switches, and so on. The SPI block uses the last eight bits it received through SDI to update the switches. After entering the daisy-chain mode, the first eight bits sent out by SDO are 0x00. When \overline{CS} goes high, the internal shift register value does not reset to zero.

An SCLK rising edge reads in data on SDI while data is propagated out SDO on an SCLK falling edge. The expected number of SCLK cycles should be a multiple of eight before \overline{CS} goes high. When this is not the case, the SPI sends the last eight bits received to the switch data register.

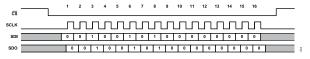


Figure 67. SPI Command to Enter the Daisy-Chain Mode

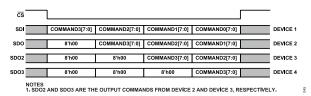


Figure 68. Example of an SPI Frame When Three ADGM3121 are Connected in the Daisy-Chain Mode

Hardware Reset

The digital section of the ADGM3121 goes through an initialization phase during V_{DD} power up. To hardware reset the part, power cycle the V_{DD} input. After power-up or a hardware reset, ensure there is a minimum of 10µs from the time of power-up or reset before any SPI command is issued. Ensure that V_{DD} does not drop out during the 10µs initialization phase because it may result in incorrect operation of the ADGM3121.

analog.com Rev. 0 | 24 of 33

THEORY OF OPERATION

Internal Error Status

Where an internal error is detected in the part, it is flagged in the internal error status bits [7:6] of the SWITCH_DATA register. An internal error results from an error in the configuration of the part at power-up.

INTERNAL OSCILLATOR FEEDTHROUGH

The ADGM3121 has an internal oscillator running at a nominal 10MHz. This oscillator drives the charge pump circuitry that provides the actuation voltage for each of the switch gate electrodes. Although this oscillator is very low power, the 10MHz signal is coupled to the switch and can be considered a noise spur on the switch channels. The magnitude of this feedthrough noise spur is specified in Table 1 and is typically -92.5 dBm when one switch is on. The V_{DD} level and temperature changes affect the frequency of the noise spur. For the maximum and minimum frequency ranges over temperature and voltage supply range, see Table 1.

TYPICAL OPERATING CIRCUIT

Figure 69 shows the typical operating circuit for the ADGM3121. V_{DD} is connected to 3.3V. EP connects to GND internally. It is recommended to connect GND using one large pad on the PCB to short together GND with EP. Figure 69 shows the ADGM3121 configured to use the internal oscillator as the reference clock to the driver IC control circuit. Place a 0.1nF capacitor rated to at least 100V DC as close as possible to V_{CP} . Place a 0.1uF capacitor rated to at least 16V DC as close as possible to V_{DD} .

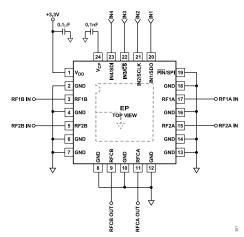


Figure 69. Typical Operating Circuit in the Parallel Digital Interface Mode

analog.com Rev. 0 | 25 of 33

APPLICATIONS INFORMATION

POWER SUPPLY RAILS

The ADGM3121 can operate with unipolar supplies between 3.0V and 3.6V. The device is fully specified at a 3.3V analog supply voltage.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of most high performance signal chains.

Figure 70 shows an example of a unipolar solution for the ADGM3121. The ADP7142 is a low dropout linear regulator that operates from 2.7V to 40V and is ideal for the regulation of high performance analog and mixed-signal circuits operating from 39V down to 1.2V rails. The ADP7142 has 11µV rms output noise independent of the output voltage. The ADP7142 can be used to power the supply rail for the ADGM3121, a microcontroller, and/or other devices in the signal chain.

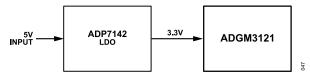


Figure 70. Unipolar Power Solution

If low noise performance at the power supply is required, the ADP7142 can be replaced by the LT1962 or LT3045-1.

Table 8. Recommended Power Management Devices

Product	Description
ADP7142	40V, 200mA, low noise, CMOS LDO linear regulator
LT1962	300mA, low noise, micropower, low dropout (LDO) regulator
LT3045-1	20V, 500mA, ultra-low noise, ultra-high power supply rejection ratio (PSRR) linear regulator with voltage for input to output control (VIOC)

HIGH-SPEED DIGITAL LOOPBACK

Testing high-speed input and output (HSIO) interfaces, such as peripheral component interconnect express (PCIe) Gen 4.0 and PCIe Gen 5.0, in a high volume manufacturing environment is a challenge. A common approach to validate an HSIO interface is the implementation of a high-speed loopback test method. This incorporates both high-speed and DC test paths in one configuration.

To perform high-speed loopback testing, generally a pseudorandom bit sequence (PRBS) is transmitted at high speed from the transmitter and received at the receiver end after being looped back on the load board or test board. At the receiver end, the sequence is analyzed to calculate the bit error rate (BER).

DC parametric tests are performed on the input and output pins, such as a continuity test and a leakage test, to ensure device functionality. To perform these tests, the input/output pins of the

DUT must be connected directly to a DC instrument where the DC measurement of the input/output pin is executed.

The ADGM3121 offers both high speed digital and DC testing capability with superior density in a small 3mm × 3mm × 1.5mm LGA package, as shown in Figure 71. The MEMS switch also enables communication from the tester to the device under test (DUT). The ADGM3121 provides excellent performance from DC to 24GHz, which allows the switch to handle both high-speed signals up to 64Gbps and precision DC signals.

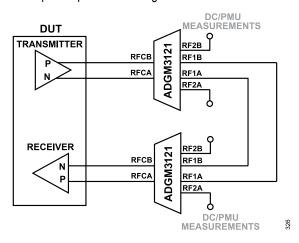


Figure 71. ADGM3121 Enabling Both High-Speed Digital and DC Testing

PIN ELECTRONICS (PE) AND PARAMETRIC MEASUREMENT UNIT (PMU) SIGNAL SWITCHING

The ADGM3121 delivers exceptional performance for PE and PMU signal switching applications. Its low on-resistance and minimal capacitance ensure high signal integrity, maintaining low insertion loss and supporting fast edge rates with reduced timing errors. High off-state isolation minimizes leakage and crosstalk, enabling accurate and reliable measurements. As shown in Figure 72, a four-channel high-speed path drives the DUT's four Rx ports for precise functional and performance validation. Alternatively, these Rx ports can be rerouted to individual four-channel PMU ports to facilitate parametric testing, such as leakage, threshold, and voltage level measurements. This flexibility allows both high-speed digital and low-speed DC testing on a single hardware platform, reducing equipment requirements and increasing throughput.

analog.com Rev. 0 | 26 of 33

APPLICATIONS INFORMATION

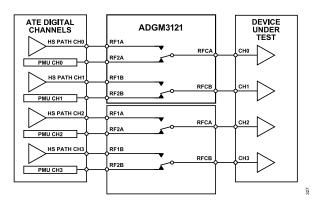


Figure 72. Four-Channel High-Speed Path

GENERAL RF, DC, AND MIXED SIGNAL SWITCHING

The ADGM3121 provides versatile functionality for general RF routing, mixed-signal switching, voltage divider network switching, and filter network switching applications. Its adaptability makes it essential in key markets such as 5G networks, base stations, and advanced network equipment. Figure 73 and Figure 74 illustrate typical implementations in filter switching and voltage divider networks, demonstrating how the device enables flexible, compact, and high-performance signal management across diverse applications.

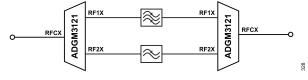


Figure 73. Filter Switching

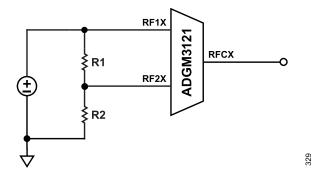


Figure 74. Voltage Divider Networks

analog.com Rev. 0 | 27 of 33

Data Sheet ADGM312'

CRITICAL OPERATIONAL REQUIREMENTS

SYSTEM ERROR CONSIDERATIONS DUE TO ON-RESISTANCE DRIFT

The on-resistance (R_{ON}) performance of the ADGM3121 is affected by part-to-part variation, channel-to-channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

In a 50Ω system, the on-resistance drift over switch actuations (ΔR_{ON}) can introduce system inaccuracy. Figure 75 shows the ADGM3121 connected with the load in a 50Ω system, where R_S is the source impedance. To calculate the system error caused by the ADGM3121 ΔR_{ON} , use the following equation:

System Error (%) = $\Delta R / R_{I,OAD}$

where:

 ΔR is the ADGM3121 ΔR_{ON} . R_{LOAD} is the load impedance.

The ADGM3121 ΔR_{ON} also affects insertion loss, which must be considered when using the device. To calculate the on-resistance impact on insertion loss, use the following equation:

Insertion Loss = $10log (1 + (\Delta R / R_{LOAD}))$

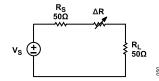


Figure 75. 50Ω System Representation Where the ADGM3121 Is Connected with the Load

Table 9. System Error and Insertion Loss Error Due to ADGM3121 R_{ON} Drift

On-Resistance Drift	System Error (%)	Insertion Loss Error (dB)
0.7	1.4	0.06
2	4	0.17

The ΔR_{ON} over time specification is -0.32Ω (maximum) measured after 100ms, as shown in Figure 13 to Figure 20. According to the plots, the R_{ON} drifts over time is -0.06Ω (typical) after 100ms. The R_{ON} of the ADGM3121 typically drifts by -0.04Ω per decade. For example, after 100ms, the R_{ON} drifts -0.06Ω . After 1s, the R_{ON} drifts -0.1Ω . And after 10s, it drifts -0.14Ω . Therefore, after 1000s, the R_{ON} is expected to drift by -0.22Ω .

ON-RESISTANCE SHIFT DUE TO TEMPERATURE SHOCK POST ACTUATIONS

When the switch is actuated multiple times at one temperature, if there is a sudden shift from this temperature, a large shift is shown in the switch $R_{ON}.$ Figure 76 shows the absolute R_{ON} performance of the population of devices over different number of actuations. During this measurement, the switch is actuated at 85°C and the switch R_{ON} is measured at 25°C. Actuating the switch at 85°C

and measuring R_{ON} at 25°C is the most severe condition for the ADGM3121 ΔR_{ON} over actuations.

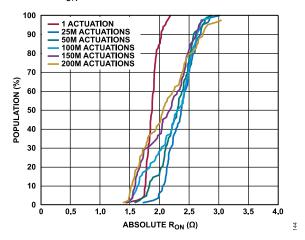


Figure 76. Population vs. Absolute R_{ON} , Switch Actuated at 85°C and R_{ON} Measured at 25°C, Actuation Frequency = 289Hz, V_{DD} = 3.3V

HOT SWITCHING

Hot switching occurs by cycling the switch on or off with an excessive voltage or current applied to the switch. The presence of the applied signal during the switching cycle damages the switch contacts. Hot switching damage is dependent on the current or the voltage levels. Hot switching causes a significant reduction in the cycle lifetime of the switch, as shown in Figure 80 and Figure 82. Figure 77 shows the hot switching condition when the switch is turned on with 1V present at the switch terminal during switching. With a voltage across an off switch, damage can occur as the contact or switch closes.

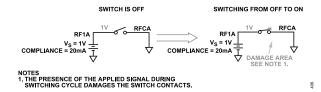


Figure 77. Hot Switching Condition When Turning the Switch from Off to On

Figure 78 shows the hot switching condition when the switch is turned off with 10mA passing through the switch during switching. With current passing through an on switch, damage can occur as the contact or switch opens.

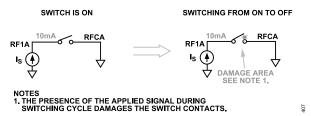


Figure 78. Hot Switching Condition When Turning the Switch from On to Off

analog.com Rev. 0 | 28 of 33

CRITICAL OPERATIONAL REQUIREMENTS

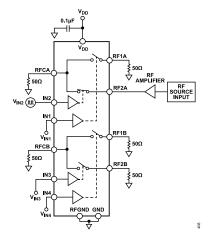


Figure 79. RF Hot Switching Setup

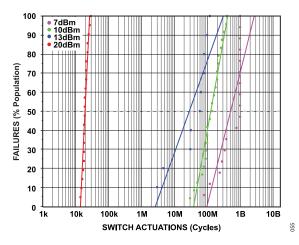


Figure 80. RF Hot Switching Probability Distribution on Log Normal (RF Power = Continuous Wave, Terminated into 50Ω , $T_A = 25^{\circ}\text{C}$, $V_{DD} = 3.3V$)

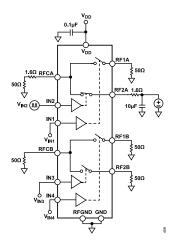


Figure 81. DC Hot Switching Setup

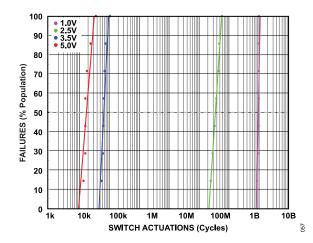


Figure 82. DC Hot Switching Probability Distribution on Log Normal (Terminated into 50Ω , $T_A = 25^{\circ}\text{C}$, $V_{DD} = 3.3V$)

HANDLING PRECAUTIONS

ESD Precautions

All RFxx and RFCx pins of the ADGM3121 pass the following ESD limits:

- ▶ 150V, Class 0B HBM, ANSI/ESDA/JEDEC JS-001-2014
- ▶ 1kV Class C3 FICDM ANSI/ESDA/JEDEC JS-002

All RFxx and RFCx¹ pins are rated to 1kV FICDM, making the device safe for automated handling and assembly process. Standard ESD precautions should be taken during manufacturing.

150V HBM rating of ADGM3121 is susceptible to ESD surge due to human body contact. ESD protection should be added if human body contact is expected.

Electrical Overstress (EOS) Precautions

- ▶ The ADGM3121 is a ESD-sensitive device. Observe all normal handling precautions, including working only on static dissipative surfaces, wearing wrist straps or other ESD control devices, and storing unused devices in conductive foam.
- Avoid running measurement instruments, such as digital multimeters (DMMs), in autorange modes. Some instruments can generate large transient compliance voltages when switching between ranges.
- Use the highest practical DMM range setting (the lowest resolution) for resistance measurements to minimize compliance voltages, particularly during switching.
- Coaxial cables can store charge and lead to EOS when directly connected to the switch. Discharge cables before connecting directly to the switch.

analog.com Rev. 0 | 29 of 33

¹ RFxx is RF1A, RF1B, RF2A, and RF2B. RFCx is RFCA and RFCB.

Data Sheet ADGM312'

CRITICAL OPERATIONAL REQUIREMENTS

▶ Avoid connecting capacitive terminations directly to the switch, as shown in Figure 83. A shunt capacitor can store a charge that can potentially lead to hot switching events when the switch opens or closes, affecting the lifetime of the switch.

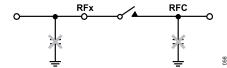


Figure 83. Avoid Large Capacitor Directly Connected to the Switch

Mechanical Shock Precautions

The ADGM3121 passes Group D mechanical shocks tests, as detailed in Absolute Maximum Ratings. These tests validate the robustness of the device to normal mechanical shocks.

The device should not be used if dropped. To reduce excessive mechanical shock and ESD events, avoid handling of loose devices, as outlined in Figure 84.

Figure 84. Situations to Avoid During Handling

analog.com Rev. 0 | 30 of 33

REGISTER SUMMARY

Table 10. Register Summary

Register (Hex)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	R/W
0x20	SWITCH_DATA	INTERNAL	_ERROR	RESE	RVED		SWITCH_	DATA		0x00	R/W

analog.com Rev. 0 | 31 of 33

REGISTER DETAILS

SWITCH DATA REGISTER

Address: 0x20, Reset: 0x00, Name: SWITCH_DATA

The switch data register controls the status of the four switches of the ADGM3121.

Table 11. Bit Descriptions for SWITCH_DATA

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	INTERNAL_ERROR		These bits determine if an internal error has occurred.	0x0	R
		00	No error detected.		
		01	Error detected.		
		10	Error detected.		
		11	Error detected.		
[5:4]	RESERVED		These bits are reserved; set these bits to 0.	0x0	R
3	SW1_EN		Enable bit for Switch 1.	0x0	R/W
		0	Switch RF1A open.		
		1	Switch RF1A closed.		
2	SW2_EN		Enable bit for Switch 2.	0x0	R/W
		0	Switch RF2A open.		
		1	Switch RF2A closed.		
1	SW3_EN		Enable bit for Switch 3.	0x0	R/W
		0	Switch RF2B open.		
		1	Switch RF2B closed.		
)	SW4_EN		Enable bit for Switch 4.	0x0	R/W
		0	Switch RF1B open.		
		1	Switch RF1B closed.		

analog.com Rev. 0 | 32 of 33

OUTLINE DIMENSIONS

Package Drawing Option	Package Type	Package Description	
CC-24-23	LGA	24-Lead Land Grid Array Package	

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADGM3121BCCZ	-40°C to +85°C	24-Lead Land Grid Array [LGA]	Tray, 490	CC-24-23
ADGM3121BCCZ-R2	-40°C to +85°C	24-Lead Land Grid Array [LGA]	Reel, 250	CC-24-23
ADGM3121BCCZ-RL7	-40°C to +85°C	24-Lead Land Grid Array [LGA]	Reel, 1500	CC-24-23

¹ Z = RoHS Compliant Part.

EVALUATION BOARD

Model ¹	Package Description
EVAL-ADGM3121SDZ	Evaluation Board

¹ Z = RoHS Compliant Part.

Legal Terms and Conditions

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. All Analog Devices products contained herein are subject to release and availability.

analog.com Rev. 0 | 33 of 33