FEATURES

- Complete Low EMI Switch Mode Power Supply
- EN55022 Class B Compliant
- Wide Input Voltage Range: 3.6V to 58V
- Up to 4A Output Current
 - 24W Output from 12VIN to –24VOUT. PLOSS = 5W,
 TA = 60°C, tRISE = 60°C, 200LFM
- Output Voltage Range: –26.5V ≤ VOUT– ≤ –0.5V
- Safe Operating Area: VIN + |VOUT–| ≤ 58V
- ±1.67% Total DC Output Voltage Error Over Line,
 Load and Temperature (–40°C to 125°C)
- Parallel and Current Share with Multiple LTM4651s
- Constant-Frequency Current Mode Control
- Frequency Synchronization Range: 250kHz to 3MHz
- Power Good Indicator and Programmable Soft-Start
- Overcurrent/Overvoltage/Overtemperature Protection
- 15mm × 9mm × 5.01mm BGA Package

APPLICATIONS

- Avionics, Industrial Control and Test Equipment
- Video, Imaging and Instrumentation
- 48V Telecom and Network Power Supplies
- RF Systems

DESCRIPTION

The LTM®4651 is an ultralow noise, 58V, 24W DC/DC µModule® inverting topology regulator. It regulates a negative output voltage (VOUT–) from a positive input supply voltage (VIN), and is designed to meet the radiated emissions requirements of EN55022. Conducted emission requirements can be met by adding standard filter components. Included in the package are the switching controller, power MOSFETs, inductor, filters and support components.

The LTM4651 can regulate VOUT– to a value between –0.5V and –26.5V, provided that its input and output voltages adhere to the safe operating area criteria of the LTM4651: VIN + |VOUT–| ≤ 58V. A switching frequency range of 250kHz to 3MHz is supported (400kHz default) and the module can synchronize to an external clock.

Despite being an inverting topology regulator, no level shift circuitry is needed to interface to the LTM4651’s RUN, PGOOD or CLkin pins; those pins are referenced to GND.

The LTM4651 is offered in a 15mm × 9mm × 5.01mm BGA package with SnPb or RoHS compliant terminal finish.

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION

![TYPICAL APPLICATION](image)
Absolute Maximum Ratings

(Note 1) (All Voltages Relative to \(V_{OUT}^- \) Unless Otherwise Indicated)

Terminal Voltages
- \(V_{IN}, V_D, SV_{IN}, SW, PGND, GND_{SNS}, ISET_a \) -0.3V to 60V
- GND, EXTVCC .. -0.3V to 28V
- RUN ... GND – 0.3V to \(V_{OUT}^- + 60V \)
- INTVCC, PGDFB, VINREG, COMPa -0.3V to 4V
- \(f_{SET} \) ... -0.3V to INTVCC
- COMPb ... -0.3V to 5V
- ISETb .. -0.3V to 28V
- CLKIN, PGOOD (Relative to GND) -0.3V to 6V

Terminal Currents
- INTVCC Peak Output Current (Note 8) 30mA
- TEMP+ .. -1mA to 10mA
- TEMP– .. -10mA to 1mA

Temperatures
- Internal Operating Temperature
 - Range (Notes 2, 7) -40°C to 125°C
- Storage Temperature Range -55°C to 125°C
- Peak Solder Reflow Package
- Body Temperature 245°C

Pin Configuration

TOP VIEW

(77-PIN (15mm × 9mm × 5.01mm))

Order Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PAD OR BALL FINISH</th>
<th>PART MARKING*</th>
<th>PACKAGE TYPE</th>
<th>MSL RATING</th>
<th>TEMPERATURE RANGE (SEE NOTE 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTM4651EY#PBF</td>
<td>SAC305 (RoHS)</td>
<td>LTM4651Y</td>
<td>BGA</td>
<td>3</td>
<td>-40°C to 125°C</td>
</tr>
<tr>
<td>LTM4651IY#PBF</td>
<td></td>
<td></td>
<td>BGA</td>
<td>3</td>
<td>-40°C to 125°C</td>
</tr>
<tr>
<td>LTM4651IY</td>
<td>SnPb (63/37)</td>
<td></td>
<td>BGA</td>
<td>3</td>
<td>-40°C to 125°C</td>
</tr>
</tbody>
</table>

- Contact the factory for parts specified with wider operating temperature ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.
- Recommended LGA and BGA PCB Assembly and Manufacturing Procedures
- LGA and BGA Package and Tray Drawings
ELECTRICAL CHARACTERISTICS

The italicized symbols denote the specifications which apply over the specified internal operating temperature range (Note 2). $T_A = 25^\circ C$, Test Circuit 1, $V_{IN} = 24V$ and electrically connected to $SVIN$ and RUN, ISETa – SVOUT– = 24V, EXTVCC = PGND, CLKIN open circuit, RSET = 57.6kΩ and RSET = 480kΩ and voltages referred to PGND unless otherwise noted.

### SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$SVIN(DC)$, $VIN(DC)$ | Input DC Voltage | V_{IN}^+ [VOUT–] ≤ 58V | 3.6 | 58 | V |
$V_{OUT}(RANGE)$ | Range of Output Voltage Regulation | 0.5V ≤ ISETa – SVOUT– ≤ 26.5V | −26.5 | −0.5 | V |
$V_{OUT(-24VDC)}$ | Output Voltage Total Variation with Line and Load at VOUT– = −24V | 3.6V ≤ VIN ≤ 34V, 0A ≤ IOUT– ≤ 0.3A, CLKIN Driven per Note 6, CINH = 4.7μF, COUT– = 4.7μF x 2, COUT = 47μF x 2, ISETa – SVOUT– = 24V | −24.4 | −24 | −23.6 | V |
$V_{OUT(-5VDC)}$ | Output Voltage Total Variation with Line and Load at VOUT– = −5V | Measuring GND$_SN$ – ISETa 12V ≤ VIN ≤ 53V, 0A ≤ IOUT– ≤ 2A, CLKIN Driven by 550kHz Clock, CINH = 4.7μF, COUT– = 4.7μF x 2, COUT = 47μF x 2, ISETa – SVOUT– = 5V | −15 | 0 | 15 | mV |
$V_{OUT(-0.5VDC)}$ | Output Voltage Total Variation with Line and Load at VOUT– = −0.5V | Measuring GND$_SN$ – ISETa 3.6V ≤ VIN ≤ 28V, 0A ≤ IOUT– ≤ 2A, CLKIN Driven by 200kHz Clock (Note 5) | −15 | 0 | 15 | mV |

Input Specifications

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{IN(UVLO)}$ | SVIN Undervoltage Lockout Threshold | SVIN Rising | 2.1 | 2.8 | V |
$V_{IN(OVLO)}$ | SVIN Overvoltage Lockout Rising | 64 | 68 | V |
$V_{IN(HYS)}$ | SVIN Overvoltage Lockout Hysteresis | 2 | 4 | V |
$I_{INRUSH(VIN)}$ | Input Inrush Current at Start-Up | CINH = 4.7μF, COUT– = 4.7μF x 2, COUT = 47μF x 2; IOUT– = 0A, ISETa Electrically Connected to ISETb | 1.1 | A |
$I_{Q(SVIN)}$ | Input Supply Bias Current | Shutdown, RUN = GND | 16 | 30 | μA |
$16 | 450 | μA |
$I_{S(VIN)}$ | Input Supply Power Converter | CLKIN Open Circuit, IOUT– = 2A | 2.3 | A |
$I_{S(VIN, SHUTDOWN)}$ | Input Supply Current in Shutdown | Shutdown, RUN = GND | 4 | μA |

Output Specifications

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I_{OUT} | VOUT– Output Continuous Current Range | From VIN = 24V, Regulating VOUT– = –24V at fSW = 1.5MHz From VIN = 12V, Regulating VOUT– = –5V at fSW = 550kHz (See Note 3, Capable of Up to 4A Output Current for Some Combinations of VIN, VOUT–, and fSW) | 0 | 2 | 3 | A |
$\Delta V_{OUT(LINE)}/VOUT$ | Line Regulation Accuracy | IOUT– = 0A, 3.6V ≤ VIN ≤ 34V, ISETa – SVOUT– = 24V, CLKIN Driven by 1.8MHz Clock | 0.05 | 0.25 | % |
$\Delta V_{OUT(LOAD)}/VOUT$ | Load Regulation Accuracy | VIN = 24V, 0A ≤ IOUT– ≤ 2A, CLKIN Driven by 1.5MHz Clock, $R_{SET} = 57.6kΩ$, and $R_{SET} = 480kΩ$ | 0.05 | 0.5 | % |
$V_{OUT(AC)}$ | Output Voltage Ripple, VOUT– | VIN = 12V, ISETa – SVOUT– = 5V | 10 | mVpp |
f_s | VOUT Ripple Frequency | VIN = 12V, ISETa – SVOUT– = 5V | 1.7 | 1.95 | 2.2 | MHz |
$\Delta V_{OUT(START)}$ | Turn-On Overshoot | Delay Measured from VIN Toggling from 0V to 24V to PGGOOD Exceeding 3V Above GND: PGGOOD Having a 100kΩ Pull-Up to 3.3V with Respect to GND, VPGFB Resistor-Divider Network as Shown in Test Circuit 1, $R_{SET} = 480kΩ$, ISETa Electrically Connected to ISETb, and CLKIN Driven with 1.2MHz Clock | 8 | μV |
t_{START} | Turn-On Start-Up Time | VIN Toggling from 0V to 24V to PGGOOD Exceeding 3V Above GND: PGGOOD Having a 100kΩ Pull-Up to 3.3V with Respect to GND, VPGFB Resistor-Divider Network as Shown in Test Circuit 1, $R_{SET} = 480kΩ$, ISETa Electrically Connected to ISETb, and CLKIN Driven with 1.2MHz Clock | 4 | 9 | ms |
$\Delta V_{OUT(LS)}$ | Peak Output Voltage Deviation for Dynamic Load Step | IOUT–: 0A to 1A and 1A to 0A Load Steps in 1μs, $C_{OUT} = 47μF \times 2$, $X5R$ | 400 | mV |
t_{SETTLE} | Settling Time for Dynamic Load Step | IOUT–: 0A to 0.5A and 0.5A to 0A Load Steps in 1μs, $C_{OUT} = 47μF \times 2$, $X5R$ | 50 | μs |
The LTM4651 denotes the specifications which apply over the specified internal operating temperature range (Note 2). $T_A = 25^\circ C$, Test Circuit 1, $V_{IN} = 24V$ and electrically connected to $SVIN$ and RUN, $ISETa – SVOUT− = 24V$, $EXTVCC = PGND$, CLKIN open circuit, $R_{SET} = 57.6\,k\Omega$ and $R_{SET} = 480\,k\Omega$ and voltages referred to PGND unless otherwise noted.

Electrical Characteristics

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_{OUT(OCL)}−$</td>
<td>$i_{OUT}−$ Output Current Limit</td>
<td>$V_{SETa} – SVOUT− = 0.5V$, $3.6V \leq V_{IN} \leq 28V$
$0.1V \leq V_{SETa} – SVOUT− \leq V_{IN} – SVOUT− \leq 58V$</td>
<td>49.3</td>
<td>50</td>
<td>50.7</td>
<td>µA</td>
</tr>
<tr>
<td>i_{GNSNS}</td>
<td>GNDNSNS Leakage Current</td>
<td>$V_{IN} – SVOUT− = SVIN – SVOUT− = RUN – GND = ISETa – SVOUT− = 58V$</td>
<td>600</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>$t_{ON(MIN)}$</td>
<td>Minimum On-Time</td>
<td>(Note 4)</td>
<td>60</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>V_{RUN}</td>
<td>RUN Turn-On/Off Thresholds</td>
<td>RUN Input Turn-On Threshold, RUN Rising
 RUN Hysteresis (RUN Thresholds Measured with Respect to GND)</td>
<td>1.08</td>
<td>1.2</td>
<td>1.32</td>
<td>V</td>
</tr>
<tr>
<td>I_{RUN}</td>
<td>RUN Leakage Current</td>
<td>$V_{IN} = 48V$, $RUN – GND = 3.3V$</td>
<td>0.1</td>
<td>50</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Control Section

- **i_{ISETa}**: Reference Current of ISETa Pin
 $V_{SETa} – SVOUT− = 5V$, and:
 f_{SET} Open Circuit
 $R_{SET} = 57.6\,k\Omega$ (See f_s Specification)

Oscillator and Phase-Locked Loop (PLL)

- **f_{OSC}**: Oscillator Frequency Accuracy
 $V_{IN} = 12V$, $ISETa – SVOUT− = 5V$, and:
 f_{SET} Open Circuit
 $R_{SET} = 57.6\,k\Omega$ (See f_s Specification)

- **f_{SYNC}**: PLL Synchronization Capture Range
 $V_{IN} = 12V$, $ISETa – SVOUT− = 5V$, CLKIN Driven with a GND-Referenced Clock Toggling from 0.4V to 1.2V and Having a Clock Duty Cycle:
 From 10% to 90%; f_{SET} Open Circuit
 From 40% to 60%; $R_{SET} = 57.6\,k\Omega$

Power Good Feedback Input and Power Good Output

- **OV_{PGDFB}**: Output Overvoltage PGDFB Upper Threshold
 PGDFB Rising, Differential Voltage from PGDFB to $SVOUT−$
- **UV_{PGDFB}**: Output Undervoltage PGDFB Lower Threshold
 PGDFB Falling, Differential Voltage from PGDFB to $SVOUT−$
- **ΔV_{PGDFB}**: PGDFB Hysteresis
 PGDFB Returning
- **R_{PGDFB}**: Resistor Between PGDFB and $SVOUT−$
- **R_{PGOOD}**: PGDFB Pull-Down Resistance
 $V_{PGOOD} = 0.1V$ with Respect to GND, $V_{PGOOD} – SVOUT− < UV_{PGDFB}$ and $V_{PGOOD} – SVOUT− > OV_{PGDFB}$
- **$i_{PGOOD(LEAK)}$**: PGGOOD Leakage Current
 $V_{PGOOD} = 3.3V$ with Respect to GND, $UV_{PGDFB} < V_{PGOOD} – SVOUT− < V_{PGOOD} – SVOUT− < OV_{PGDFB}$
- **$i_{PGOOD(DELAY)}$**: PGGOOD Delay
 PGGOOD Low to High (Note 4)
 PGGOOD High to Low (Note 4)
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the specified internal operating temperature range (Note 2). TA = 25°C. Test Circuit 1, VIN = 24V and electrically connected to SVIN and RUN, ISETa – SVOUT– = 24V, EXTVCC = PGND, CLKIN open circuit, RSET = 57.6kΩ and RSET = 480kΩ and voltages referred to PGND unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VVINREG</td>
<td>VINREG Servo Voltage</td>
<td>VINREG Voltage During Output Current Regulation, Measured with Respect to SVOUT–</td>
<td>● 1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>IVVINREG</td>
<td>VINREG Leakage Current</td>
<td>VINREG – SVOUT– = 2V</td>
<td>1</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VINTVCC</td>
<td>Channel Internal VCC Voltage, No INTVCC Loading (IINTVCC = 0mA)</td>
<td>3.6V ≤ SVIN – SVOUT– ≤ 58V, EXTVCC = Open Circuit 5V ≤ SVIN – SVOUT– ≤ 58V, 3.2V ≤ EXTVCC – VOUT– ≤ 26.5V (INTVCC Measured with Respect to VOUT–)</td>
<td>3.15</td>
<td>3.4</td>
<td>3.65</td>
<td>V</td>
</tr>
<tr>
<td>VEXTVCC(TH)</td>
<td>EXTVCC Switchover Voltage</td>
<td>(Note 4)</td>
<td>3.15</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>△VINTVCC/LOAD/ VINTVCC</td>
<td>INTVCC Load Regulation</td>
<td>0mA ≤ IINTVCC ≤ 30mA</td>
<td>–2</td>
<td>0.5</td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>△VTEMP</td>
<td>Temperature Sensor Forward Voltage, VTEMP* – VTEMP–</td>
<td>ITEMP+ = 100µA and ITEMP– = –100µA at TA = 25°C</td>
<td>0.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC(△VTEMP)</td>
<td>△VTEMP Temperature Coefficient</td>
<td></td>
<td>–2.0</td>
<td>mV/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listing under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating conditions for extended periods may affect device reliability and lifetime.

Note 2: The LTM4651 is tested under pulsed load conditions such that TJ = TA. The LTM4651 is guaranteed to meet performance specifications over the 0°C to 125°C internal operating temperature range. Specifications over the full –40°C to 125°C internal operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4651 is guaranteed to meet specifications over the full internal operating temperature range. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors.

Note 3: See output current derating curves for different VIN, VOUT, and TA, located in the Applications Information section.

Note 4: Minimum on-time, VIN Overvoltage Lockout and Overvoltage Lockout Hysteresis, PGGOOD Delay, and EXTVCC Switchover Threshold are tested at wafer sort.

Note 5: VOUT(–0.5VDC)– low line regulation is tested at 3.6VIN with fSET and CLKIN open circuit. High line regulation is tested at 28VIN and with CLKIN driven at 200kHz—so as to ensure minimum on time criteria is met. The LTM4651 is not recommended for applications where the minimum on-time criteria (guardband to 90ns) is continuously violated. The LTM4651 can ride through events (such as VIN surge) where the on-time criteria is transiently violated. See the Applications Information section.

Note 6: VOUT(–24VDC)– is tested at 3.6VIN and 34VIN, with CLKIN driven with a 1.8MHz clock, ISETa – SVOUT– = 24V, and RSET = 57.6kΩ. It is also tested at 24VIN, with CLKIN driven with a 1.5MHz clock, RSET = 57.6kΩ, and RSET = 480kΩ.

Note 7: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed 125°C when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Note 8: The INTVCC Abs Max peak output current is specified as the sum of current drawn by circuits internal to the module biased off of INTVCC and current drawn by external circuits biased off of INTVCC. See the Applications Information section.
TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = 25^\circ C$, unless otherwise noted.

-3.3V Efficiency vs Load Current

-5V Efficiency vs Load Current

-12V Efficiency vs Load Current

-15V Efficiency vs Load Current

-24V Efficiency vs Load Current

Rated Operating Output Voltage

SAFE OPERATING AREA
TYPICAL PERFORMANCE CHARACTERISTICS \(^{\text{TA} = 25{\text{°C}}, \text{unless otherwise noted.}}\)

-5V Transient Response, \(24V_{\text{IN}}\)

[Diagram showing waveforms for -5V transient response with labels for V\(_{\text{OUT}}\), I\(_{\text{OUT}}\), and timing information.]

\(-24V\) Transient Response, \(12V_{\text{IN}}\)

[Diagram showing waveforms for \(-24V\) transient response with labels for V\(_{\text{OUT}}\), I\(_{\text{OUT}}\), and timing information.]

Start-Up, No Load

[Diagram showing waveforms for start-up response with labels for V\(_{\text{IN}}\), V\(_{\text{OUT}}\), I\(_{\text{OUT}}\), PGOOD, and timing information.]

Start-Up, 1.25A Load

[Diagram showing waveforms for start-up with 1.25A load with labels for V\(_{\text{IN}}\), V\(_{\text{OUT}}\), I\(_{\text{OUT}}\), PGOOD, and timing information.]

Start-Up, Pre-Bias

[Diagram showing waveforms for start-up with pre-bias with labels for V\(_{\text{OUT}}\), I\(_{\text{DIODE}}\), PGOOD, and timing information.]

Short Circuit, No Load

[Diagram showing waveforms for short circuit with no load with labels for V\(_{\text{OUT}}\), I\(_{\text{IN}}\), and timing information.]

Short Circuit, 1.25A Load

[Diagram showing waveforms for short circuit with 1.25A load with labels for V\(_{\text{OUT}}\), I\(_{\text{IN}}\), and timing information.]

FIGURE 32 CIRCUIT. 24V\(_{\text{IN}}\) APPLICATION OF 12V\(_{\text{IN}}\), START-UP INTO 19.2Ω LOAD

FIGURE 32 CIRCUIT. 12V\(_{\text{IN}}\), \(0.625\text{A TO 1.25}\text{A LOAD STEP AT 0.625A/µs}\)

FIGURE 32 CIRCUIT, APPLICATION OF 12V\(_{\text{IN}}\), START-UP INTO NO LOAD

FIGURE 32 CIRCUIT, APPLICATION OF 12V\(_{\text{IN}}\), START-UP INTO NO LOAD

FIGURE 32 CIRCUIT, APPLICATION OF 12V\(_{\text{IN}}\), START-UP INTO NO LOAD

FIGURE 32 CIRCUIT, APPLICATION OF 12V\(_{\text{IN}}\), START-UP INTO NO LOAD
PIN FUNCTIONS

V_IN (A1 – A3, B3): Power Input Pins. Apply input voltage and input decoupling capacitance directly between V_IN and a power ground (PGND) plane.

V_D (A4, B4, C4): Drain of the Converter’s Primary Switching MOSFET. Apply at least one 4.7μF high frequency ceramic decoupling capacitor directly from VD to VOUT-. Give this capacitor higher layout priority (closer proximity to the module) than any V_IN decoupling capacitors.

SV_IN (C3): Input Voltage Supply for Small-Signal Circuits. SV_IN is the input to the INTVCC LDO. Connect SV_IN directly to V_IN. No decoupling capacitor is needed on this pin.

V_OUT- (A5, B5, C2, C5, D5, E5, F5, G4 – 5, H3, H5, J3 – 5, K4 – 5, L4 – 5): Negative Power Output of the LTM4651. Connect all V_OUT- pins to the application’s V_OUT- plane. Apply the output filter capacitor and the output load between these and the PGND pins.

PGND (K1 – 3, L1 – 3): Power Ground Pins of the LTM4651. Electrically connect all pins to the application’s PGND plane.

GND (D4): Ground Reference for RUN, CLkin, and PGOOD Signals. Connect GND directly to the PGND power ground plane.

GND SNS (G1, H1): Voltage Sense, PGND Input and Feedback Signal. Connect GND SNS to PGND at the point of load (POL). Pins G1 and H1 are electronically connected to each other internal to the module, and thus it is only necessary to connect one GND SNS pin to PGND at the POL. The remaining GND SNS pins can be used for redundant connectivity or routed to an ICT test point for design-for-test considerations, as desired.

SV_OUT- (E4, G2, H2): Voltage Sense, V_OUT- Input. Connect Pin H2 to V_OUT- directly under the LTM4651. The SV_OUT- pins at locations E4 and G2 are electrically connected to each other internal to the module, and thus it is only necessary to connect one SV_OUT- pin to V_OUT- under the module. The remaining SV_OUT- pins can be used for redundant connectivity or routed to an ICT test point for design-for-test considerations, as desired.

RUN (F4): Run Control Pin. A voltage above 1.2V (with respect to GND) commands the module to regulate its output voltage. Undervoltage lockout (UVLO) can be implemented by connecting RUN to the midpoint node formed by a resistor-divider between V_IN and GND. RUN features 130mV of hysteresis. See the Applications Information section.

INTVCC (G3): Internal Regulator, 3.3V Output with Respect to VOUT-. Internal control circuits and MOSFET-drivers derive power from INTVCC bias. When operating 3.6V < SV_IN ≤ 58V, an LDO generates INTVCC from SV_IN when RUN is logic high (RUN > 1.2V). No external decoupling is required. When RUN is logic low (RUN – GND < 1.2V), the INTVCC LDO is off, i.e., INTVCC is unregulated. (Also see EXTVCC.) It is not recommended to load INTVCC with external circuits exceeding ~10mA. See the Applications Information section and Note 8.

EXTVCC (F3): External Bias, Auxiliary Input to the INTVCC Regulator. When EXTVCC – V_OUT- exceeds 3.2V and SV_IN – V_OUT- exceeds 5V, the INTVCC LDO derives power from EXTVCC bias instead of the SV_IN path. This technique can reduce LDO losses considerably, resulting in a corresponding reduction in module junction temperature. For applications where |V_OUT-| > 4V, realize this benefit by connecting EXTVCC to PGND through a resistor. (See the Application Information section for resistor value.) When taking advantage of this EXTVCC feature, locally decouple EXTVCC to V_OUT- with a 1µF ceramic capacitor—otherwise, leave EXTVCC open circuit.

ISETb (F1): 1.5nF Soft-Start Capacitor. Connect ISETb to ISETa to achieve default soft-start characteristics, if desired—otherwise, leave ISETb open circuit. See ISETa.

ISETa (F2): Accurate 50µA Current Source. Positive input to the error amplifier. Connect a resistor (R_SET) from this pin to SV_OUT- to program the desired LTM4651 output voltage, V_OUT- = –R_SET • 50µA. A capacitor can be connected from ISETa to SV_OUT- to soft-start the output voltage and reduce start-up inrush current. Connect ISETa to ISETb in order to achieve default soft-start, if desired. See ISETb.
PIN FUNCTIONS

In addition, the output of the LTM4651 can track a voltage applied between the ISETa pin and the SVOUT⁻ pins. See the Applications Information section.

PGOOD (D1): Power Good Indicator, Open-Drain Output Pin. PGOOD is high impedance when PGDFB – SVOUT⁻ is within approximately ±7.5% of 0.6V. PGOOD is pulled to GND when PGDFB – SVOUT⁻ is outside this range.

PGDFB (D2): Power Good Feedback Programming Pin. Connect PGDFB to GNDSENS through a resistor, RPGDFB. RPGDFB configures the voltage threshold of VOUT⁻ for which PGOOD toggles its state. If the PGOOD feature is used, set RPGDFB to:

\[
R_{PGDFB} = \left(\frac{|V_{OUT^-}| - 0.6V}{1} \right) \cdot 4.99k
\]

otherwise, leave PGDFB open circuit.

A small filter capacitor (220pF) internal to the LTM4651 on this pin provides high frequency noise immunity for the PGOOD output indicator.

fSET (E3): Oscillator Frequency Programming Pin. The default switching frequency of the LTM4651 is 400kHz. Often, it is necessary to increase the programmed frequency by connecting a resistor between fSET and SVOUT⁻. (See the Applications Information section.) Note that the synchronization range of CLKIN is approximately ±40% of the oscillator frequency programmed by the fSET pin.

CLKIN (B1): Oscillator Synchronization Input. Leave CLKIN open circuit for forced continuous mode operation. Alternatively, this pin can be driven so as to synchronize the switching frequency of the LTM4651 to a clock signal. In this condition, the LTM4651 operates in forced-continuous mode and the cycle-by-cycle turn-on of the Primary MOSFET is coincident with the rising edge of the clock applied to CLKIN. Note the synchronization range of CLKIN is approximately ±40% of the oscillator frequency programmed by the fSET pin. See the Applications Information section.

COMPa (E2): Current Control Threshold and Error Amplifier Compensation Node. The trip threshold of LTM4651’s current comparator increases with a respective rise in COMPa voltage. A small filter capacitor (10pF) internal to the LTM4651 on this pin introduces a high-frequency roll-off of the error-amplifier response, yielding good noise rejection in the control-loop. COMPa is usually electrically connected to COMPb in one’s application, thus applying default loop compensation. Loop compensation (a series resistor-capacitor) can be applied externally to COMPa if desired or needed, instead. See COMPb.

COMPb (E1): Internal Loop Compensation Network. For a majority of applications, the internal, default loop compensation of the LTM4651 is suitable to apply “as is” and yields very satisfactory results: apply the default loop compensation to the control loop by simply connecting COMPa to COMPb. When more specialized applications require a personal touch to the optimization of control loop response, this can be accomplished by connecting a series resistor-capacitor network from COMPa to SVOUT⁻—and leaving COMPb open circuit.

VINREG (D3): Input Voltage Regulation Programming Pin. Optionally connect this pin to the midpoint node formed by a resistor-divider between VD and SVOUT⁻. When the voltage on VINREG falls below approximately 2V with respect to SVOUT⁻, a VINREG control loop servos COMPa so as to decrease the power inductor current and thus regulate VINREG at 2V with respect to SVOUT⁻. See the Applications Information section.

If this input voltage regulation feature is not desired, connect VINREG to INTVCC.

TEMP⁺ (J1, J6): Temperature Sensor, Positive Input. Emitter of a 2N3906-genre PNP bipolar junction transistor (BJT). Optionally interface to temperature monitoring circuitry such as LTC2997, LTC2990, LTC2974 or LTC2975. Otherwise leave electrically open. Pins J1 and J6 are electrically connected together internal to the LTM4651, and thus it is only necessary to connect one TEMP⁺ pin to monitoring circuitry. The remaining TEMP⁺ pin can be used for redundant connectivity or routed to an ICT test point for design-for-test considerations, as desired.
PIN FUNCTIONS

TEMP⁻ (J2, J7): Temperature Sensor, Negative Input. Collector and base of a 2N3906-genre PNP bipolar junction transistor (BJT). Optionally interface to temperature monitoring circuitry such as LTC2997, LTC2990, LTC2974 or LTC2975. Otherwise leave electrically open. Pins J2 and J7 are electrically connected together internal to the LTM4651, and thus it is only necessary to connect one TEMP⁻ pin to monitoring circuitry. The remaining TEMP⁻ pin can be used for redundant connectivity or routed to an ICT test point for design-for-test considerations, as desired.

SW (H4): Switching Node of Switching Converter Stage. Used for test purposes. May be routed a short distance with a thin trace to a local test point to monitor switching action of the converter, if desired, but do not route near any sensitive signals; otherwise, leave electrically open circuit.

NC (A6–7, B6–7, C1, C6–7, D6–7, E6–7, F6–7, G6–7, H6–7, K6–7, L6–7): No Connect Pins, i.e., Pins with No Internal Connection. The NC pins predominantly serve to provide improved mounting of the module to the board. In one’s layout, NC pins are permitted to remain electrically unconnected or can be connected as desired, e.g., connected to a VOUT⁻ plane for heat-spreading purposes and/or to facilitate routing.

SIMPLIFIED BLOCK DIAGRAM
TEST CIRCUIT

![Diagram of the LTM4651 circuit](image)

*Polarized output capacitors \(C_{OUTL} \), if used, must be rated to withstand \(-0.3\) V typical reverse polarity prior to LTM4651 start-up, stemming from a weakly forward-biased body diode. In such cases, a Schottky diode should be connected between PGND and \(V_{OUT}^- \) to limit the voltage. See the Applications Information section and Figures 33a and 33b.

**Outside the ATE Test environment, \(R_{EXTVCC} \), if used, should not be \(0 \) \(\Omega \). See the Applications Information section.

DECOUPLING REQUIREMENTS

\(T_A = 25^\circ \text{C}. \) Refer to Test Circuit 1.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Circuit 1</td>
<td>(C_{INH}, C_D)</td>
<td>External High Frequency Input Capacitor Requirement, (24\text{V} \leq V_{IN} \leq 34\text{V}, V_{OUT}^- = -24\text{V})</td>
<td>2A</td>
<td>9.4</td>
<td></td>
<td></td>
<td>(\mu \text{F})</td>
</tr>
<tr>
<td></td>
<td>(C_{OUTH})</td>
<td>External High Frequency Output Capacitor Requirement (24\text{V} \leq V_{IN} \leq 34\text{V}, V_{OUT}^- = -24\text{V})</td>
<td>2A</td>
<td>22</td>
<td></td>
<td></td>
<td>(\mu \text{F})</td>
</tr>
</tbody>
</table>
Power Module Description

The LTM4651 is a non-isolated switch mode DC/DC power supply. It can provide up to 4A output current with a few external input and output capacitors. Set by a single resistor, RSET, the LTM4651 regulates a negative output voltage, VOUT–. VOUT– can be set to as low as –26.5V to as high as –0.5V. The LTM4651 operates from a positive input supply rail, VIN, between 3.6V and 58V. The LTM4651’s safe operating area is defined by: VIN + |VOUT–| ≤ 58V. The typical application schematic is shown in Figure 32. The output current capability of the LTM4651 is dependent on VIN and VOUT, as indicated in the page 1 graph. Though the LTM4651 is a ground-referred buck converter topology—also known as a two-switch buck-boost converter—it contains built-in level-shift circuitry so that the RUN, CLKin, and PGOOD pins are conveniently referred to GND (not VOUT–).

The LTM4651 contains an integrated constant-frequency current mode regulator, power MOSFETs, power inductor, EMI filter and other supporting discrete components. The nominal switching frequency range is from 400kHz to 3MHz, and the default operating frequency is 400kHz. It can be externally synchronized to a clock, from 250kHz to 3MHz. See the Applications Information section.

The LTM4651 supports internal and external control loop compensation. Internal loop compensation is selected by connecting the COMPa and COMPb pins. Using internal loop compensation, the LTM4651 has sufficient stability margins and good transient performance with a wide range of output capacitors, even ceramic-only output capacitors. For external loop compensation, see the Applications Information section. LTpowerCAD® is available for transient load step and stability analysis.

Input filter and noise cancellation circuitry reduces noise-coupling to the module’s inputs and outputs, ensuring the module’s electromagnetic interference (EMI) meets the limits of EN55022 Class B (see Figures 5 to 8).

Pulling the RUN pin below 1.2V forces the LTM4651 into a shutdown state. A capacitor can be applied from ISETa to SVOUT– to program the output voltage ramp-rate; or, the default LTM4651 ramp-rate can be set by connecting ISETa to ISETb; or, voltage tracking can be implemented by interfacing rail voltages to the ISETa pin. See the Application Information section.

Multiphase operation can be employed by applying an external clock source to the LTM4651’s synchronization input, the CLKin pin. See the Typical Applications section.

LDO losses within the module are reduced by connecting EXTVCC to PGND through an RC-filter or by connecting EXTVCC to a suitable voltage source.

The LTM4651 also features a spare control pin called VINREG which can be used to reduce the input current draw during input line sag (“brownout”) conditions. Connect VINREG to INTVCC when this feature is not needed.
The typical LTM4651 application circuit is shown in Test Circuit 1. External component selection is primarily determined by the maximum load current and output voltage. Refer to Table 8 for recommended external component values.

Output Current Capability Varies as a Function of VIN to VOUT Conversion Ratios

The output current capability of the LTM4651 has a strong dependency on the operating input (VIN) and output (VOUT) voltages, as highlighted in the page 1 graph.

The reason for this is inherent in the two-switch buck-boost topology employed by the LTM4651. To protect the primary power MOSFET (MT) from overstress (see Simplified Block Diagram), its peak current (IPK) is limited by control circuitry to 6A. When MT is on, observe that no current flows to LTM4651’s output; furthermore, observe that only when MT is off does current flow to the output of the LTM4651. As a consequence of this arrangement: for a given output voltage, current limit inception activates sooner at low line (higher, larger duty cycle) than at high line (lower, smaller duty cycle). A further consequence is: for a given input voltage, the output power capability of the LTM4651 is higher for lower-magnitude VOUT (lower, smaller duty cycle) than for higher-magnitude VOUT (higher, larger duty cycle). The combination of these effects is shown the plots in the page 1 graph and described by the following equation:

\[
\text{I}_{\text{OUT(CAPABILITY)}} = \frac{V_{\text{IN}} \cdot \left(I_{\text{PK}} - \frac{\Delta I_{\text{PK-PK}}}{2} \right) \cdot \eta}{V_{\text{IN}} - V_{\text{OUT}}}
\]

where:
\[\Delta I_{\text{PK-PK}}\] is the inductor ripple current, in amps, and \(\eta\) (unitless) is the efficiency of the LTM4651.

For completeness, \(\Delta I_{\text{PK-PK}}\) is given by:

\[\Delta I_{\text{PK-PK}} = \frac{1}{L \cdot f_{SW} \cdot \left(\frac{1}{V_{\text{IN}}} - \frac{1}{V_{\text{OUT}}} \right)}\]

where:
- \(L\) is 4μH, the LTM4651’s power inductor value, and \(f_{SW}\) is the switching frequency of the LTM4651, in MHz.
- For a practical design, \(\Delta I_{\text{PK-PK}}\) is designed to be less than \(~2\Delta I_{\text{PK-PK}}\).
- For a practical design, the LTM4651’s on-time of MT each switching cycle should be designed to exceed the LTM4651 control loop’s specified minimum on-time of 60ns, \(t_{\text{ON(MIN)}}\) (guardband to 90ns) i.e.:

\[
\frac{D}{f_{\text{SW}}} > t_{\text{ON(MIN)}}
\]

where \(D\) (unitless) is the duty-cycle of MT, given by:

\[
D = \frac{V_{\text{OUT}}}{V_{\text{IN}} - V_{\text{OUT}}}
\]

Combining EQ. 4 with EQ. 1, it can be illustrative to see:

\[
\text{I}_{\text{OUT(CAPABILITY)}} = (1-D) \cdot \left(I_{\text{PK}} - \frac{\Delta I_{\text{PK-PK}}}{2} \right) \cdot \eta
\]

In rare cases where the minimum on-time restriction is violated, the frequency of the LTM4651 automatically and gradually folds back down to one-fifth of its programmed switching frequency to allow VOUT to remain in regulation.

Be reminded of Notes 2, 3 and 5 in the Electrical Characteristics section regarding output current guidelines.
APPLICATIONS INFORMATION

Input Capacitors

The LTM4651 achieves low input conducted EMI noise due to tight layout and high-frequency bypassing of MOSFETs MT and MB within the module itself. A small filter inductor (400nH) is integrated in the input line (from VIN to VD) provides further noise attenuation—again, local to the switching MOSFETs. The VD and VIN pins are available for external input capacitors—VD and VINH—to form a high-frequency pi filter. As shown in the Simplified Block Diagram, the ceramic capacitor C_D on the LTM4651’s VD pins handles the majority of the RMS current into the DC/DC converter power stage and requires careful selection, for that reason.

To meet the radiated emissions requirements of EN55022B, an additional filter capacitor, C_INOUT, is needed—connecting from VIN to VOUT. See Figures 5 to 8 for EMI performance.

The input capacitance, C_D, is needed to filter the pulsed current drawn by MT. To prevent excessive voltage sag on VD, a low-effective series resistance (low-ESR) input capacitor should be used, sized appropriately for the maximum C_D RMS ripple current:

\[I_{CD(RMS)} = I_{PK} \cdot \sqrt{D \cdot (1-D)} \] (6)

I_{CD(RMS)} is maximum for D = 1/2. For D = 1/2, I_{CD(RMS)} = 1/2 * I_{PK} or 3A. This simplification of the worst-case condition is commonly used for design purposes because even significant deviations in D do not offer much relief, in practice. Furthermore: note that ripple current ratings from capacitor manufacturers are often based on 2000 hours of life; therefore, it is advisable to significantly over-design C_D, and/or choose a capacitor rated at a higher temperature than required. Err on the side of caution and contact the capacitor manufacturer to understand the capacitor vendor’s derating methodology.

Several capacitors may be paralleled to meet the application’s target size, height, and C_D RMS ripple current rating. For lower input voltage applications, sufficient bulk input capacitance is needed for C_INL to counteract line sag and transient effects during output load changes. Suggested values for C_D and C_INH are found in Table 8. Take note that C_D is connected from VD to VOUT, whereas C_INH and C_INL are connected from VIN to PGND; this is deliberate.

A final precaution regarding ceramic capacitors concerns the maximum input voltage rating of the LTM4651’s VIN, SVIN, and VD pins. A ceramic input capacitor combined with trace or cable inductance forms a high Q (underdamped) tank circuit. If the LTM4651 circuit is plugged into a live supply, the input voltage can ring to twice its nominal value, possibly exceeding the device’s rating. This situation is easily avoided; see the Hot-Plugging Safely section.

Output Capacitors

Output capacitors C_OUTH and C_OUTL are applied to VOUT of the LTM4651: sufficient capacitance and low ESR are called for, to meet the output voltage ripple, loop stability, and transient requirements. C_OUTL can be a low ESR tantalum or polymer capacitor. C_OUTH is a ceramic capacitor. The typical output capacitance is 22μF (type X5R material, or better), if ceramic-only output capacitors are used.

For highest reliability designs, polarized output capacitors (VOUTL) are not recommended, as there is a possibility of a diode-drop of reverse voltage appearing transiently on VOUT during rapid application of input voltage or when RUN is toggled logic high (see Figures 33). When polarized capacitors are used on VOUT, contact the capacitor vendor to understand what reverse voltage their polarized capacitor can withstand. Be advised, polarized capacitor reverse voltage rating is sometimes temperature-dependent.

Output voltage ripple (\(\Delta V_{OUT(PK-PK)}\)) is governed by charge lost in C_OUTH and C_OUTL while MT is on, in addition to the contribution of a resistive drop across the ESR of the output capacitors. This is expressed by:

\[\Delta V_{OUT(PK–PK)} = \frac{I_{LOAD} \cdot D}{C_{OUT} \cdot f_{SW}} + \frac{I_{LOAD} \cdot ESR}{D} \] (7)

Table 8 shows a matrix of suggested output capacitors optimized for transient step-loads that are 50% of the full load capability for that combination of VIN, VOUT, and fSW. The table optimizes total equivalent ESR and total bulk capacitance to yield the stated transient-load performance. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. The LTpowerCAD design tool is available for transient and stability analysis.
Forced Continuous Operation

Leave the CLKIN pin open circuit to command the LTM4651 for forced continuous operation. In this mode, the control loop is allowed to command the inductor peak current to approximately –1A, allowing for significant negative average current.

Clocking the CLKIN pin at a frequency within ±40% of the target switching frequency commanded by the fSET pin synchronizes M_T's turn-on to the rising edge of the CLKIN pin.

Output Voltage Programming, Tracking and Soft-Start

The LTM4651 regulates its output voltage, V_{OUT^-}, according to the differential voltage present across ISETa and SVOUT–. In most applications, the output voltage is set by simply connecting a resistor, R_{SET}, from ISETa to SVOUT–, according to:

$$R_{SET} = \frac{-V_{OUT^-}}{50\mu A}$$

Since the LTM4651 control loop servos its output voltage according to the voltage between ISETa and SVOUT–, placing a capacitor, C_{SS}, parallel to R_{SET} configures the ramp-up rate of ISETa and thus V_{OUT^-}. In the time domain, the output voltage ramp-up after the RUN pin is toggled from low to high ($t = 0s$) is given by:

$$V_{OUT}(t) = I_{SETa} \cdot R_{SET} \cdot \left(1 - e^{-\frac{t}{R_{SET} \cdot C_{SET}}}
ight)$$

The soft-start time, t_{SS}, is defined as the time it takes for V_{OUT^-} to ramp from 0V to 90% of its final value:

$$t_{SS} = R_{SET} \cdot C_{SET} \cdot \ln(1 - 0.9)$$

or

$$t_{SS} = 2.3 \cdot R_{SET} \cdot C_{SET}$$

A default value of $C_{SET} = 1.5nF$ can be implemented by connecting ISETa to ISETb. For other ramp-up rates, connect an external C_{SET} capacitor parallel to R_{SET}

When starting up into a pre-biased V_{OUT^-}, the LTM4651 stays in a sleep mode, keeping M_T and M_B off until V_{ISETa} equals V_{GNDSNS}—after which, the DC/DC converter commences switching action and V_{OUT^-} is ramped according to the voltage commanded by ISETa.

Since the LTM4651 control loop servos its GND_SNS voltage to match that of ISETa's, the LTM4651’s output can be configured to track any voltage applied to ISETa, referenced to SVOUT–.

The LTM4651 can track the mirror-image of a positive rail to generate the negative half of a split-supply, seen in Figure 37.

Optional Diodes to Guard Against Overstress

Just prior to output voltage start-up, a mechanism exists whereby a diode-drop of reverse polarity can appear on V_{OUT^-}. See the simplified Block Diagram and observe: just prior to output voltage start-up, $SVIN$ bias current (I_{SVIN}) flows through the module's control IC, to $SVOUT$; from there, the bias current (now I_{SVOUT^-}) flows into V_{OUT^-} and through M_B's body diode, to SW. This current (now I_L) continues to flow—though the 4μH power inductor—to PGND and ground, closing the control IC bias circuit's path. It is this current through M_B's body diode that creates a diode-drop of reverse polarity (positive voltage) on V_{OUT^-}, as shown in Figure 33. The voltage excursion is highest when RUN toggles high because that is the instant when INTVCC powers-up, with a corresponding increase in $I_{SVIN}/I_{SVOUT^-}/I_L$ current flow. With higher current flow, the forward voltage drop (V_F) of M_B's body diode—and thus, the positive voltage excursion on V_{OUT^-}—is higher.

If this transient voltage excursion is unwelcome for the load or polarized output capacitors, minimize it with a low V_F Schottky diode that straddles V_{OUT^-} and PGND (see Figure 32 circuit and Figure 33 performance). Additionally, the voltage excursion can be empirically reduced by increasing output capacitance.

Lastly: in applications where it is anticipated that V_{IN} may be rapidly applied (e.g., <10μs) and C_{INOUT} is used, the resulting capacitor-divider network formed by C_{INOUT} and $C_{INL}||C_{INH}$ may transiently drag V_{OUT^-} positive. It is recommended to apply a low V_F Schottky diode from V_{OUT^-} to PGND, in such applications. The reverse mechanism applies, as well: in applications where it is anticipated that...
Vin may be rapidly discharged and Cinout is used, the resulting capacitor-divider network formed by Cinout and Cinl||Cinh may transiently drag Vout– excessively negative. It is recommended to straddle Vout– and PGND with a TVS diode, if output voltage excursions during Vin-discharge are anticipated.

Frequency Adjustment

The default switching frequency (fSW) of the LTM4651 is 400kHz. This is suitable for mainly low-Vin or low-Vout– applications (Vin < 5V or [Vout–] < 5V). For a practical design, the LTM4651's inductor ripple current (ΔIpk–pk) is suggested to be less than ~2Apk–pk. From Eq. 2, it follows that fSW should be chosen such that:

\[
f_{SW} = \frac{1}{L \cdot \Delta I_{P-K-PK} \cdot \left(\frac{1}{V_{IN}} - \frac{1}{V_{OUT}}\right)}
\]

In some cases, the value of fSW yielded by Eq. 12 violates the supported minimum on time of the LTM4651 (see Eq. 3). If this occurs, choose fSW instead according to:

\[
f_{SW} < \frac{D}{T_{ON(MIN)}}
\]

The primary consequence of using a lower switching frequency than that dictated by Eq. 12 is that the output current capability of the LTM4651 is reduced, according to Eq. 5.

To configure the LTM4651 for a higher switching frequency than 400kHz default, apply a resistor, Rfset, between the fSET pin and SVout–. Rfset is given (in MΩ) by:

\[
R_{FSET (MΩ)} = \frac{1}{10pF \cdot \left(f_{SW (MHz)} - 0.4(MHz)\right)}
\]

The relationship of Rfset to programmed fSW is shown in Figure 2.

See Table 1 and Table 8 for Recommended fSW and associated Rfset values for various combinations of Vin and Vout–.

Table 1. Recommended Switching Frequency (fSW) and Rfset Values for Common Combinations of Vin and Vout–

<table>
<thead>
<tr>
<th>VOUT– (V)</th>
<th>–0.5</th>
<th>–3.3</th>
<th>–5</th>
<th>–8</th>
<th>–12</th>
<th>–15</th>
<th>–20</th>
<th>–24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>400kHz, No Rfset</td>
<td>425kHz, 4.3MΩ</td>
<td>450kHz, 2.2MΩ</td>
<td>450kHz, 2.2MΩ</td>
</tr>
<tr>
<td>5</td>
<td>400kHz, No Rfset</td>
<td>400kHz, No Rfset</td>
<td>450kHz, 2.2MΩ</td>
<td>475kHz, 1.3MΩ</td>
<td>500kHz, 1MΩ</td>
<td>525kHz, 806kΩ</td>
<td>550kHz, 665kΩ</td>
<td>550kHz, 665kΩ</td>
</tr>
<tr>
<td>12</td>
<td>550kHz, 665kΩ</td>
<td>700kHz, 332kΩ</td>
<td>825kHz, 237kΩ</td>
<td>875kHz, 210kΩ</td>
<td>900kHz, 200kΩ</td>
<td>1MΩ, 165kΩ</td>
<td>1MΩ, 165kΩ</td>
<td>1MΩ, 165kΩ</td>
</tr>
<tr>
<td>24</td>
<td>Drive CLKIN with a 200kHz Clock, No Rfset</td>
<td>450kHz, 2.2MΩ</td>
<td>800kHz, 249kΩ</td>
<td>1.1MHz, 143kΩ</td>
<td>1.2MHz, 124kΩ</td>
<td>1.4MHz, 100kΩ</td>
<td>1.5MHz, 90.9kΩ</td>
<td>N/A</td>
</tr>
<tr>
<td>36</td>
<td>Not Recommended Due to On-Time Criteria Violation</td>
<td>600kHz, 499kΩ</td>
<td>850kHz, 221kΩ</td>
<td>1.2MHz, 124kΩ</td>
<td>1.4MHz, 100kΩ</td>
<td>1.6MHz, 82.5kΩ</td>
<td>N/A Due to SOA Criteria Violation</td>
<td>N/A</td>
</tr>
<tr>
<td>48</td>
<td>500kHz, 1MΩ</td>
<td>900kHz, 200kΩ</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure 2. Relationship Between Rfset and Target fSW
Power Module Protection

The LTM4651’s current mode control architecture provides fast cycle-by-cycle current limit in an overcurrent condition, as shown in the Typical Performance Characteristics section. If the output voltage collapses sufficiently due to an overload or short-circuit condition, minimum on-time will be violated (EQ. 3) and the internal oscillator will then fold-back automatically to one-fifth of the LTM4651’s programmed switching frequency—hereby reducing the output current and affording the load a chance to recover.

The LTM4651 features input overvoltage shutdown protection: when $\text{V}_{\text{IN}+}|\text{V}_{\text{OUT}^-}| > 68V$, switching action ceases (with 4V of hysteresis)—however, be advised that this protection is only active outside the LTM4651’s safe operating area (see Note 1 and Note 4 of the Electrical Characteristics table).

The LTM4651 ceases switching action if internal temperatures exceed 165°C. The control IC resumes operation after a 10°C cool-down hysteresis. Note that these typical parameters are based on measurements in a lab oven and are not production tested. This overtemperature protection is intended to protect the device during momentary overload conditions. The maximum rated junction temperature will be exceeded when this overtemperature protection is active. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

The LTM4651 does not feature any specialized output overvoltage protection beyond what is inherent to the control loop’s servo mechanism.

RUN Pin Enable

The RUN pin is used to enable the power module or sequence the power module. The threshold is 1.2V. The RUN pin can be used to provide an undervoltage lockout (UVLO) function by connecting a resistor divider from the input supply to the RUN pin, as shown in Figure 3. Undervoltage lockout keeps the LTM4651 in shutdown until the supply input voltage is above a certain voltage programmed by the user. The RUN pin hysteresis voltage prevents noise from falsely tripping UVLO. Resistors are chosen by first selecting R_B (refer to Figure 3). Then:

$$R_A = R_B \cdot \left(\frac{\text{V}_{\text{IN}(\text{ON})}}{1.2V} - 1 \right)$$

where $\text{V}_{\text{IN}(\text{ON})}$ is the input voltage at which the undervoltage lockout is overcome and the supply turns on. R_A may be replaced with a hardwired connection from V_D to RUN. The V_{IN} turn-off voltage, $\text{V}_{\text{IN}(\text{OFF})}$ is given by:

$$\text{V}_{\text{IN}(\text{OFF})} = 1.07V \cdot \left(\frac{R_A}{R_B} + 1 \right)$$

If UVLO is not needed, RUN can be connected to LTM4651’s V_D or V_{IN} pins.

When RUN is below its threshold, UVLO is engaged, M_T and M_B are turned off, INTV$_{\text{CC}}$ ceases to be regulated, and ISET$_a$ is discharged to SV$_{\text{OUT}^-}$ by internal circuitry.

Loop Compensation

External loop compensation may be preferred for some applications and can be implemented easily, as follows: leave COMPb open circuit; connect a series-R$_C$ network (R_{TH} and C_{TH}) from COMPa to SV$_{\text{OUT}^-}$; in some instances, connect a capacitor (C_{THP}) from COMPa to SV$_{\text{OUT}^-}$ (paralleling the $R_{\text{TH}-C_{\text{TH}}}$ series-R_C network). See Table 8 for suggested input and output capacitances for a variety of operating conditions. Additionally, the LTpowerCAD design tool is available for transient and stability analysis.
Applications Information

Hot-Plugging Safely

The small size, robustness and low impedance of ceramic capacitors make them an attractive option for the input bypass capacitors (C_D and C_{INH}) of the LTM4651. However, these capacitors can cause problems if the LTM4651 is plugged into a live supply (see Linear Technology Application Note 88 for a complete discussion). The low loss ceramic capacitor combined with stray inductance in series with the power source forms an under damped tank circuit, and the voltage at the V_{IN} pin of the LTM4651 can ring to twice the nominal input voltage, possibly exceeding the LTM4651’s rating and damaging the part. If the input supply is poorly controlled or the user will be plugging the LTM4651 into an energized supply, the input network should be designed to prevent this overshoot by introducing a damping element into the path of current flow. This is often done by adding an inexpensive electrolytic bulk capacitor (C_{INL}) across the input terminals of the LTM4651. The selection criteria for C_{INL} calls for: an ESR high enough to damp the ringing; a capacitance value several times larger than C_{INH}. C_{INL} does not need to be located physically close to the LTM4651; it should be located close to the application board’s input connector, instead.

INTVCC and EXTVCC Connection

When RUN is logic high, an internal low dropout regulator regulates an internal supply, INTVCC, that powers the control circuitry for driving LTM4651’s internal MOSFETs. INTVCC is regulated at 3.3V above $V_{OUT^{-}}$. In this manner, the LTM4651’s INTVCC is directly powered from V_{IN}, by default. The gate driver current through the LDO is about 20mA for a typical 1MHz application. The internal LDO power dissipation can be calculated as:

$$P_{LDO_\text{LOSS}(\text{INTVCC})} = 20\text{mA} \times (V_{\text{IN}} + |V_{OUT^{-}}| - 3.3V)$$ \hspace{1cm} (17)

The LDO draws current off of EXTVCC instead of V_{IN} when EXTVCC is tied to a voltage higher than 3.2V above $V_{OUT^{-}}$ and V_{IN} is 5V above $V_{OUT^{-}}$. For output voltages at or below $-4V$, this pin can be connected to PGND through an RC-filter. When the internal LDO derives power from EXTVCC instead of V_{IN}, the internal LDO power dissipation is:

$$P_{LDO_\text{LOSS}(\text{EXTVCC})} = 20\text{mA} \times (|V_{OUT^{-}}| - 3V)$$ \hspace{1cm} (18)

The recommended value of the resistor between PGND and EXTVCC is roughly $|V_{OUT^{-}}| \times 4\Omega/V$. This resistor, R_{EXTVCC}, must be rated to continually dissipate $(0.02A)^2 \times R_{\text{EXTVCC}}$. The primary purpose of this resistor is to prevent EXTVCC overstress under a fault condition. For example, when an inductive short-circuit is applied to the module’s output, $V_{OUT^{-}}$ may be briefly dragged above EXTVCC—forward-biasing the $V_{OUT^{-}}$-to-EXTVCC body diode. This resistor limits the magnitude of current flow into EXTVCC. Bypass EXTVCC to $V_{OUT^{-}}$ with 1μF of X5R (or better) MLCC.

Multiphase Operation

Multiple LTM4651 devices can be paralleled for higher output current applications. For lowest input and output voltage and current ripples, it is advisable to synchronize paralleled LTM4651s to an external clock (within ±40% of the target switching frequency set by f_{SET}—see Test Circuit 1). See Figure 34 for an example of a synchronizing circuit.

LTM4651 modules can be paralleled without synchronizing circuits: just be aware that some beat-frequency ripple will be present in the output voltage and reflected input current by virtue of the fact that such modules are not operating at identical, synchronized switching frequencies.

The LTM4651 device is an inherently current mode controlled device, so parallel modules will have good current sharing’s shown in Figure 35. This helps balance the thermals on the design.

To parallel LTM4651s, connect the respective COMPa, ISETa, and GND$_{SNS}$ pins of each LTM4651 together to share the current evenly. In addition, tie the respective RUN pins of paralleled LTM4651 devices together, to ensure proper start-up and shutdown behavior. Figure 34 shows a schematic of LTM4651 devices operating in parallel.

Note that for parallel applications, EQ. 8 becomes:

$$R_{\text{SET}} = \frac{-V_{OUT^{-}}}{50\text{μA} \times N}$$ \hspace{1cm} (19)
where \(N \) is the number of LTM4651 modules in parallel configuration.

Depending on the duty cycle of operation (EQ. 4), the output voltage ripple achieved by paralleled, synchronized LTM4651 modules may be considerably smaller than what is yielded by EQ. 7. Application Note 77 provides a detailed explanation of multiphase operation (relevant to parallel LTM4651 applications) pertaining to noise reduction and output and input ripple cancellation. Regardless of ripple current cancellation, it remains important for the output capacitance of paralleled LTM4651 applications to be designed for loop stability and transient response. LTpowerCAD is available for such analysis.

Figure 4 illustrates the RMS ripple current reduction as a function of the number of interleaved (paralleled and synchronized) LTM4651 modules—derived from Application Note 77.

Radiated EMI Noise

The generation of radiated EMI noise is an inherent disadvantage of switching regulators. Fast switching turn-on and turn-off of the power MOSFETs—necessary for achieving high efficiency—create high-frequency (~30MHz+) \(\Delta I/\Delta t \) changes within DC/DC converters. This activity tends to be the dominant source of high-frequency EMI radiation in such systems. The high level of device integration within LTM4651—including optimized gate-driver and critical front-end \(\pi \) filter inductor—delivers low radiated EMI noise performance. Figures 5 to 8 show typical examples of LTM4651 meeting the radiated emission limits established by EN55022 Class B.

Thermal Considerations and Output Current Derating

The thermal resistances reported in the Pin Configuration section of this data sheet are consistent with those parameters defined by JESD51-12 and are intended for use with finite element analysis (FEA) software modeling tools that leverage the outcome of thermal modeling, simulation, and correlation to hardware evaluation performed on a µModule package mounted to a hardware test board.

The motivation for providing these thermal coefficients is found in JESD51-12 ("Guidelines for Reporting and Using Electronic Package Thermal Information").

Many designers may opt to use laboratory equipment and a test vehicle such as the demo board to predict the µModule regulator’s thermal performance in their application at various electrical and environmental operating conditions to compliment any FEA activities. Without FEA software, the thermal resistances reported in the Pin Configuration section are, in and of themselves, not relevant to providing guidance of thermal performance; instead, the derating curves provided in this data sheet can be used in a manner that yields insight and guidance pertaining to one’s application-usage, and can be adapted to correlate thermal performance to one’s own application.

The Pin Configuration section gives four thermal coefficients explicitly defined in JESD51-12; these coefficients are quoted or paraphrased below:

1. \(\theta_{JA} \), the thermal resistance from junction to ambient, is the natural convection junction-to-ambient air thermal resistance measured in a one cubic foot sealed enclosure. This environment is sometimes referred to as “still air” although natural convection causes the air to move. This value is determined with the part mounted to a JESD51-9 defined test board, which does not reflect an actual application or viable operating condition.

2. \(\theta_{JCbottom} \), the thermal resistance from junction to the bottom of the product case, is determined with all of the component power dissipation flowing through the bottom of the package. In the typical µModule regulator, the bulk of the heat flows out the bottom of the package, but there is always heat flow out into the ambient environment. As a result, this thermal resistance value may be useful for comparing packages but the test conditions don’t generally match the user’s application.

3. \(\theta_{JCtop} \), the thermal resistance from junction to top of the product case, is determined with nearly all of the...
APPLICATIONS INFORMATION

![Normalized Input RMS Ripple Current vs Duty Cycle for One to Six LTM4651s (Phases)](image)

Figure 4. Normalized Input RMS Ripple Current vs Duty Cycle for One to Six LTM4651s (Phases)

![Radiated Emissions Scan of the LTM4651 Producing –24V_OUT at 2A, from 25V_IN. DC2328 Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method](image)

Figure 6. Radiated Emissions Scan of the LTM4651 Producing –24V_OUT at 2A, from 25V_IN. DC2328 Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method

![Radiated Emissions Scan of the LTM4651. Producing –24V_OUT at 1A, from 12V_IN. DC2328A Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method](image)

Figure 5. Radiated Emissions Scan of the LTM4651. Producing –24V_OUT at 1A, from 12V_IN. DC2328A Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method

![Radiated Emissions Scan of the LTM4651. Producing –12V_OUT at 2A, from 12V_IN. DC2328A Hardware. fSW = 700kHz. Measured in a 10m Chamber. Peak Detect Method](image)

Figure 7. Radiated Emissions Scan of the LTM4651. Producing –12V_OUT at 2A, from 12V_IN. DC2328A Hardware. fSW = 700kHz. Measured in a 10m Chamber. Peak Detect Method

![Radiated Emissions Scan of the LTM4651. Producing –12V_OUT at 2A, from 34V_IN. DC2328A Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method](image)

Figure 8. Radiated Emissions Scan of the LTM4651. Producing –12V_OUT at 2A, from 34V_IN. DC2328A Hardware. fSW = 1.2MHz. Measured in a 10m Chamber. Peak Detect Method

For more information www.analog.com
APPLICATIONS INFORMATION

Component power dissipation flowing through the top of the package. As the electrical connections of the typical µModule regulator are on the bottom of the package, it is rare for an application to operate such that most of the heat flows from the junction to the top of the part. As in the case of $\theta_{JC\text{bottom}}$, this value may be useful for comparing packages but the test conditions don’t generally match the user’s application.

4. θ_{JB}, the thermal resistance from junction to the printed circuit board, is the junction-to-board thermal resistance where almost all of the heat flows through the bottom of the µModule regulator and into the board, and is really the sum of the $\theta_{JC\text{bottom}}$ and the thermal resistance of the bottom of the part through the solder joints and through a portion of the board. The board temperature is measured a specified distance from the package, using a two sided, two layer board. This board is described in JESD51-9.

A graphical representation of the aforementioned thermal resistances is given in Figure 9; blue resistances are contained within the µModule regulator, whereas green resistances are external to the µModule package.

As a practical matter, it should be clear to the reader that no individual or sub-group of the four thermal resistance parameters defined by JESD51-12 or provided in the Pin Configuration section replicates or conveys normal operating conditions of a µModule regulator. For example, in normal board-mounted applications, never does 100% of the device’s total power loss (heat) thermally conduct exclusively through the top or exclusively through bottom of the µModule package—as the standard defines for $\theta_{JC\text{top}}$ and $\theta_{JC\text{bottom}}$, respectively. In practice, power loss is thermally dissipated in both directions away from the package—granted, in the absence of a heat sink and airflow, a majority of the heat flow is into the board.

Within the LTM4651, be aware there are multiple power devices and components dissipating power, with a consequence that the thermal resistances relative to different junctions of components or die are not exactly linear with respect to total package power loss. To reconcile this complication without sacrificing modeling simplicity—but also not ignoring practical realities—an approach has been taken using FEA software modeling along with laboratory testing in a controlled-environment chamber to reasonably define and correlate the thermal resistance values supplied in this data sheet: (1) Initially, FEA software is used to accurately build the mechanical geometry of the LTM4651 and the specified PCB with all of the correct material coefficients along with accurate power loss source definitions; (2) this model simulates a software-defined JEDEC environment consistent with JESD51-9 and JESD51-12 to predict power loss heat flow and temperature readings at different interfaces that enable the calculation of the JEDEC-defined thermal resistance values; (3) the model and FEA software is used to evaluate the LTM4651 with heat sink and airflow; (4) having solved for and analyzed these thermal resistance values and simulated various operating conditions in the software model, a thorough laboratory evaluation replicates the simulated

![Figure 9. Graphical Representation of JESD51-12 Thermal Coefficients](image-url)
APPLICATIONS INFORMATION

conditions with thermocouples within a controlled environment chamber while operating the device at the same power loss as that which was simulated. The outcome of this process and due diligence yields the set of derating curves provided in later sections of this data sheet, along with well-correlated JESD51-12-defined θ values provided in the Pin Configuration section of this data sheet.

The –5V, –15V and –24V power loss curves in Figures 10, 11 and 12 respectively can be used in coordination with the load current derating curves in Figures 13 to 30 for calculating an approximate θJA thermal resistance for the LTM4651 with various heat sinking and air flow conditions. These thermal resistances represent demonstrated performance of the LTM4651 on DC2328 A hardware; a 4-layer FR4 PCB measuring 99mm x 133mm x 1.6mm using outer and inner copper weights of 2oz and 1oz, respectively. The power loss curves are taken at room temperature, and are increased with multiplicative factors with ambient temperature. These approximate factors are listed in Table 2. (Compute the factor by interpolation, for intermediate temperatures.) The derating curves are plotted with the LTM4651’s output initially sourcing its maximum output capability (see Eq. 5) and the ambient temperature at 30°C. The output voltages are –5V, –15V and –24V. These are chosen to include the lower and higher output voltage ranges for correlating the thermal resistance. In all derating curves, the switching frequency of operation follows guidance provided by Table 1. Thermal models are derived from several temperature measurements in a controlled temperature chamber along with thermal modeling analysis. The junction temperatures are monitored while ambient temperature is increased with and without air flow, and with and without a heat sink attached with thermally conductive adhesive tape. The power loss increase with ambient temperature change is factored into the derating curves. The junctions are maintained at 120°C maximum while lowering output current or power while increasing ambient temperature. The decreased output current decreases the internal module loss as ambient temperature is increased. The monitored junction temperature of 120°C minus the ambient operating temperature specifies how much module temperature rise can be allowed. As an example in Figure 26, the load current is derated to 1A at 60°C ambient with 200LFM airflow and no heat sink and the room temperature (25°C) power loss for this 12VIN to –24VOUT at 1A out condition is 3.55W. A 3.9W loss is calculated by multiplying the 3.55W room temperature loss from the 12VIN to –24VOUT power loss curve at 1A (Figure 12), with the 1.1 multiplying factor at 60°C ambient (from Table 2). If the 60°C ambient temperature is subtracted from the 120°C junction temperature, then the difference of 60°C divided by 3.9W yields a thermal resistance, θJA, of 15.4°C/W—in good agreement with Table 4. Tables 3, 4 and 5 provide equivalent thermal resistances for –5V, –15V and –24V outputs with and without air flow and heat sinking. The derived thermal resistances in Tables 3, 4 and 5 for the various conditions can be multiplied by the calculated power loss as a function of ambient temperature to derive temperature rise above ambient, thus maximum junction temperature. Room temperature power loss can be derived from the efficiency curves in the Typical Performance Characteristics section and adjusted with ambient temperature multiplicative factors from Table 2.

Table 2. Power Loss Multiplicative Factors vs Ambient Temperature

<table>
<thead>
<tr>
<th>AMBIENT TEMPERATURE</th>
<th>POWER LOSS MULTIPLICATIVE FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 40°C</td>
</tr>
<tr>
<td></td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>70°C</td>
</tr>
<tr>
<td></td>
<td>80°C</td>
</tr>
<tr>
<td></td>
<td>90°C</td>
</tr>
<tr>
<td></td>
<td>100°C</td>
</tr>
<tr>
<td></td>
<td>110°C</td>
</tr>
<tr>
<td></td>
<td>120°C</td>
</tr>
</tbody>
</table>
APPLICATIONS INFORMATION

Table 3. –5V Output

<table>
<thead>
<tr>
<th>DERATING CURVE</th>
<th>V_{IN} (V)</th>
<th>POWER LOSS CURVE</th>
<th>AIRFLOW (LFM)</th>
<th>HEAT SINK</th>
<th>θ_{JA} (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 13, 14, 15</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>0</td>
<td>None</td>
<td>20.8</td>
</tr>
<tr>
<td>Figures 13, 14, 15</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>200</td>
<td>None</td>
<td>17.0</td>
</tr>
<tr>
<td>Figures 13, 14, 15</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>400</td>
<td>None</td>
<td>16.3</td>
</tr>
<tr>
<td>Figures 16, 17, 18</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>0</td>
<td>BGA Heat Sink</td>
<td>18.7</td>
</tr>
<tr>
<td>Figures 16, 17, 18</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>200</td>
<td>BGA Heat Sink</td>
<td>16.1</td>
</tr>
<tr>
<td>Figures 16, 17, 18</td>
<td>5, 12, 24</td>
<td>Figure 10</td>
<td>400</td>
<td>BGA Heat Sink</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Table 4. –15V Output

<table>
<thead>
<tr>
<th>DERATING CURVE</th>
<th>V_{IN} (V)</th>
<th>POWER LOSS CURVE</th>
<th>AIRFLOW (LFM)</th>
<th>HEAT SINK</th>
<th>θ_{JA} (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 19, 20, 21</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>0</td>
<td>None</td>
<td>20.0</td>
</tr>
<tr>
<td>Figures 19, 20, 21</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>200</td>
<td>None</td>
<td>16.6</td>
</tr>
<tr>
<td>Figures 19, 20, 21</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>400</td>
<td>None</td>
<td>14.4</td>
</tr>
<tr>
<td>Figures 22, 23, 24</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>0</td>
<td>BGA Heat Sink</td>
<td>19.0</td>
</tr>
<tr>
<td>Figures 22, 23, 24</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>200</td>
<td>BGA Heat Sink</td>
<td>14.2</td>
</tr>
<tr>
<td>Figures 22, 23, 24</td>
<td>5, 12, 24</td>
<td>Figure 11</td>
<td>400</td>
<td>BGA Heat Sink</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Table 5. –24V Output

<table>
<thead>
<tr>
<th>DERATING CURVE</th>
<th>V_{IN} (V)</th>
<th>POWER LOSS CURVE</th>
<th>AIRFLOW (LFM)</th>
<th>HEAT SINK</th>
<th>θ_{JA} (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 25, 26, 27</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>0</td>
<td>None</td>
<td>18.3</td>
</tr>
<tr>
<td>Figures 25, 26, 27</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>200</td>
<td>None</td>
<td>15.2</td>
</tr>
<tr>
<td>Figures 25, 26, 27</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>400</td>
<td>None</td>
<td>14.4</td>
</tr>
<tr>
<td>Figures 28, 29, 30</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>0</td>
<td>BGA Heat Sink</td>
<td>17.6</td>
</tr>
<tr>
<td>Figures 28, 29, 30</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>200</td>
<td>BGA Heat Sink</td>
<td>14.7</td>
</tr>
<tr>
<td>Figures 28, 29, 30</td>
<td>5, 12, 24</td>
<td>Figure 12</td>
<td>400</td>
<td>BGA Heat Sink</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Table 6. Heat Sink Manufacturer (Thermally Conductive Adhesive Tape Pre-Attached)

<table>
<thead>
<tr>
<th>HEAT SINK MANUFACTURER</th>
<th>PART NUMBER</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool Innovations</td>
<td>3-0504035UT411</td>
<td>www.coolinnovations.com</td>
</tr>
</tbody>
</table>

Table 7. Thermally Conductive Adhesive Tape Vendor

<table>
<thead>
<tr>
<th>THERMALLY CONDUCTIVE ADHESIVE TAPE MANUFACTURER</th>
<th>PART NUMBER</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomerics</td>
<td>T411</td>
<td>www.chomerics.com</td>
</tr>
</tbody>
</table>
Table 8. LTM4651 Output Voltage Response vs Component Matrix. Performance of Figure 32 Circuit with Values Here Indicated, COMPa Connected to COMPb, C\textsubscript{EXTVCC} = 1μF, and the Following Components Not Used: C\textsubscript{TH}, R\textsubscript{TH} and C\textsubscript{OUTL}. Load-Stepping from 50% of Full Scale (F.S.) to 100% of F.S. Load Current, in 1μs. Typical Measured Values

<table>
<thead>
<tr>
<th>C\textsubscript{OUT} VENDORS</th>
<th>PART NUMBER</th>
<th>C\textsubscript{IN}/C\textsubscript{CD} VENDORS</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVX</td>
<td>1206D107MAT2A (100μF, 6.3V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM32ER71K475M (4.7μF, 80V, 1210 Case Size)</td>
</tr>
<tr>
<td>Murata</td>
<td>GRM31CR60J107MAT2A (100μF, 6.3V, 1206 Case Size)</td>
<td>AVX</td>
<td>12065C475MAT2A (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>JMK316BBJ107ML107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM31CR71H475M (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>TDK</td>
<td>C3216X5R0J107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Taiyo Yuden</td>
<td>UMK316AB7475ML (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>AVX</td>
<td>1210YD476MAT2A (47μF, 16V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM32ER61C476M (47μF, 16V, 1210 Case Size)</td>
</tr>
<tr>
<td>Murata</td>
<td>GRM32ER61C476M (47μF, 16V, 1210 Case Size)</td>
<td>AVX</td>
<td>12103D226MAT2A (22µF, 25V, 1210 Case Size)</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>JMK316BBJ107ML107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM31CR71H475M (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>TDK</td>
<td>C3216X5R0J107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Taiyo Yuden</td>
<td>UMK316AB7475ML (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>AVX</td>
<td>1210YD476MAT2A (47μF, 16V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM32ER61C476M (47μF, 16V, 1210 Case Size)</td>
</tr>
<tr>
<td>Murata</td>
<td>GRM32ER61C476M (47μF, 16V, 1210 Case Size)</td>
<td>AVX</td>
<td>12103D226MAT2A (22µF, 25V, 1210 Case Size)</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>JMK316BBJ107ML107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Murata</td>
<td>GRM31CR71H475M (4.7μF, 50V, 1206 Case Size)</td>
</tr>
<tr>
<td>TDK</td>
<td>C3216X5R0J107TH (100μF, 6.3V, 1206 Case Size)</td>
<td>Taiyo Yuden</td>
<td>UMK316AB7475ML (4.7μF, 50V, 1206 Case Size)</td>
</tr>
</tbody>
</table>

Note: *To avoid violating minimum on-time criteria, drive CLKIN with a 200kHz, 50% duty cycle clock. Consider using LTC6908-1, for example.
APPLICATIONS INFORMATION—DERATING CURVES

See Table 1 for f_{SW}.

Figure 10. -5V_{OUT} Power Loss Curve

Figure 11. -15V_{OUT} Power Loss Curve

Figure 12. -24V_{OUT} Power Loss Curve

Figure 13. 5V to -5V Derating Curve, No Heat Sink

Figure 14. 12V to -5V Derating Curve, No Heat Sink

Figure 15. 24V to -5V Derating Curve, No Heat Sink

For more information www.analog.com
APPLICATIONS INFORMATION—DERATING CURVES

See Table 1 for fSW.

Figure 16. 5V to –5V Derating Curve, with BGA Heat Sink

Figure 17. 12V to –5V Derating Curve, with BGA Heat Sink

Figure 18. 24V to –5V Derating Curve, with BGA Heat Sink

Figure 19. 5V to –15V Derating Curve, No Heat Sink

Figure 20. 12V to –15V Derating Curve, No Heat Sink

Figure 21. 24V to –15V Derating Curve, No Heat Sink
APPLICATIONS INFORMATION—DERATING CURVES

See Table 1 for \(f_{SW} \).

![Figure 22. 5V to –15V Derating Curve, with BGA Heat Sink](image1)

![Figure 23. 12V to –15V Derating Curve, with BGA Heat Sink](image2)

![Figure 24. 24V to –15V Derating Curve, with BGA Heat Sink](image3)

![Figure 25. 5V to –24V Derating Curve, No Heat Sink](image4)

![Figure 26. 12V to –24V Derating Curve, No Heat Sink](image5)

![Figure 27. 24V to –24V Derating Curve, No Heat Sink](image6)
APPLICATIONS INFORMATION—DERATING CURVES

Figure 28. 5V to –24V Derating Curve, with BGA Heat Sink

Figure 29. 12V to –24V Derating Curve, with BGA Heat Sink

Figure 30. 24V to –24V Derating Curve, with BGA Heat Sink

APPLICATIONS INFORMATION

Safety Considerations

The LTM4651 does not provide galvanic isolation from VIN to VOUT–. There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current needs to be provided to protect the unit from catastrophic failure.

The fuse or circuit breaker, if used, should be selected to limit the current to the regulator in case of a MT MOSFET fault. If MT fails, the system’s input supply will source very large currents to PGND through MT. This can cause excessive heat and board damage depending on how much power the input voltage can deliver to this system. A fuse or circuit breaker can be used as a secondary fault protector in this situation. The LTM4651 does feature overcurrent and overtemperature protection.

Layout Checklist/Example

The high integration of LTM4651 makes the PCB board layout straightforward. However, to optimize its electrical and thermal performance, some layout considerations are still necessary.

- Use large PCB copper areas for high current paths, including VIN, PGND and VOUT–. Doing so helps to minimize the PCB conduction loss and thermal stress.
- Place high frequency ceramic input and output (and, if used, input-to-output) capacitors next to the VIN, VD, PGND and VOUT– pins to minimize high frequency noise.
- Place a dedicated power ground layer underneath the LTM4651.
- To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers.
- Do not put vias directly on pads, unless they are capped or plated over.
- Use a separate SVOUT– copper plane for components connected to signal pins. Connect SVOUT– to VOUT– directly under the module.
- For parallel module applications, connect the VOUT–, GND_SNS, RUN, ISETa, COMPa and PGOOD pins together as shown in Figure 41.
- Bring out test points on the signal pins for monitoring. Figure 31 gives a good example of the recommended LTM4651 layout.
APPLICATIONS INFORMATION

Figure 31. Recommend PCB Layout, Package Top View

TYPICAL APPLICATIONS

Figure 32. 1.25A, –24V Output DC/DC μModule Regulator

* D1 optional (see effect in Figure 33): Central Semiconductor P/N CMMSH1-40L

Figure 32. 1.25A, –24V Output DC/DC μModule Regulator
TYPICAL APPLICATIONS

Figure 33. Start-Up Waveforms at 12V_{IN}, Figure 32 Circuit

![Waveform Diagram](image)

(a) Start-up Performance with D1 Not Installed.
\(V_{OUT}^- \) Reverse-Polarity at Start-Up Transiently Reaches 500mV

(b) Start-up Performance with D1 Installed.
\(V_{OUT}^- \) Reverse-Polarity at Start-Up is Transiently Limited to 360mV
Figure 34. –24V Output at Up to 4A from 24V Input, 2-Phase Interleaved, Parallel Application at fSW = 1.5MHz
TYPICAL APPLICATIONS

Figure 35. Current Sharing Performance of LTM4651s in Figure 34 Circuit

Figure 36. Concurrent ±12V Supply, Output Voltage Start-Up Waveforms. Figure 37 Circuit
PACKAGE DESCRIPTION

Table 9. LTM4651 Component BGA Pinout

<table>
<thead>
<tr>
<th>PIN ID</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VIN</td>
<td>B1</td>
<td>CLKN</td>
<td>C1</td>
<td>NC</td>
<td>D1</td>
<td>PGOOD</td>
<td>E1</td>
<td>COMPb</td>
<td>F1</td>
<td>ISETb</td>
</tr>
<tr>
<td>A2</td>
<td>VIN</td>
<td>B2</td>
<td>NC</td>
<td>C2</td>
<td>VOUT^-</td>
<td>D2</td>
<td>PGFB</td>
<td>E2</td>
<td>COMPa</td>
<td>F2</td>
<td>ISETa</td>
</tr>
<tr>
<td>A3</td>
<td>VIN</td>
<td>B3</td>
<td>VIN</td>
<td>C3</td>
<td>SVIN</td>
<td>D3</td>
<td>VINREG</td>
<td>E3</td>
<td>fSET</td>
<td>F3</td>
<td>EXTVCC</td>
</tr>
<tr>
<td>A4</td>
<td>VD</td>
<td>B4</td>
<td>VD</td>
<td>C4</td>
<td>VD</td>
<td>D4</td>
<td>GND</td>
<td>E4</td>
<td>SVOUT^-</td>
<td>F4</td>
<td>RUN</td>
</tr>
<tr>
<td>A5</td>
<td>VOUT^-</td>
<td>B5</td>
<td>VOUT^-</td>
<td>C5</td>
<td>VOUT^-</td>
<td>D5</td>
<td>VOUT^-</td>
<td>E5</td>
<td>VOUT^-</td>
<td>F5</td>
<td>VOUT^-</td>
</tr>
<tr>
<td>A6</td>
<td>NC</td>
<td>B6</td>
<td>NC</td>
<td>C6</td>
<td>NC</td>
<td>D6</td>
<td>NC</td>
<td>E6</td>
<td>NC</td>
<td>F6</td>
<td>NC</td>
</tr>
<tr>
<td>A7</td>
<td>NC</td>
<td>B7</td>
<td>NC</td>
<td>C7</td>
<td>NC</td>
<td>D7</td>
<td>NC</td>
<td>E7</td>
<td>NC</td>
<td>F7</td>
<td>NC</td>
</tr>
<tr>
<td>G1</td>
<td>GND_SNS</td>
<td>H1</td>
<td>GND_SNS</td>
<td>J1</td>
<td>TEMP^*</td>
<td>K1</td>
<td>PGND</td>
<td>L1</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>SVOUT^-</td>
<td>H2</td>
<td>SVOUT^-</td>
<td>J2</td>
<td>TEMP^*</td>
<td>K2</td>
<td>PGND</td>
<td>L2</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>INTVCC</td>
<td>H3</td>
<td>VOUT^-</td>
<td>J3</td>
<td>VOUT^-</td>
<td>K3</td>
<td>PGND</td>
<td>L3</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>VOUT^-</td>
<td>H4</td>
<td>SW</td>
<td>J4</td>
<td>VOUT^-</td>
<td>K4</td>
<td>VOUT^-</td>
<td>L4</td>
<td>VOUT^-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>VOUT^-</td>
<td>H5</td>
<td>VOUT^-</td>
<td>J5</td>
<td>VOUT^-</td>
<td>K5</td>
<td>VOUT^-</td>
<td>L5</td>
<td>VOUT^-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>NC</td>
<td>H6</td>
<td>NC</td>
<td>J6</td>
<td>TEMP^*</td>
<td>K6</td>
<td>NC</td>
<td>L6</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>NC</td>
<td>H7</td>
<td>NC</td>
<td>J7</td>
<td>TEMP^*</td>
<td>K7</td>
<td>NC</td>
<td>L7</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information www.analog.com
PACKAGE DESCRIPTION

BGA Package

77-Lead (15.00mm × 9.00mm × 5.01mm)

(Reference LTC DWG# 05-08-1826 Rev Ø)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. BALL DESIGNATION PER JESD MS-028 AND JEP95
4. DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE
5. PRIMARY DATUM -Z- IS SEATING PLANE

DIMENSIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.81</td>
<td>5.01</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>BALL HT</td>
</tr>
<tr>
<td>A2</td>
<td>4.31</td>
<td>4.41</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.60</td>
<td>0.75</td>
<td>0.90</td>
<td>BALL DIMENSION</td>
</tr>
<tr>
<td>d1</td>
<td>0.60</td>
<td>0.63</td>
<td>0.66</td>
<td>PAD DIMENSION</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td></td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>12.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>0.36</td>
<td>0.41</td>
<td>0.46</td>
<td>SUBSTRATE THK</td>
</tr>
<tr>
<td>H2</td>
<td>3.85</td>
<td>4.00</td>
<td>4.05</td>
<td>MOLD CAP HT</td>
</tr>
<tr>
<td>a1</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e1</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL NUMBER OF BALLS: 77
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/16</td>
<td>Fixed typo on RUN Leakage Current</td>
<td>4</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Figure 37. Concurrent ±12V Supply. See Figure 36 for Output Voltage Start-Up Waveforms

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTM8045</td>
<td>SEPIC or Inverting µModule DC/DC Converter</td>
<td>2.8V ≤ VIN ≤ 18V, ±2.5V ≤ VOUT ≤ ±15V, IOUT(DC) ≤ 700mA. 6.25mm × 11.25mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTM8049</td>
<td>Dual, SEPIC and/or Inverting µModule DC/DC Converter</td>
<td>2.6V ≤ VIN ≤ 20V, ±2.5V ≤ VOUT ≤ ±24V. IOUT(DC) ≤ 1A/Channel. 9mm × 15mm × 2.42mm BGA</td>
</tr>
<tr>
<td>LTM8073</td>
<td>60V, 3A Step-Down µModule Regulator</td>
<td>3.4V ≤ VIN ≤ 60V, 0.8V ≤ VOUT ≤ 15V. 6.25mm × 9mm × 3.32mm BGA</td>
</tr>
<tr>
<td>LTM8064</td>
<td>58V, ±6A CVCC Step-Down µModule Regulator</td>
<td>6V ≤ VIN ≤ 58V, 1.2V ≤ VOUT ≤ 36V. 11.9mm × 16mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTM4613</td>
<td>EN55022B Compliant, 36V, 8A µModule Regulator</td>
<td>5V ≤ VIN ≤ 36V, 3.3V ≤ VOUT ≤ 15V. 15mm × 15mm × 4.92mm LGA, and 15mm × 15mm × 4.92mm BGA</td>
</tr>
</tbody>
</table>