General Description

The MAX20058 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter IC with integrated MOSFETs that operates over a 4.5V to 60V input. The converters can deliver up to 1A current. Output voltage is programmable from 0.8V to 90%\(V_{IN}\). The feedback voltage regulation accuracy over -40°C to +125°C is \(\pm 1.5\%\).

The IC features a peak-current-mode-control architecture and can be operated in the pulse-width modulation (PWM) or pulse-frequency modulation (PFM) control schemes.

The MAX20058 is available in a 12-pin (3mm x 3mm), side-wettable TDFN package with an exposed pad for thermal heat dissipation.

Applications

- 14V/24V Systems
- Truck Applications

Benefits and Features

- Synchronous DC-DC Converters with Integrated FETs
 - 60V Input for 14V and 24V Systems
 - Internal Compensation
- Flexibility
 - Output Adjustable from 0.8V to 90%\(V_{IN}\)
 - 200kHz to 2200kHz Adjustable Frequency with External Clock Synchronization
 - Programmable Peak Current Limit (1.14A or 1.6A)
- RESET Output and EN Input (26V, max) Simplify Power Sequencing
- Protection Features and Operating Range Ideal for Automotive Applications
 - Programmable EN/UVLO Threshold
 - Adjustable Soft-Start and Prebiased Power-Up
 - Thermal Shutdown
 - -40°C to +125°C Automotive Temperature Range
 - AEC-Q100 Qualified

Simplified Block Diagram

![Simplified Block Diagram of MAX20058](image)

Circuit for 5V Output, \(f_{SW} = 400kHz\)

\(\text{PFM Mode, 1.6A Current Limit}\)

True Shutdown is a trademark of Maxim Integrated Products, Inc.

Ordering Information appears at end of data sheet.
Absolute Maximum Ratings

- **V\text{IN} to SGND**: -0.3V to +65V
- **EN/UVLO to SGND**: -0.3V to +26V
- **EXTVCC to SGND**: -0.3V to +14V
- **LX to PGND**: -0.3V to \(+0.3V + \text{VIN} + 0.3V \)
- **FB, SS, MODE/ILIM, RT/SYNC to SGND**: -0.3V to \(+0.3V + \text{CC} + 0.3V \)
- **PGND to SGND**: -0.3V to +0.3V
- **LX Total RMS Current**: ±1.2A
- **RESET, VCC to SGND**: -0.3V to +6V

Continuous Power Dissipation: (Multilayer Board) \(T_A = +70°C \), derate 24.4mW/°C above +70°C, 1951.2mW

Operating Temperature Range: -40°C to +125°C

Junction Temperature: +150°C

Storage Temperature Range: -65°C to +150°C

Lead Temperature (soldering, 10s): +300°C

Soldering Temperature (reflow): +260ºC

ESD Protection – Human Body Model: ±2kV

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

12 SW TDFN-EP

<table>
<thead>
<tr>
<th>Package Code</th>
<th>TD1233Y+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Number</td>
<td>21-100176</td>
</tr>
<tr>
<td>Land Pattern Number</td>
<td>90-100072</td>
</tr>
</tbody>
</table>

THERMAL RESISTANCE, FOUR-LAYER BOARD

- Junction to Ambient (\(\theta_{JA} \)) 41°C/W
- Junction to Case (\(\theta_{JC} \)) 8.5°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

\(V_{\text{IN}} = 24V, V_{\text{EN/UVLO}} = \) unconnected, \(R_{RT} = 105k\Omega, LX = \) unconnected, \(T_A = T_J = -40°C to +125°C, \) unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>(V_{\text{IN}})</td>
<td></td>
<td>4.5</td>
<td>6</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Input Shutdown Current</td>
<td>(I_{\text{IN-SH}})</td>
<td>(V_{\text{EN}} = 0V,) shutdown mode</td>
<td>2.5</td>
<td>5</td>
<td>13</td>
<td>µA</td>
</tr>
<tr>
<td>Input Quiescent Current</td>
<td>(I_{\text{Q-PFM}})</td>
<td>(R_{\text{ILIM}} =) open or 422kΩ</td>
<td>2.5</td>
<td>5</td>
<td>13</td>
<td>µA</td>
</tr>
<tr>
<td>ENABLE/UVLO (EN)</td>
<td>(I_{\text{EN}})</td>
<td>(V_{\text{EN/UVLO}}) rising</td>
<td>1.19</td>
<td>1.215</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{ENF}})</td>
<td>(V_{\text{EN/UVLO}}) falling</td>
<td>1.09</td>
<td>1.115</td>
<td>1.14</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{EN-TRUESD}})</td>
<td>(V_{\text{EN/UVLO}}) falling, True Shutdown™</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Pull-up Current</td>
<td>(I_{\text{EN}})</td>
<td>(V_{\text{EN/UVLO}} = 1.215V)</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>µA</td>
</tr>
<tr>
<td>LDO (VCC)</td>
<td>(V_{\text{CC}})</td>
<td>6V < (V_{\text{IN}} < 60V,) 0mA < (I_{\text{VCC}} < 5mA)</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>(I_{\text{VCC-MAX}})</td>
<td>(V_{\text{CC}} = 4.3V, V_{\text{IN}} = 12V)</td>
<td>12</td>
<td>26</td>
<td>52</td>
<td>mA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>(V_{\text{CC-DO}})</td>
<td>(V_{\text{IN}} = 4.5V, I_{\text{VCC}} = 5mA)</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

www.analog.com
Analog Devices | 2
Electrical Characteristics (continued)

\(V_{IN} = 24V, \ V_{EN/UVLO} = \text{unconnected}, \ R_{RT} = 105k\Omega, \ LX = \text{unconnected}, \ T_A = T_J = -40°C \) to \(+125°C, \) unless otherwise noted. (Note 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVLO</td>
<td>(V_{CC-UVF})</td>
<td>(V_{CC}) rising</td>
<td>4.05</td>
<td>4.2</td>
<td>4.35</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC-UVR})</td>
<td>(V_{CC}) falling</td>
<td>3.65</td>
<td>3.8</td>
<td>3.95</td>
<td>V</td>
</tr>
</tbody>
</table>

EXT LDO (EXTVCC)

Switchover Threshold	EXTVCC rising	4.65	4.74	4.88	V
Switchover-Threshold Hysteresis					V
Dropout	EXTVCC-DO	\(V_{EXTVCC} = 4.75V, \ i_{VCC} = 5mA \)	0.1	V	
Current Limit	\(V_{CC} = 4.3V, \ V_{EXTVCC} = 5V \)	15	21	34	mA

POWER MOSFETs

High-Side pMOS On-Resistance	\(\text{R}_{DS-ONH} \)	\(i_{LX} = 0.3A, \) sourcing	0.9	1.8	Ω
Low-Side nMOS On-Resistance	\(\text{R}_{DS-ONL} \)	\(i_{LX} = 0.3A, \) sinking	0.275	0.55	Ω
LX Leakage Current	\(T_A = +25°C \)	2	μA		

SOFT-START

| Charging Current | \(i_{SS} \) | 4.7 | 5 | 5.3 | μA |

FEEDBACK (FB)

| FB Regulation Voltage | \(V_{FB} \) | \(\text{R}_{ILIM} = 243k\Omega \) or \(121k\Omega \) | 0.788 | 0.8 | 0.812 | V |
| FB Input Leakage Current | \(V_{FB} = 1V, \ T_A = +25°C \) | -100 | 100 | nA |

CURRENT LIMIT

Peak Current-Limit Threshold	\(i_{\text{SOURCE-LIMIT}} \)	\(\text{R}_{ILIM} = \text{open} \) or \(243k\Omega \)	1.4	1.6	2.0	A
Negative Current-Limit Threshold	\(i_{\text{SINK-LIMIT}} \)	\(\text{R}_{ILIM} = 121k\Omega \) or \(422k\Omega \)	0.94	1.14	1.36	A
PFM Current Level	\(\text{I}_{\text{PFM}} \)	\(\text{R}_{ILIM} = \text{open} \) or \(422k\Omega \)	0.235	0.33	0.44	A

| MODE | \(\text{I}_{\text{ON-MIN}} \) | 45 | 70 | 120 | ns |
| \(\text{D}_{\text{MAX}} \) | Maximum Duty Cycle | 89 | 93 | 97 | % |
Electrical Characteristics (continued)

\(V_{IN} = 24\,V\), \(V_{EN/UVLO} =\) unconnected, \(R_{RT} = 105\,k\Omega\), \(L_X = \) unconnected, \(T_A = T_J = -40^\circ C\) to +125°C, unless otherwise noted. \((\text{Note 1})\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCILLATOR</td>
<td></td>
<td>(R_{RT} = 210k\Omega)</td>
<td>180</td>
<td>200</td>
<td>220</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{RT} = 140k\Omega)</td>
<td>270</td>
<td>300</td>
<td>330</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{RT} = 105k\Omega)</td>
<td>360</td>
<td>400</td>
<td>440</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{RT} = 69.8k\Omega)</td>
<td>540</td>
<td>600</td>
<td>660</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_{RT} = 19.1k\Omega)</td>
<td>1800</td>
<td>2033</td>
<td>2200</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.15 \times f_{SW})</td>
<td>220</td>
<td>2200</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.4 \times f_{SW})</td>
<td>220</td>
<td>2200</td>
<td>kHz</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{SYNC-H}) pulse must exceed this number</td>
<td>40</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{SYNC-H})</td>
<td>1</td>
<td>1.22</td>
<td>1.44</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{SYNC-HYS})</td>
<td>0.18</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{FB}) rising</td>
<td>95</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{FB}) falling</td>
<td>92</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delay after FB Reaches 95% Regulation</td>
<td>2.1</td>
<td>ms</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{RESET} = 1mA)</td>
<td>0.09</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = +25^\circ C)</td>
<td>1</td>
<td>µA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = +25^\circ C)</td>
<td>160</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = +25^\circ C)</td>
<td>20</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: All limits are 100% tested at +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Typical values are at \(T_A = +25^\circ C\).

Note 2: Guaranteed by design, not production tested.
Typical Operating Characteristics

(T_A = +25°C, unless otherwise noted.)

24V_{IN} 400kHz EFFICIENCY vs. LOAD CURRENT

24V_{IN} 2.2MHz EFFICIENCY vs. LOAD CURRENT

LINE REGULATION (400kHz)

SHUTDOWN CURRENT vs. SUPPLY VOLTAGE

24V_{IN} 400kHz LOAD REGULATION

24V_{IN} 2.2MHz LOAD REGULATION

APPLICATION OF EXTERNAL CLOCK

REMOVAL OF EXTERNAL CLOCK

LOAD TRANSIENT

www.analog.com
Typical Operating Characteristics (continued)

($T_A = +25^\circ C$, unless otherwise noted.)

LOAD TRANSIENT

PFM MODE

(10mA TO 1A PULSE)

$V_{IN} = 24V$

$L = 33\mu H$

$C_{OSS} = 22\mu F$

OUT (AC)

V_{OUT}

V_{IN}

I_{OUT}

V_{RESET}

t_{ms}

500mV/div

2.0V/div

1.0V/div

LINE TRANSIENT

PFM MODE

(10mA LOAD)

$V_{IN} = 24V$

$L = 33\mu H$

$C_{OSS} = 22\mu F$

V_{OUT}

V_{IN}

I_{X}

V_{RESET}

200\mu s

500mV/div

5.0V/div

500mA/div

2.0V/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

SOFT-START/SHUTDOWN FROM EN

PFM MODE

(500mA LOAD)

$V_{IN} = 24V$

$L = 33\mu H$

$C_{OSS} = 22\mu F$

V_{OUT}

V_{IN}

I_{X}

V_{RESET}

2ms

500mV/div

5.0V/div

500mA/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

500mA/div

2.0V/div

SHORT-CIRCUIT

PFM MODE

V_{OUT}

V_{IN}

I_{X}

V_{RESET}

20\mu s

20V/div

5.0V/div

1.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

1.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

1.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

1.0V/div

5.0V/div

SOFT SHORT-CIRCUIT

(V$_{OUT}$ FORCED TO 80% OF REGULATION)

PFM MODE

V_{OUT}

V_{IN}

I_{X}

V_{RESET}

20\mu s

20V/div

5.0V/div

1.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

1.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

5.0V/div

1.0V/div

5.0V/div

STABLE-STATE SWITCHING WAVEFORMS

(5V OUTPUT, 1A LOAD CURRENT)

PFM MODE

V_{IN}

V_{OUT}

I_{X}

V_{RESET}

50mV/div

500mV/div

5.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

500mV/div

5.0V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

500mV/div

5.0V/div

5.0V/div

SLOW INPUT VOLTAGE

(5V OUTPUT, 10mA LOAD CURRENT)

PFM MODE

V_{IN}

V_{OUT}

I_{X}

V_{RESET}

20V/div

2V/div

2V/div

5.0V/div

V_{RESET}

V_{IN}

I_{X}

20V/div

2V/div

2V/div

5.0V/div
Pin Configuration

Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PGND</td>
<td>Power Ground Pin of the Converter. Connect externally to the power ground plane. Connect the SGND and PGND pins together at the ground return path of the V<sub>CC</sub> bypass capacitor.</td>
</tr>
<tr>
<td>2</td>
<td>V<sub>IN</sub></td>
<td>Power-Supply Input. 4.5V to 60V input supply range. Decouple to PGND with a 2.2μF capacitor; place the capacitor close to the V<sub>IN</sub> and PGND pins.</td>
</tr>
<tr>
<td>3</td>
<td>V<sub>CC</sub></td>
<td>5V LDO Output. Bypass V<sub>CC</sub> with a 1μF ceramic capacitance to SGND. This LDO is intended to power internal circuits only.</td>
</tr>
<tr>
<td>4</td>
<td>EN/UVLO</td>
<td>Enable/Undervoltage Lockout Pin. Drive EN/UVLO high to enable the output. Connect to the center of the resistor-divider between V<sub>IN</sub> and SGND to set the input voltage at which the part turns on. Leave the pin unconnected for always-on operation.</td>
</tr>
<tr>
<td>5</td>
<td>RESET</td>
<td>Open-Drain RESET Output. The RESET output is driven low if FB drops below 92% of its set value. RESET goes high 2.1ms after FB rises above 95% of its set value.</td>
</tr>
<tr>
<td>6</td>
<td>RT/SYNC</td>
<td>Frequency-Set and Synchronization Pin. Connect a resistor from RT/SYNC to SGND to set the switching frequency of the part between 200kHz and 2000kHz. An external clock can be connected to the RT/SYNC pin to synchronize the part with an external frequency up to 2200kHz.</td>
</tr>
<tr>
<td>7</td>
<td>EXTVCC</td>
<td>External Power-Supply Input for the Internal LDO</td>
</tr>
<tr>
<td>8</td>
<td>FB</td>
<td>Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to SGND to set the output voltage.</td>
</tr>
<tr>
<td>9</td>
<td>SS</td>
<td>Soft-Start Input. Connect a capacitor from SS to SGND to set the soft-start time.</td>
</tr>
<tr>
<td>10</td>
<td>MODE/ILIM</td>
<td>Mode and Current-Limit Set Pin. Connect a resistor from MODE/ILIM to SGND to program the peak and runaway current limits and mode of operation of the part. See the Current Limit and Mode of Operation section for more details.</td>
</tr>
<tr>
<td>11</td>
<td>SGND</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>12</td>
<td>LX</td>
<td>Switching Node. Connect the LX pin to the switching side of the inductor.</td>
</tr>
<tr>
<td>—</td>
<td>EP</td>
<td>Exposed Pad. Connect EP to the SGND pin. Connect to a large copper plane below the IC to improve heat-dissipation capability. Add thermal vias below the exposed pad.</td>
</tr>
</tbody>
</table>
Detailed Description
The MAX20058 high-efficiency, high-voltage, step-down DC-DC regulator IC operates from 4.5V to 60V and delivers up to 1A load current. Feedback voltage-regulation accuracy meets ±1.5% over load, line, and temperature.

The IC uses a peak-current-mode-control scheme. An internal transconductance error amplifier generates an integrated error voltage. The error voltage sets the duty cycle using a PWM comparator, a high-side current-sense amplifier, and a slope-compensation generator.

At each rising edge of the clock, the high-side MOSFET turns on and remains on until either the appropriate or maximum duty cycle is reached or the peak current limit is detected.

During the high-side MOSFET’s on-time, the inductor current ramps up. During the second-half of the switching cycle, the high-side MOSFET turns off and the low-side MOSFET turns on and remains on until either the next rising edge of the clock arrives or sink current limit is detected. The inductor releases the stored energy as its current ramps down and provides current to the output. The internal low $R_{DS(ON)}$ pMOS/nMOS switches ensure high efficiency at full load.

The IC also integrates a switching-frequency selector pin, current-limit and mode-of-operation selector pin, enable/undervoltage lockout (EN/UVLO) pin, programmable soft-start pin, and open-drain RESET signal.

Current Limit and Mode of Operation
Table 1 lists the value of the resistors to program PWM or PFM modes of operation and 1.6A or 1.14A peak current limits. The mode of operation cannot be changed “on-the-fly” after power-up.

Table 1. R_{ILIM} Settings

<table>
<thead>
<tr>
<th>R_{ILIM} (kΩ)</th>
<th>PEAK CURRENT LIMIT (A)</th>
<th>MODE OF OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>1.6</td>
<td>PFM</td>
</tr>
<tr>
<td>422</td>
<td>1.14</td>
<td>PFM</td>
</tr>
<tr>
<td>243</td>
<td>1.6</td>
<td>PWM</td>
</tr>
<tr>
<td>121</td>
<td>1.14</td>
<td>PWM</td>
</tr>
</tbody>
</table>

PWM Mode of Operation
In PWM mode, the inductor current can go negative. The PWM mode of operation provides constant frequency operation at all loads, and is useful in applications sensitive to switching frequency. However, PWM mode gives lower efficiency at light loads compared to PFM mode.

PFM Mode of Operation
The PFM mode of operation disables negative inductor current and additionally skips pulses at light loads for high efficiency. In PFM mode, the inductor current is forced to a fixed peak every clock cycle until the output rises to 102% of the nominal voltage by monitoring the FB pin. Resistor tolerance will impact actual output voltage. Once the output reaches 102% of the nominal voltage, both the high-side and low-side FETs are turned off and the device enters hibernate operation until the load discharges the output to 101% of the nominal voltage. Most of the internal blocks are turned off in hibernate operation to save quiescent current. After the output falls below 101% of the nominal voltage, the device comes out of hibernate operation, turns on all internal blocks and again commences the process of delivering pulses of energy to the output until it reaches 102% of the nominal output voltage.

The advantage of PFM mode is higher efficiency at light loads because of lower quiescent current drawn from supply. However, the output-voltage ripple is higher compared to PWM mode, and switching frequency is not constant at light loads.

Linear Regulator (VCC)
The IC has two internal low-dropout regulators (LDOs), which power V_{CC}. One LDO is powered from the input voltage and the other LDO is powered from the EXTVCC pin. Only one of the two LDOs is in operation at a time, depending on the voltage levels present at the EXTVCC pin.
If EXTVCC rises above 4.74V (typ), \(V_{CC} \) is powered from the EXTVCC pin. If EXTVCC falls below 4.44V (typ), \(V_{CC} \) is powered from the input voltage. Powering \(V_{CC} \) from EXTVCC increases efficiency, particularly at higher input voltages. Typical \(V_{CC} \) output voltage is 5V. Bypass \(V_{CC} \) to SGND with a 1\(\mu \)F capacitor.

When \(V_{CC} \) falls below its undervoltage lockout (3.8V, typ), the internal step-down controller is turned off and LX switching is disabled. The LX switching is enabled again when the \(V_{CC} \) voltage exceeds 4.2V (typ). The 400mV (typ) hysteresis prevents chattering on power-up and power-down.

When powering EXTVCC from \(V_{OUT} \), an R-C network should be placed in the path to protect the LDO from a potential negative voltage transient due to a short-circuit event. A 4.7\(\Omega \) resistor and a 0.1\(\mu \)F capacitor are recommended (see the Typical Application Circuit).

Switching-Frequency Selection and External Frequency Synchronization

The RT/SYNC pin programs the switching frequency of the converter. Connect a resistor from RT/SYNC to SGND to set the switching frequency of the part at any one of five discrete frequencies: 200kHz, 300kHz, 400kHz, 600kHz, or 2MHz (see Table 2 for resistor values).

The internal oscillator of the device can be synchronized to an external clock signal on the RT/SYNC pin. The external synchronization clock frequency must be between 1.15 \times f_{SW} and 1.4 \times f_{SW}, where \(f_{SW} \) is the switching frequency programmed by the resistor connected from the RT/SYNC pin. The MAX20058 has been tested up to 2000kHz with a 19.1k\(\Omega \) resistor.

Operating Input Voltage Range

The minimum and maximum operating input voltages for a given output voltage should be calculated as shown in the following equation.

Equation 1:

\[
V_{IN(MIN)} = \frac{V_{OUT} + (I_{OUT(MAX)} \times (R_{DCR} + 0.55))}{D_{MAX}} + (I_{OUT(MAX)} \times 1.25)
\]

\[
V_{IN(MAX)} = \frac{V_{OUT}}{f_{SW(MAX)} \times t_{ON(MIN)}}
\]

where \(V_{OUT} \) is the steady-state output voltage, \(I_{OUT(MAX)} \) is the maximum load current, \(R_{DCR} \) is the DC resistance of the inductor, \(D_{MAX} \) is the maximum allowable duty ratio (0.89), \(f_{SW(MAX)} \) is the maximum switching frequency, and \(t_{ON(MIN)} \) is the worst-case minimum switch on-time (120ns).

Table 2. RT/SYNC Resistor Settings

<table>
<thead>
<tr>
<th>RT/SYNC RESISTOR VALUE (k(\Omega))</th>
<th>SWITCHING FREQUENCY (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>200</td>
</tr>
<tr>
<td>140</td>
<td>300</td>
</tr>
<tr>
<td>105</td>
<td>400</td>
</tr>
<tr>
<td>69.8</td>
<td>600</td>
</tr>
<tr>
<td>19.1</td>
<td>2000</td>
</tr>
</tbody>
</table>

Overcurrent Protection

The IC is provided with a robust overcurrent-protection scheme that protects the device under overload and output short-circuit conditions. The positive current limit is triggered when the peak value of the inductor current hits a fixed threshold (ILIM_P, 1.6A/1.14A). At this point, the high-side switch is turned off and the low-side switch turned on. The low-side switch is kept on until the inductor current discharges below 0.7 \times ILIM_P.

While in PWM mode, the negative current limit is triggered when the valley value of the inductor current hits a fixed threshold (ILIM N, -0.65A/-0.455A, depending on the value of the resistor connected to the MODE/ILIM pin). At this point, the low-side switch is turned off and the high-side switch is turned on.
The IC includes a **RESET** pin to monitor the output voltage. The open-drain **RESET** output requires an external pull-up resistor. **RESET** goes high (high impedance) in 2.1ms after the output voltage increases above 95% of the nominal voltage. **RESET** goes low when the output voltage drops to below 92% of the nominal voltage. **RESET** also goes low during thermal shutdown.

Thermal-Shutdown Protection

The IC features thermal-overload protection and turns off when the junction temperature exceeds +160°C (typ). Once the device cools by 20°C (typ), it turns back on with a soft-start sequence.
Applications Information

Inductor Selection

Three key inductor parameters must be specified for operation with the device: inductance value (L), inductor saturation current (ISAT) and DC resistance (RDCR). To select inductor value, the ratio of inductor peak-to-peak AC current to DC average current (LIR) must be selected first. A good compromise between size and loss is a 30% peak-to-peak ripple current to average-current ratio (LIR = 0.3). The switching frequency, input voltage, output voltage, and selected LIR then determine the inductor value as follows:

Equation 2:

\[L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN} \times f_{SW} \times I_{OUT} \times LIR} \]

where \(V_{OUT}, I_{OUT}, \) and \(f_{SW} \) are nominal values.

Select a low-loss inductor closest to the calculated value with acceptable dimensions and the lowest possible DC resistance. The saturation current rating (ISAT) of the inductor must be high enough to ensure that saturation occurs only above the peak current-limit value.

Input Capacitor Selection

A low-ESR ceramic input capacitor of 4.7μF is recommended for proper device operation. This value can be adjusted based on application input-voltage-ripple requirements.

The discontinuous input current of the buck converter causes large input ripple current. The switching frequency, peak inductor current, and the allowable peak-to-peak input-voltage ripple dictate the input-capacitance requirement. Increasing the switching frequency or the inductor value lowers the peak-to-average current ratio, yielding a lower input-capacitance requirement.

The input ripple comprises of \(\Delta V_Q \) (caused by the capacitor discharge) and \(\Delta V_{ESR} \) (caused by the ESR of the input capacitor). The total voltage ripple is the sum of \(\Delta V_Q \) and \(\Delta V_{ESR} \). Assume that input-voltage ripple from the ESR and the capacitor discharge is equal to 50% each. The following equations show the ESR and capacitor requirement for a target voltage ripple at the input:

Equation 3:

\[ESR = \frac{\Delta V_{ESR}}{I_{OUT} \times (\Delta I_{P-}\cdot P/2)} \]

\[C_{IN} = \frac{I_{OUT} \times D(1-D)}{\Delta V_Q \times f_{SW}} \]

where:

\[\Delta I_{P-}\cdot P = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN} \times f_{SW} \times L} \]

and:

\[D = \frac{V_{OUT}}{V_{IN}} \]

where \(I_{OUT} \) is the output current, \(D \) is the duty cycle, and \(f_{SW} \) is the switching frequency. Use additional input capacitance at lower input voltages to avoid possible undershoot below the UVLO threshold during transient loading.

Output Capacitor Selection

For optimal phase margin, a 22μF output capacitor is recommended. Additional output capacitance may be needed based on application-specific, output-voltage-ripple requirements. If the total output capacitance required is > 70μF, contact the factory for an optimized solution.
The allowable output-voltage ripple and the maximum deviation of the output voltage during step-load currents determine the output capacitance and its ESR.

V_{OUT} Ripple Requirement

The output ripple comprises \(\Delta V_Q \) (caused by the capacitor discharge) and \(\Delta V_{ESR} \) (caused by the ESR of the output capacitor). Use low-ESR ceramic or aluminum electrolytic capacitors at the output. For aluminum electrolytic capacitors, the entire output ripple is contributed by \(\Delta V_{ESR} \). Use Equation 4 to calculate the ESR requirement and choose the capacitor accordingly. If using ceramic capacitors, assume the contribution to the output ripple voltage from the ESR and the capacitor discharge to be equal. The following equations show the output capacitance and ESR requirement for a specified output-voltage ripple.

Equation 4:

\[
ESR = \frac{\Delta V_{ESR}}{\Delta I_{P-P}}
\]

\[
C_{OUT} = \frac{\Delta I_{P-P}}{8 \times \Delta V_Q \times f_{SW}}
\]

where:

\[\Delta I_{P-P} = \left(\frac{V_{IN} - V_{OUT}}{V_{IN} \times f_{SW} \times L}\right)\]

and:

\[V_{OUT_{RIPPLE}} = \Delta V_{ESR} + \Delta V_Q\]

\(\Delta I_{P-P}\) is the peak-to-peak inductor current as calculated above, and \(f_{SW}\) is the converter’s switching frequency.

Transient Response Requirement

The allowable deviation of the output voltage during fast-transient loads also determines the output capacitance and its ESR. The output capacitor supplies the step-load current until the converter responds with a greater duty cycle. The response time (\(t_{RESPONSE}\)) depends on the closed-loop bandwidth of the converter. The high switching frequency of the devices allows for a higher closed-loop bandwidth, thus reducing \(t_{RESPONSE}\) and the output-capacitance requirement. The resistive drop across the output capacitor’s ESR and the capacitor discharge causes a voltage droop during a step load. Keep the maximum output-voltage deviations below the tolerable limits of the electronics being powered. When using a ceramic capacitor, assume an 80% and 20% contribution from the output-capacitance discharge and the ESR drop, respectively. Use the following equations to calculate the required ESR and capacitance value:

Equation 5:

\[
ESR_{OUT} = \frac{\Delta V_{ESR}}{I_{STEP}}
\]

\[
C_{OUT} = \frac{I_{STEP} \times t_{RESPONSE}}{2 \times \Delta V_Q}
\]

where \(I_{STEP}\) is the load step and \(t_{RESPONSE}\) is the response time of the converter.

Soft-Start Capacitor Selection

The device implements adjustable soft-start operation to reduce inrush current. A capacitor connected from the SS pin to SGND programs the soft-start time for the corresponding output voltage. The selected output capacitance (\(C_{SEL}\)) and the output voltage (\(V_{OUT}\)) determine the minimum required soft-start capacitor as shown below.

Equation 6:

\[
C_{SS} \geq 30 \times 10^{-6} \times C_{SEL} \times V_{OUT}
\]

The soft-start time (\(t_{SS}\)) is related to the capacitor connected at SS (\(C_{SS}\)) by the following equation.

Equation 7:
$t_{ss} = \frac{C_{SS}}{6.25 \times 10^{-6}}$

For example, to program a 2ms soft-start time, a 12nF capacitor should be connected from the SS pin to SGND.

Adjusting the Output Voltage

Set the output voltage with resistive voltage-dividers connected from the positive terminal of the output capacitor (V_{OUT}) to SGND (Figure 1). Connect the center node of the divider to the FB pin. To optimize efficiency and output accuracy, use the following calculations to choose the resistive divider values.

Equation 8:

$$R_4 = \frac{15 \times V_{OUT}}{0.8}$$

$$R_5 = \frac{R_4 \times 0.8}{(V_{OUT} - 0.8)}$$

where R_4 and R_5 are in kΩ.

![Figure 1. Setting the Output Voltage](image)

Series R-C Selection

To achieve higher bandwidth, connect an R-C series circuit across the bottom feedback resistor (see Figure 2).

Select the R-C (R_6 and C_6) values using the following equations:

Equation 9:

$$R_6 = \frac{R_4 \times R_5}{R_4 + R_5} \times \frac{k}{1 - 0.99k}$$

$$C_6 = \frac{1.125 \times 10^6}{f_C \times R_6 \times \left(\frac{k}{1 - k^2} \right)}$$

where:

$$k = \frac{f_C \times C_{OUT} \times (1 + \frac{R_4}{R_5})}{3.6274}$$

And C_{OUT} is the derated capacitance value for a given bias voltage in μF, f_C is the targeted crossover frequency in Hz, (15kHz or 1/20th of f_{SW}; whichever is lower) R_4 and R_5 are the feedback network in kΩ, R_6 is in kΩ, and C_6 is in nF.
Setting the Undervoltage Lockout

Drive EN/UVLO high to enable the output. Leave the pin unconnected for always-on operation. Set the voltage at which each converter turns on with a resistive voltage-divider connected from \(V_{\text{IN}} \) to SGND (see Figure 3). Connect the center node of the divider to EN/UVLO pin.

Equation 10 (choose \(R_1 \) as follows):

\[
R_1 \leq \left(\frac{110000}{V_{\text{IN}}^2}\right)
\]

where \(V_{\text{IN}} \) is the input voltage at which the device is required to turn on and \(R_1 \) is in \(\Omega \). Calculate the value of \(R_2 \) as shown in Equation 11.

Equation 11:

\[
R_2 = \frac{1.215 \times R_1}{V_{\text{IN}} - 1.215 \times (2.5 \mu A \times R_1)}
\]

PCB Layout Guidelines

Careful PCB layout is critical to achieve low switching power losses and clean, stable operation. Use a multilayer board wherever possible for better noise immunity. Follow the guidelines below for a good PCB layout:

1. Place the input capacitor right next to the \(V_{\text{IN}} \) pin. The bypass capacitor for the \(V_{\text{CC}} \) pin should be as close as possible to the pin. The feedback trace should be routed away from the inductor.
2. Solder the exposed pad to a large copper-plane area under the device. To effectively use this copper area as heat exchanger between the PCB and ambient, expose the copper area on the top and bottom side. Add a few small vias or one large via on the copper pad for efficient heat transfer. Connect the exposed pad to PGND, ideally at the return terminal of the output capacitor.
3. Isolate the power components and high-current paths from sensitive analog circuitry.
4. Keep the high-current paths short, especially at the ground terminals. This practice is essential for stable, jitter-free operation.
5. Connect PGND and SGND together, preferably at the return terminal of the input capacitor. Do not connect them anywhere else.
6. Keep the power traces and load connections short. This practice is essential for high efficiency. Use thick copper PCB to enhance full-load efficiency and power-dissipation capability.
7. Route high-speed switching nodes away from sensitive analog areas. Use internal PCB layers as PGND to act as EMI shields to keep radiated noise away from the device and analog bypass capacitor.

Typical Application Circuit

![Applications Circuit Diagram]

Ordering Information

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX20058ATCA/VY+</td>
<td>-40°C to +125°C</td>
<td>12 SW TDFN-EP*</td>
</tr>
</tbody>
</table>

/V Denotes an automotive-qualified part.

/+Denotes a lead(Pb)-free/RoHS-compliant package.

SW = Side-wettable package.

*EP = Exposed pad.
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/18</td>
<td>Initial release</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6/18</td>
<td>Updated Output Voltage Range and last row in Switching Frequency rows in Electrical Characteristics table; replaced TOC04 and updated TOC12 in Typical Operating Characteristics section; updated Switching-Frequency Selection and External Frequency Synchronization section and the last row in Table 2</td>
<td>3, 4, 6, 7, 12</td>
</tr>
<tr>
<td>2</td>
<td>4/19</td>
<td>Updated Absolute Maximum Rating, Equation 6 and Series R-C Selection section</td>
<td>2, 14, 15</td>
</tr>
<tr>
<td>3</td>
<td>6/22</td>
<td>Updated Figure 2 and Typical Application Circuit</td>
<td>14, 16</td>
</tr>
</tbody>
</table>