LTC7003
Fast 60V Protected
High Side NMOS Static Switch Driver

FEATURES
- Wide Operating \(V_{IN} \): 3.5V to 60V
- 1Ω Pull-Down, 2.2Ω Pull-Up for Fast Turn-On and Turn-Off Times with 35ns Propagation Delays
- Internal Charge Pump for 100% Duty Cycle
- Short-Circuit Protected
- Adjustable Current Trip Threshold
- Current Monitor Output
- Automatic Restart Timer
- Open-Drain Fault Flag
- Adjustable Turn-On Slew Rate
- Gate Driver Supply from 3.5V to 15V
- Adjustable \(V_{IN} \) Undervoltage and Overvoltage Lockouts
- Adjustable Driver Supply \(V_{CC} \) Undervoltage Lockout
- Low Shutdown Current: 1µA
- CMOS Compatible Input
- Thermally Enhanced, High Voltage Capable 16-Lead MSOP Package

APPLICATIONS
- Static Switch Driver
- Load and Supply Switch Driver
- Electronic Valve Driver
- High Frequency High Side Gate Driver

DESCRIPTION
The LTC7003 is a fast high side N-channel MOSFET gate driver that operates from input voltages up to 60V. It contains an internal charge pump that fully enhances an external N-channel MOSFET switch, allowing it to remain on indefinitely.

Its powerful driver can easily drive large gate capacitances with very short transition times, making it well suited for both high frequency switching applications or static switch applications that require a fast turn-on and/or turn-off time.

When an internal comparator senses that the switch current has exceeded a preset level, a fault flag is asserted and the switch is turned off after a period of time set by an external timing capacitor. After a cooldown period, the LTC7003 automatically retries.

The LTC7003 is available in the thermally-enhanced 16-lead MSOP package.

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION
High Side Switch with 100% Duty Cycle and Overcurrent Protection

![Typical Application Diagram]

Turn-On Transient Waveform

![Turn-On Waveform]

For more information www.analog.com
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Applications</td>
<td>1</td>
</tr>
<tr>
<td>Typical Application</td>
<td>1</td>
</tr>
<tr>
<td>Description</td>
<td>1</td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td>3</td>
</tr>
<tr>
<td>Order Information</td>
<td>3</td>
</tr>
<tr>
<td>Pin Configuration</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Typical Performance Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>Pin Functions</td>
<td>8</td>
</tr>
<tr>
<td>Block Diagram</td>
<td>9</td>
</tr>
<tr>
<td>Timing Diagram</td>
<td>10</td>
</tr>
<tr>
<td>Operation</td>
<td>10</td>
</tr>
<tr>
<td>Overcurrent Protection</td>
<td>10</td>
</tr>
<tr>
<td>Current Monitor</td>
<td>10</td>
</tr>
<tr>
<td>V\text{CC} Power</td>
<td>10</td>
</tr>
<tr>
<td>Internal Charge Pump</td>
<td>11</td>
</tr>
<tr>
<td>Start-Up and Shutdown</td>
<td>11</td>
</tr>
<tr>
<td>Protection Circuitry</td>
<td>11</td>
</tr>
<tr>
<td>Applications Information</td>
<td>12</td>
</tr>
<tr>
<td>Input Stage</td>
<td>12</td>
</tr>
<tr>
<td>Output Stage</td>
<td>12</td>
</tr>
<tr>
<td>SNS+ and SNS- Pins</td>
<td>12</td>
</tr>
<tr>
<td>(\text{I}_{\text{SET}}) Pin</td>
<td>13</td>
</tr>
<tr>
<td>Fault Timer and Fault Flag</td>
<td>13</td>
</tr>
<tr>
<td>Cooldown Period and Restart</td>
<td>14</td>
</tr>
<tr>
<td>Fast Turn-Off Mode</td>
<td>15</td>
</tr>
<tr>
<td>High Side Current Monitor Output</td>
<td>15</td>
</tr>
<tr>
<td>RUN Pin and External Input Overvoltage/Undervoltage Lockout</td>
<td>15</td>
</tr>
<tr>
<td>Bootstrapped Supply (BST-TS)</td>
<td>16</td>
</tr>
<tr>
<td>V\text{CC} Undervoltage Comparator</td>
<td>17</td>
</tr>
<tr>
<td>MOSFET Selection</td>
<td>18</td>
</tr>
<tr>
<td>Limiting Inrush Current During Turn-On</td>
<td>18</td>
</tr>
<tr>
<td>Optional Schottky Diode Usage on TS</td>
<td>19</td>
</tr>
<tr>
<td>Reverse Current Protection</td>
<td>19</td>
</tr>
<tr>
<td>Design Example</td>
<td>19</td>
</tr>
<tr>
<td>PC Board Layout Considerations</td>
<td>20</td>
</tr>
<tr>
<td>Package Description</td>
<td>24</td>
</tr>
<tr>
<td>Revision History</td>
<td>25</td>
</tr>
<tr>
<td>Typical Application</td>
<td>26</td>
</tr>
<tr>
<td>Related Parts</td>
<td>26</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltages

- V_{IN} .. $-0.3V$ to $65V$
- V_{BST-TS} .. $-0.3V$ to $15V$
- V_{CC} ... $-0.3V$ to $15V$
- V_{CCV} .. $-0.3V$ to $6V$
- TS Voltage .. $-6V$ to $65V$
- RUN, SNS$^+$ and SNS$^-$ Voltages $-0.3V$ to $65V$
- $SNS^+ − SNS^-$
 - Continuous .. $-0.3V$ to $+0.3V$
 - $<1\text{msec}$... $-100mA$ to $+100mA$
- INP Voltage .. $-6V$ to $15V$
- Driver Outputs TGUP, TGDN (Note 7)
- TIMER, FAULT, Voltages $-0.3V$ to $15V$
- V_{CCUV}, I_{SET}, I_{MON}, OVLO Voltages $-0.3V$ to $6V$

Operating Junction Temperature Range (Notes 2, 3, 4)

- LTC7003E, LTC7003I .. $-40\degree C$ to $125\degree C$
- LTC7003H .. $-40\degree C$ to $150\degree C$
- LTC7003MP .. $-55\degree C$ to $150\degree C$

Storage Temperature Range $-65\degree C$ to $150\degree C$

Lead Temperature (Soldering, 10 sec)

- MSOP Package .. $-300\degree C$

ORDER INFORMATION

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC7003EMSE#PBF</td>
<td>LTC7003EMSE#TRPBF</td>
<td>7003</td>
<td>16-Lead Plastic MSOP</td>
<td>$-40\degree C$ to $125\degree C$</td>
</tr>
<tr>
<td>LTC7003IMSE#PBF</td>
<td>LTC7003IMSE#TRPBF</td>
<td>7003</td>
<td>16-Lead Plastic MSOP</td>
<td>$-40\degree C$ to $125\degree C$</td>
</tr>
<tr>
<td>LTC7003HMSE#PBF</td>
<td>LTC7003HMSE#TRPBF</td>
<td>7003</td>
<td>16-Lead Plastic MSOP</td>
<td>$-40\degree C$ to $150\degree C$</td>
</tr>
<tr>
<td>LTC7003MPMSE#PBF</td>
<td>LTC7003MPMSE#TRPBF</td>
<td>7003</td>
<td>16-Lead Plastic MSOP</td>
<td>$-55\degree C$ to $150\degree C$</td>
</tr>
</tbody>
</table>

Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at $T_A = 25^\circ C$ (Note 2). $V_{IN} = V_{SNS+} = 10V$, $V_{CC} = V_{BST} = 10V$, $V_{TS} = GND = 0V$, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Operating Range</td>
<td>Independent of V_{IN}</td>
<td>3.5</td>
<td>60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{TS}</td>
<td>Operating Voltage Range</td>
<td></td>
<td>0</td>
<td>60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{IN+/-}$</td>
<td>Input Voltage Range</td>
<td></td>
<td>3.5</td>
<td>60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Supply Current (Note 8)</td>
<td>$V_{RUN} = 2V$, $V_{BST} = Open$, $V_{TS} = V_{SNS} = 12V$</td>
<td></td>
<td>250</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = 4V$, $V_{RUN} = 2V$, $V_{BST-TS} = 13V$</td>
<td></td>
<td>60</td>
<td>85</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = 0.4V$, $V_{RUN} = 2V$, $V_{BST-TS} = 13V$</td>
<td></td>
<td>37</td>
<td>60</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{RUN} = 0V$</td>
<td></td>
<td>1</td>
<td>3</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>DC Supply Current, Charge Pump Overdriven (Note 5)</td>
<td>$V_{RUN} = 4V$, $V_{RUN} = 2V$</td>
<td></td>
<td>35</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = 0.4V$, $V_{RUN} = 2V$</td>
<td></td>
<td>21</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{RUN} = 0V$</td>
<td></td>
<td>12</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNS* Current</td>
<td></td>
<td>4</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNS~ Current</td>
<td></td>
<td>2</td>
<td>6.5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CC} LDO Output Voltage</td>
<td></td>
<td>10</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CC} LDO Dropout Voltage ($V_{IN-V_{CC}}$)</td>
<td></td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Undervoltage Lockout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CC} Rising</td>
<td></td>
<td>6.5</td>
<td>7.0</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{CC} Falling</td>
<td></td>
<td>5.8</td>
<td>6.4</td>
<td>6.9</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{CC} Hysteresis</td>
<td></td>
<td>600</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CC} UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{BST} Above V_{TS} with INP = 3V (DC)</td>
<td>$V_{IN} = V_{DC} = V_{TS} = 7V$, $I_{BST} = 0\mu A$</td>
<td></td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = V_{DC} = V_{TS} = 10V$, $I_{BST} = 0\mu A$</td>
<td></td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = V_{TS} = 60V$, $I_{BST} = 0\mu A$</td>
<td></td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>V_{TS}</td>
<td>Charge Pump Output Current</td>
<td>$V_{TS} = 20V$, $V_{BST-TS} = 10V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BST-TS Floating UVLO</td>
<td>BST-TS Rising</td>
<td>3.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BST-TS Falling</td>
<td>BST-TS Falling</td>
<td>2.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG Pull-Up Resistance</td>
<td>$V_{IN} = V_{BST} = 12V$</td>
<td></td>
<td>2.2</td>
<td>7</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>TG Pull-Down Resistance</td>
<td>$V_{IN} = V_{BST} = 12V$</td>
<td></td>
<td>1</td>
<td>4</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Output Rise Time</td>
<td>$10%$ to $90%$, $CL = 1nF$</td>
<td>13</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$10%$ to $90%$, $CL = 10nF$</td>
<td>90</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Output Fall Time</td>
<td>$10%$ to $90%$, $CL = 1nF$</td>
<td>13</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$10%$ to $90%$, $CL = 10nF$</td>
<td>40</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Input to Output Propagation Delay</td>
<td>V_{INP} Rising, $CL = 1nF$</td>
<td>35</td>
<td>70</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{INP} Falling, $CL = 1nF$</td>
<td>35</td>
<td>70</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics

The • denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at $T_A = 25^\circ$C (Note 2). $V_{IN} = V_{SNS+} = 10\text{V}$, $V_{CC} = V_{BST} = 10\text{V}$, $V_{TS} = \text{GND} = 0\text{V}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_H & V_L</td>
<td>Input Threshold Voltages</td>
<td>V_{INP} Rising</td>
<td>•</td>
<td>1.7</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{INP} Falling</td>
<td>•</td>
<td>1.3</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{INP} Hysteresis</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Pull-Down Resistance</td>
<td>V_{INP} = 1V</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN and OVLO Pin Threshold Voltages</td>
<td>Rising</td>
<td></td>
<td>1.16</td>
<td>1.21</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falling</td>
<td></td>
<td>1.05</td>
<td>1.10</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td></td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN and OVLO Leakage Current</td>
<td>$V_{RUN} = 1.3\text{V}$, $V_{OVLO} = 1.3\text{V}$</td>
<td>•</td>
<td>–100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>TIMER Threshold Voltage</td>
<td>Rising to V_{FAULT} Going Low</td>
<td></td>
<td>1.25</td>
<td>1.3</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>TIMER Early Warning Voltage</td>
<td>V_{FAULT} Going Low to (TG-TS) Going Low</td>
<td></td>
<td>75</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>TIMER Pin Fault Pull-Up Current</td>
<td>$V_{TIMER} = 1.0\text{V}$, $I_{SET} = \text{OPEN}$</td>
<td>•</td>
<td>–115</td>
<td>–100</td>
<td>–80</td>
</tr>
<tr>
<td></td>
<td>TIMER Pin Pull-Down Current</td>
<td>$V_{TIMER} = 0.6\text{V}$ $I_{SET} = \text{OPEN}$</td>
<td></td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Fault Output Low Voltage</td>
<td>$I_{FAULT} = 1\text{mA}$</td>
<td>•</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAULT Leakage Current</td>
<td>$V_{FAULT} = 5\text{V}$</td>
<td>•</td>
<td>–100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ΔV_{TH}</td>
<td>Current Sense Threshold Voltage</td>
<td>$I_{SET} = \text{OPEN}$</td>
<td></td>
<td>22</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>$\Delta V_{SNS} =$ $(V_{SNS+} – V_{SNS–})$</td>
<td>$V_{SET} = 1.2\text{V}$</td>
<td></td>
<td></td>
<td>54</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>$V_{SET} = 0\text{V}$</td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>$\Delta V_{SNS} =$ $(V_{SNS+} – V_{SNS–})$</td>
<td>Step 10mV to 50mV, $I_{SET} = \text{OPEN}$, $V_{TIMER} = V_{CC}$, $V_{INP} = 3.5\text{V}$</td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTC7003 is tested under pulsed load conditions such that $T_J = T_A$. The LTC7003 is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LTC7003 is guaranteed over the –40°C to 125°C operating junction temperature range, the LTC7003H is guaranteed over the –40°C to 150°C operating junction temperature range and the LTC7003MP is tested and guaranteed over the –55°C to 150°C operating junction temperature range.

High junction temperatures degrade operating lifetimes; operating lifetime is derated for junction temperatures greater than 125°C. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal impedance and other environmental factors.

Note 3: The junction temperature (T_J, in °C) is calculated from the ambient temperature (T_A, in °C) and power dissipation (P_D, in Watts) according to the formula:

$$T_J = T_A + (P_D \cdot \theta_{JA}),$$

where θ_{JA} is 45°C/W.

Note 4: This IC includes over temperature protection that is intended to protect the device during momentary overload conditions. The maximum rated junction temperature will be exceeded when this protection is active. Operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

Note 5: Dynamic supply current is higher due to the gate charge being delivered at the switching frequency. See Applications Information.

Note 6: For application concerned with pin creepage and clearance distances at high voltages, the MSEE16(12) variation package should be used. See Applications Information.

Note 7: Do not apply a voltage or current source to these pins. They must be connected to capacitive loads only; otherwise permanent damage may occur.

Note 8: Total supply current is the sum of the current into the V_{IN}, V_{SNS+}, $V_{SNS–}$ and TS pins.
Total Supply Current vs V_{IN} Voltage

Driver On Resistance vs V_{BST-TS} Voltage

Charge Pump No-Load Output Voltage vs V_T

Charge Pump Load Regulation

Charge Pump Output Current vs V_T

ΔV_{TH} vs Temperature

RUN and OVLO Threshold Voltages vs Temperature

V_{CCUV} Lockout vs Temperature

Driver On Resistance vs Temperature

For more information www.analog.com
TYPICAL PERFORMANCE CHARACTERISTICS \(T_A = 25^\circ \text{C}, \) unless otherwise noted.

VIN Supply Current vs Temperature

SNS+ Supply Current vs Temperature

SNS– Supply Current vs Temperature

Input Threshold Voltage vs Temperature

SNS+ FAULT Threshold vs Temperature

Overcurrent to TGDN = LOW Delay Time vs Temperature

Retry Duty Cycle vs Temperature

VBST-TS Floating UVLO Voltage vs Temperature

ISET and VCcuv Pull-Up Current vs Temperature
PIN FUNCTIONS

RUN (Pin 1): Run Control Input. A voltage on this pin above 1.21V enables normal operation. Forcing this pin below 0.7V shuts down the LTC7003, reducing quiescent current to approximately 1µA. Optionally connect to the input supply through a resistive divider to set the under-voltage lockout.

VIN (Pin 2): Main Supply Pin. A bypass capacitor with a minimum value of 0.1µF should be tied between this pin and GND.

VCC (Pin 3): Output of internal LDO and power supply for gate drivers and internal circuitry. Decouple this pin to GND with a minimum 1.0µF low ESR ceramic capacitor. Do not use the VCC pin for any other purpose. VCC can be overdriven from an external high efficiency source for high frequency switching applications that require higher power delivered to the external MOSFET. Do not connect VCC to a voltage greater than VIN.

VCCUV (Pin 4): VCC Supply Undervoltage Lockout. A resistor on this pin sets the reference for the Gate Drive undervoltage lockout. The voltage on this pin in the range of 0.4V to 1.5V is multiplied by 7 to be the undervoltage lockout for the Gate Drive (VCC pin). Short to ground to set the minimum gate drive UVLO of 3.5V. Leave open to set gate drive UVLO to 7.0V.

FAULT (Pin 5): Open Drain Fault Output. This pin pulls low after the voltage on the TIMER pin has reached the fault threshold of 1.3V. It indicates the pass transistor is about to turn off due to an overcurrent condition. The typical pull-down impedance is 200Ω. The FAULT pin does not go to a high-impedance state until the overcurrent condition and the TIMER cooldown period expire. If the TIMER pin is pulled above 3.5V, the TIMER function is disabled. In this state this pin pulls low when the VTGUP-TS signal is driven high.

TIMER (Pin 6): Fault Timer Input. A timing capacitor, CT, from the TIMER pin to GND sets the times for fault warning, fault turn off and retry periods (see Applications Information). When the TIMER pin is connected to a voltage higher than 3.5V, an overcurrent condition will immediately pull the TGUP pin to TS. TGDN will not go high again until the fault condition is reset by the INP pin going low and then back high.

INP (Pin 7): Input Signal. CMOS compatible input reference to GND that sets the state of TGDN and TGUP pins (see Applications Information). INP has an internal 1MΩ pull-down to GND to keep TGDN pulled to TS during startup transients.

OVLO (Pin 8): Overvoltage Lockout Input. Connect to the input supply through a resistor divider to set the overvoltage lockout level. A voltage on this pin above 1.21V causes TGDN to be pulled to TS. Normal operation resumes when the voltage on this pin decreases below 1.11V. Triggering an OVLO causes a fault condition. OVLO should be tied to GND when not used.

ISET (Pin 9): Current Trip Threshold Set. A resistor on this pin to GND sets the peak current threshold. The voltage on this pin (internally clamped between 0.4V and 1.5V) is divided by 20 to be the current comparator reference. Short to GND for minimum peak current (20mV ΔVTH). Leave open for an accurate peak current (30mV ΔVTH).

IMON (Pin 10): Current Monitor. The voltage on this pin with respect to GND represents the voltage across the sense resistor multiplied by 20. The range on this pin is 0V to 1.5V.

TGDN (Pin 11): High Current Gate Driver Pull-Down. This pin pulls down to TS. For the fastest turn-off, tie this pin directly to the gate of the external high side MOSFET.

TGUP (Pin 12): High Current Gate Driver Pull-Up. This pin pulls up to BST. Tie this pin to TGDN for maximum gate drive transition speed. A resistor can be connected between this pin and the gate of the external MOSFET to control the in-rush current during turn-on. See Applications Information.

TS (Pin 13): Top (High Side) source connection or GND if used in ground referenced applications.

BST (Pin 14): High Side Bootstrapped Supply. An external capacitor with a minimum value of 0.1µF should be tied between this pin and TS. Voltage swing on this pin is 12V to (VIN + 12V).
PIN FUNCTIONS

SNS\(^{-}\) (Pin 15), SNS\(^{+}\) (Pin 16): Current Sense Comparator Input. Place a sense resistor in series with the drain of the external MOSFET to set the peak current. The SNS\(^{-}\) pin should be connected to the sense resistor using a minimum \(100\Omega\) resistor. Use a Kelvin connection from the SNS\(^{+}\) pin to the sense resistor. The current comparator trip threshold voltage, \(\Delta V\text{\textsubscript{TH}}\) is the \(I\text{\textsubscript{SET}}\) voltage divided by 20. The trip threshold is internally clamped to a minimum of 20mV and a maximum of 75mV. If \(I\text{\textsubscript{SET}}\) is open or greater than 2.0V, \(\Delta V\text{\textsubscript{TH}}\) is set internally to 30mV.

GND (Exposed Pad Pin 17): Ground. The exposed pad must be soldered to the PCB for rated electrical and thermal performance.

BLOCK DIAGRAM
OPERATION *(Refer to Block Diagram)*

The LTC7003 is designed to receive a ground-referenced, low voltage digital input signal, INP and quickly drive and protect a high side N-channel power MOSFET whose drain can be up to 60V above ground. The LTC7003 is capable of driving a 1nF load using a 12V bootstrapped supply voltage \((V_{BST} - V_{TS}) \) with 35ns of propagation delay and fast rise/fall times. The high gate drive voltage reduces external power losses associated with external MOSFET on-resistance. The strong drivers not only provide fast turn on and off times but hold the TGUP and TGDN to TS voltages in the desired state in the presence of high slew rate transients which can occur driving inductive loads at high voltages.

Overcurrent Protection

The LTC7003 protects a high side N-channel MOSFET from an overcurrent condition by monitoring the voltage across an external sense resistor placed in series with the drain of an external MOSFET and forcing the external MOSFET to turn off by pulling TGDN to TS when the voltage across the sense resistor, \(\Delta V_{SNS} \), exceeds the current comparator threshold voltage, \(\Delta V_{TH} \), after a period of time set by the timing capacitor, \(C_T \). When an overcurrent condition is detected with \(I_{SET} \) open, \(\Delta V_{TH} \) is internally programmed to a low value of 30mV minimizing the external conduction loss associated with current sensing by allowing the use of lower value sense resistors. A resistor placed between \(I_{SET} \) and ground allows \(\Delta V_{TH} \) to be programmed from 20mV to 75mV.

An adjustable fault and overcurrent timer is enabled by placing a capacitor, \(C_T \) from the TIMER pin to ground and allows the load to continue functioning during brief overcurrent transient events while protecting the MOSFET from long periods of high currents. An external fault flag is available which can warn of an impending MOSFET turn off. A fast turn-off mode where TGDN is immediately pulled to TS due to an overcurrent is available by connecting the TIMER pin to \(V_{CC} \).

Current Monitor

The LTC7003 provides an output voltage referenced to ground on the \(I_{MON} \) pin that reflects the current flowing through the external sense resistor connected between SNS\(^+\) and SNS\(^-\) while TGUP is high. The voltage on \(I_{MON} \) is the voltage difference between the SNS\(^+\) and SNS\(^-\) pins multiplied by 20x and referenced to ground with a range of 0V to 1.5V. The \(I_{MON} \) output voltage has an output impedance of 100kΩ and is pulled to ground with a 100kΩ resistor when INP is low.

\(V_{CC} \) Power

Power for the MOSFET driver and internal circuitry is derived from the \(V_{CC} \) pin. The \(V_{CC} \) pin voltage is generated from an internal P-channel LDO connected to \(V_{IN} \). \(V_{CC} \) can also be overdriven from a high efficiency external source for high frequency switching applications that require higher power delivered to external MOSFET. \(V_{CC} \) should never be driven higher than \(V_{IN} \) or permanent damage to the LTC7003 could occur.
OPERATION (Refer to Block Diagram)

Internal Charge Pump
The LTC7003 contains an internal charge pump that enables the MOSFET gate drive to have 100% duty cycle. The charge pump regulates the BST-TS voltage to 12V reducing external power losses associated with external MOSFET on-resistance. The charge pump uses the higher voltage of TS or VCC as the source for the charge.

Start-Up and Shutdown
If the voltage on the RUN pin is less than 0.7V, the LTC7003 enters a shutdown mode in which all internal circuitry is disabled, reducing the DC supply current to approximately 1µA. When the voltage on the RUN pin exceeds 0.7V, the internal LDO connected to VIN is enabled and regulates VCC to 10V. At VIN voltages less than 10V, the LDO will operate in drop-out and VCC will follow VIN. When the voltage on the RUN pin exceeds 1.21V, the input circuitry is enabled allowing TGUP and TGDN to be driven high with respect to TS.

Protection Circuitry
When using the LTC7003, care must be taken not to exceed any of the ratings specified in the Absolute Maximum Ratings section. As an added safeguard, the LTC7003 incorporates an overtemperature shutdown feature. If the junction temperature reaches approximately 180°C, the LTC7003 will enter thermal shutdown mode and TGDN will be pulled to TS. After the part has cooled below 160°C, TGDN will be allowed to go back high. The over-temperature level is not production tested. The LTC7003 is guaranteed to start a temperatures below 150°C.

The LTC7003 additionally implements protection features which prohibit TGUP being pulled to BST when VIN, VCC or (VBST−VTS) are not within proper operating ranges. By using a resistive divider from VIN to ground, the RUN and OVLO pins can serve as a precise input supply overvoltage/undervoltage lockouts. TGDN is pulled to TS when either RUN falls below 1.11V or OVLO rises above 1.21V, which can be configured to limit switching to a specific range on input supply voltages. Furthermore, if VIN falls below 3.5V, an internal undervoltage detector pulls TGDN to TS.

VCC contains an undervoltage lockout feature that will pull TGDN to TS and is configured by the VCCUV pin. If VCCUV is open, TGDN is pulled to TS until VCC is greater than 7.0V. By using a resistor from VCCUV to ground, the rising undervoltage lockout on VCC can be adjusted from 3.5V to 10.5V.

An additional internal undervoltage lockout is included that will pull TGDN to TS when the floating voltage from BST to TS is less than 3.1V (typical).
Applications Information

Input Stage

The LTC7003 employs CMOS compatible input thresholds that allow a low voltage digital signal connected to INP to drive standard power MOSFETs. The LTC7003 contains an internal voltage regulator which biases the input buffer connected to INP allowing the input thresholds ($V_{IH} = 2.0V$, $V_{IL} = 1.6V$) to be independent of variations in V_{CC}. The 400mV hysteresis between V_{IH} and V_{IL} eliminates false triggering due to noise events. However, care should be taken to keep INP from any noise pickup, especially in high frequency, high voltage applications.

INP also contains an internal 1MΩ pull-down resistor to ground, keeping TGDN pulled to TS during startup and other unknown transient events. During shutdown ($V_{RUN}<0.7V$) the internal 1MΩ pull-down resistor is disabled and INP becomes high impedance.

INP has an Absolute Maximum of $-6V$ to $+15V$ which allows the signal driving INP to have voltage excursions outside the normal power supply and ground range. It is not uncommon for signals routed with long PCB traces and driven with fast rise/fall times to inductively ring to voltages higher than power supply or lower than ground.

Output Stage

A simplified version of the LTC7003 output stage is shown in Figure 1. The pull-down device is an N-channel MOSFET with a typical 1Ω $R_{DS(ON)}$ and the pull-up device is a P-channel MOSFET with a typical 2.2Ω $R_{DS(ON)}$. The pull-up and pull-down pins have been separated to allow the turn-on transient to be controlled while maintaining a fast turn-off.

The LTC7003 powerful output stage (1Ω pull-down and 2.2Ω pull-up) minimizes transition losses when driving external MOSFETs and keeps the MOSFET in the state commanded by INP even if high voltage and high frequency transients couple from the power MOSFET back to the driving circuitry.

The large gate drive voltage on TGUP and TGDN reduces conduction losses in the external MOSFET because $R_{DS(ON)}$ is inversely proportional to its gate overdrive ($V_{GS} - V_{TH}$).

SNS+ and SNS- Pins

SNS+ and SNS- are the inputs to the high side current comparator and current monitor. The common mode operational voltage range for these pins is 3.5V to 60V independent of any other voltages. SNS+ also provides power to the current comparator and current monitor and draws approximately 21µA when not shut down and INP is high. SNS- draws a bias current of approximately 4µA when not shut down and INP is high. When SNS+ is less than 3.2V typical (3.5V maximum), a fault condition occurs and the adjustable fault timer is enabled with the same behavior as an overcurrent fault. Normally the SNS pins are connected to the drain side of the external MOSFET. However, the SNS pins can be connected to the source side of the external MOSFET as long as the source voltage rises above 3.5V before the Fault Timer expires. See Fault Timer and Fault Flag section.

A filter resistor, R_{FLT} should be placed in series with the SNS+ pin as shown in Figure 2. Note that the SNS- pin takes 4µA of bias current which will affect the current sense and current monitoring functions. R_{FLT} should be at least 2000× larger than R_{SNS} (minimum 100Ω) to provide robustness during short-circuit events. The current injected in to the SNS+ and SNS- pins, during a short circuit event, depends on the voltage on POWER, R_{SNS}, external MOSFET $R_{DS(ON)}$, timer capacitor value and the value of R_{FLT}.
APPLICATIONS INFORMATION

I_{SET} Pin

The current comparator has an adjustable threshold voltage, ΔV_{TH}, of 20mV to 75mV and is set by placing a resistor to ground on the I_{SET} pin. The I_{SET} pin is biased with an internal 10µA current source. Floating I_{SET} enables the current comparator to have an accurate 30mV threshold voltage which allows for lower value sense resistors and reduces the external power dissipation. By placing a 40kΩ to 150kΩ resistor between I_{SET} and ground, the sense threshold voltage can be programmed to values between 20mV and 75mV. The value of resistor for a particular sense threshold voltage can be selected using Figure 3 or the following equation:

$$R_{ISET} = \frac{\Delta V_{TH}}{0.5\mu A}$$

Where 20mV < ΔV_{TH} < 75mV.

Fault Timer and Fault Flag

The LTC7003 includes an adjustable fault timer. Connecting a capacitor from the TIMER pin to ground sets the delay period before the external MOSFET is turned off during an overcurrent fault condition. The same capacitor also sets the cooldown period before the external MOSFET is allowed to turn back on. Once a fault condition is detected, a 100µA current charges the TIMER pin. When the voltage on the TIMER pin reaches 1.3V, the FAULT pin pulls low to indicate the detection of a fault condition and provide warning of an impending power loss. After the TIMER voltage crosses the 1.4V threshold, TGDN is immediately pulled to TS turning off the external MOSFET. The on-time of the external MOSFET, $T_{OVERRIDE}$, during an overcurrent event is given by the following equation:

$$T_{OVERRIDE} = \frac{1.4V \cdot C_{TIMER}}{100\mu A} + 1.5\mu sec$$

The warning time, $T_{WARNING}$, generated by an overcurrent event is given by the following equation:

$$T_{WARNING} = \frac{0.1V \cdot C_{TIMER}}{100\mu A} + 1.5\mu sec$$

If the overcurrent fault condition disappears before TIMER has reached 1.4V, TIMER is discharged by a 2.5µA current. If TIMER had reached 1.3V (FAULT has gone low) and the overcurrent fault condition disappears, TIMER is discharged with a 2.5µA current and FAULT will be reset when TIMER reaches 0.4V. The on-time and warning times are shown graphically in Figure 4.
APPLICATIONS INFORMATION

Cooldown Period and Restart

As soon as TIMER reaches 1.4V, TGDN is pulled to TS in an overcurrent fault condition and the TIMER pin starts discharging with a 2.5µA current. When TIMER reaches 0.4V, TIMER charges with a 2.5µA current. When TIMER reaches 1.4V, it starts discharging again with a 2.5µA current. This pattern repeats 32 times to form a long cooldown timer period (T\textsubscript{COOL_DOWN}) before retry (Figure 5).

If INP is cycled low, TGDN will be pulled to TS and TIMER will be pulled low with an internal 100kΩ resistor. If INP is cycled low during the cooldown period, the timer counter will be reset. If INP then goes high, TGUP will pulled to BST and the fault timer will be reactivated with the TIMER voltage starting from its current value.

At the end of the cooldown period (when TIMER drops below 0.4V for the 32nd time), the LTC7003 retries, pulling TGUP to BST and turning on the external MOSFET. The FAULT pin will then go to a high impedance state. The total cooldown timer period is given by:

\[
T_{\text{COOL_DOWN}} = \frac{63 \times 1.0V \times C_{\text{TIMER}}}{2.5\mu A}
\]

The retry duty cycle in percent is to a first order independent of \(C_T \) and is defined by:

\[
D = \frac{100 \times T_{\text{OVER_CURRENT}}}{T_{\text{OVER_CURRENT}} + T_{\text{COOL_DOWN}}}
\]

To defeat the automatic retry, place a 100kΩ resistor in parallel with the TIMER capacitor. Note that the time to turn off from an overcurrent fault will be increased by 7% and the FAULT pin will remain low indicating a fault has occurred. To get the LTC7003 to retry and to clear the fault flag the INP signal needs to cycle low then back high.

Typical turn-off times and cooldown periods for some standard value timer capacitors are shown Table 1:

<table>
<thead>
<tr>
<th>(C_{\text{TIMER}}) (nF)</th>
<th>(T_{\text{OVER_CURRENT}}) (µs)</th>
<th>(T_{\text{COOL_DOWN}}) (s)</th>
<th>Retry Duty Cycle %</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>~3</td>
<td>0.0005</td>
<td>~0.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>0.025</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>142</td>
<td>0.250</td>
<td>0.06</td>
</tr>
<tr>
<td>100</td>
<td>1402</td>
<td>2.500</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 1. Fault Time for Typical Capacitors

![Figure 5. Auto Retry Cool-Down Timer Cycle](image-url)
APPLICATIONS INFORMATION

Fast Turn-Off Mode

If the TIMER pin is connected to \(V_{CC} \) or any other supply greater than 3.5V (abs max 15V), an overcurrent event will immediately pull TGDN to TS and the LTC7003 will remain there until the INP signal has cycled low and then back high. In fast turn-off mode, the typical delay from a \(\Delta V_{SNS} \) overcurrent step to TG going low is around 70ns, so very fast short-circuit events can be detected. Also, when the TIMER pin is connected to a voltage greater than 3.5V, the \(V_{TGUP} \) signal is redefined to be the inverse state of the high side pull-up (\(V_{TGUP} - V_{TS} \)). The \(V_{TGUP} \) signal can be used in this application as low-voltage digital information that has been level shifted down from the high side MOSFET. An application for this could include using this signal to wait until \(V_{TGUP} - V_{TS} \) has gone low before turning on a redundant power MOSFET.

High Side Current Monitor Output

The LTC7003 contains a high side current monitor output. The high side differential voltage sensed across the \(V_{SNS^+} \) and \(V_{SNS^-} \) pins (\(\Delta V_{SNS} \)) is multiplied by 20 and ground referenced on the \(I_{MON} \) pin which makes it suitable for monitoring and regulating the MOSFET current. The working range of \(I_{MON} \) is 0V to 1.5V as \(\Delta V_{SNS} \) varies from 0mV to 75mV. The \(I_{MON} \) pin is a voltage output whose nominal output impedance is 100kΩ and should not be resistively loaded. The current monitor output is only available after the INP signal has been high for 150μsec (typical), otherwise the \(I_{MON} \) pin is pulled to ground. A block diagram of the \(I_{MON} \) circuit is shown in Figure 7. The \(g_m \) of the transimpedance amplifier tracks the 100kΩ internal resistor to ground which makes variations over process minimal.

RUN Pin and External Input Overvoltage/Undervoltage Lockout

The RUN pin has two different threshold voltage levels. Pulling RUN below 0.7V puts the LTC7003 into a low quiescent current shutdown mode (\(I_Q \sim 1\mu A \)). When the RUN pin is greater than 1.21V, the part is enabled. Figure 8 shows examples of configurations for driving the RUN pin from logic.
APPLICATIONS INFORMATION

The RUN and OVLO pins can alternatively be configured as precise undervoltage (UVLO) and overvoltage (OVLO) lockouts on the V_{IN} supply with a resistive divider from V_{IN} to ground. A simple resistive divider can be used as shown in Figure 9 to meet specific V_{IN} voltage requirements.

When RUN is less than 1.11V or OVLO is greater than 1.21V, TGDN will be pulled to TS and the external MOSFET will be turned off. The approximate delay time for the OVLO pin to turn on or turn off the external MOSFET is 2.5μsec. The approximate delay time for the RUN pin falling lower than 1.11V to turn off the external MOSFET is 3.5μsec.

\[
R_4 = R_{TOTAL} \times \frac{1.21V}{\text{Rising } V_{IN} \text{ UVLO Threshold}} - R_5
\]

\[
R_3 = R_{TOTAL} - R_5 - R_4
\]

For applications that do not need a precise external OVLO the OVLO pin is required to be tied directly to ground. The RUN pin in this type of application can be used as an external UVLO using the above equations with $R_5 = 0\Omega$.

Similarly, for applications that do not require a precise UVLO, the RUN pin can be tied to V_{IN}. In this configuration, the UVLO threshold is limited by the internal V_{IN} UVLO thresholds as shown in the Electrical Characteristics table. The resistor values for the OVLO can be computed using the above equations with $R_3 = 0\Omega$.

Be aware that the OVLO pin cannot be allowed to exceed its absolute maximum rating of 6V. To keep the voltage on the OVLO pin from exceeding 6V, the following relationship should be satisfied:

\[
V_{IN(\text{MAX})} \times \left(\frac{R_5}{R_3 + R_4 + R_5}\right) < 6V
\]

If the $V_{IN(\text{MAX})}$ relationship for the OVLO pin cannot be satisfied, an external 5V Zener diode should also be placed from OVLO to ground in addition to any lockout setting resistors.

Bootstrapped Supply (BST-TS)

An external bootstrapped capacitor, C_B, connected between BST and TS supplies the gate drive voltage for the MOSFET driver. The LTC7003 keeps the BST-TS supply charged with an internal charge pump, allowing for duty cycles up to 100%. When the high side external MOSFET is to be turned on, the driver places the C_B voltage across the gate-source of the MOSFET. This enhances the high side MOSFET and turns it on. The source of the MOSFET, TS, rises to V_{IN} and the BST pin follows. With the high side MOSFET on, the BST voltage is above the input supply; $V_{BST} = V_{IN} + 12V$. The boost capacitor, C_B, supplies the charge to turn on the external MOSFET and needs to have at least 10 times the charge to turn on the external MOSFET fully. The charge to turn on the external MOSFET...
APPLICATIONS INFORMATION

is referred to gate charge, Q_G, and is typically specified in the external MOSFET data sheet. Gate charge can range from 5nC to hundreds of nC and is influenced by the gate drive level and the type of external MOSFET used. For most applications, a capacitor value of $0.1\mu F$ for C_B will be sufficient. However, the following relationship for C_B should be maintained:

$$C_B > \frac{\text{External MOSFET } Q_G}{1V}$$

The internal charge pump that charges the BST-TS supply outputs approximately $30\mu A$ to the BST pin. If the time to charge the external bootstrapped capacitor, C_B, from initial power-up with the internal charge pump is not sufficient for the application, a low reverse leakage external silicon diode, D_1, with a reverse voltage rating greater than V_{IN} connected between V_{CC} and BST should be used as shown in Figure 10. An external silicon diode between V_{CC} and BST should be used if the following relationship cannot be met:

$$\text{BST diode required if power-up to INP going high} < \frac{C_B \cdot 12V}{30\mu A} \approx 40ms$$

![Figure 10. External BST Diode](image)

Another reason to use an external silicon diode between V_{CC} and BST is if the external MOSFET is switched at a frequency so high that the BST-TS supply collapses. An external silicon diode between V_{CC} and BST should be used if the following relationship cannot be met:

$$\text{BST diode required if switching frequency} > \frac{30\mu A}{2 \cdot \text{MOSFET } Q_G} \approx 500Hz$$

A Schottky diode should not be used between V_{CC} and BST, as the reverse leakage of the Schottky diode at hot will be more current than the charge pump can overcome.

Some example silicon diodes with low leakage include:
- BAS116 Series, Multiple Vendors
- BAS416, Nexperia
- BAQ34, Vishay Semiconductors
- CMOD6001, Central Semiconductor

V_{CC} Generation

The V_{CC} pin provides the power for the MOSFET gate drivers and internal circuitry. The LTC7003 features an internal P-channel low dropout regulator (LDO) that can supply power at V_{CC} from the V_{IN} supply pin or V_{CC} can be driven from an external power supply. If the internal P-channel LDO is used to power V_{CC}, it must have a minimum $1.0\mu F$ low ESR ceramic capacitor to ensure stability and should not be connected to any other circuitry other than optionally biasing some pins on the LTC7003 (FAULT, INP or TIMER).

If the internal P-channel LDO is used to power V_{CC} and an external silicon diode is used between V_{CC} and BST, care must be taken not to switch an external MOSFET at too high a frequency that can collapse the internal LDO. The internal LDO can only supply $1mA$ with a $200mV$ drop-out. In order to keep the internal LDO supply from collapsing when an external silicon diode is used from V_{CC} to BST, the following relationship should be maintained:

$$\text{Maximum switching frequency with internal LDO} < \frac{1mA}{2 \cdot \text{MOSFET } Q_G} \approx 20kHz$$

For higher gate charge applications, an external silicon diode between V_{CC} and BST should be used and V_{CC} can be driven from a high efficiency external supply. V_{CC} should never be driven higher than V_{IN} or permanent damage to the LTC7003 could occur.

V_{CC} Undervoltage Comparator

The LTC7003 contains an adjustable undervoltage lockout (UVLO) on the V_{CC} voltage that pulls TGDN to TS and can be easily programmed using a resistor (R_{VCCUV}) between the V_{CCUV} pin and ground. The voltage generated on V_{CCUV} by R_{VCCUV} and the internal $10\mu A$ current source set the V_{CC} UVLO. The rising V_{CC} UVLO is internally limited within
APPLICATIONS INFORMATION

The range of 3.5V and 10.5V. If \(V_{CCUV} \) is open the rising \(V_{CC} \) UVLO is set internally to 7.0V. The typical value of resistor for a particular rising \(V_{CC} \) UVLO can be selected using Figure 11 or the following equation:

\[
R_{VCCUV} = \frac{\text{Rising } V_{CC} \text{ UVLO}}{70 \mu A}
\]

Where \(3.5V < \text{Rising } V_{CC} \text{ UVLO} < 10.5V \).

Figure 11. \(V_{CCUV} \) Resistor Selection

MOSFET Selection

The most important parameters in high voltage applications for MOSFET selection are the breakdown voltage \(BV_{DSS} \), on-resistance \(R_{DS(ON)} \) and the safe operating area, SOA.

The MOSFET, when off, will see the full input range of the input power supply plus any additional ringing than can occur when driving inductive loads.

External conduction losses are minimized when using low \(R_{DS(ON)} \) MOSFETs. Since many high voltage MOSFETs have higher threshold voltages (typical \(V_{TH} \geq 5V \)) and \(R_{DS(ON)} \) is directly related to the \((V_{GS}-V_{TH}) \) of the MOSFET, the LTC7003 maximum gate drive of greater than 10V makes it an ideal solution to minimize external conduction losses associated with external high voltage MOSFETs.

SOA is specified in Typical Characteristic curves in power N-channel MOSFET data sheets. The SOA curves show the relationship between the voltages and current allowed in a timed operation of a power MOSFET without causing damage to the MOSFET. The overcurrent trip point (\(R_{SNS} \) and \(R_{ISET} \)) of the LTC7003 and TIMER capacitor should be chosen to stay within the SOA region of the MOSFET selected for the application.

Limiting Inrush Current During Turn-On

Driving large capacitive loads such as complex electrical systems with large bypass capacitors should be powered using the circuit shown in Figure 12. The pull-up gate drive to the power MOSFET from TGUP is passed through an RC delay network, \(R_G \) and \(C_G \), which greatly reduces the turn-on ramp rate of the MOSFET. Since the MOSFET source voltage follows the gate voltage, the load is powered smoothly from ground. This dramatically reduces the inrush current from the source supply and reduces the transient ramp rate of the load allowing for slower activation of sensitive electrical loads. The turn-off of the MOSFET is not affected by the \(R_C \) delay network as the pull-down for the MOSFET gate is directly from the TGDN pin. Note that the voltage rating on capacitor \(C_G \) needs to be the same or higher than the external MOSFET and \(C_{LOAD} \).

Adding \(C_G \) to the gate of the external MOSFET can cause high frequency oscillation. A low power, low ohmic value resistor (10Ω) should be placed in series with \(C_G \) to dampen the oscillations as shown in Figure 12 whenever \(C_G \) is used in an application. Alternatively, the low ohmic value resistor can be placed in series with the gate of the external MOSFET.

Figure 12. Powering Large Capacitive Loads
APPLICATIONS INFORMATION

The values for \(R_G \) and \(C_G \) to limit the inrush current can be calculated from the below equation:

\[
I_{\text{IN,RUSH}} \approx \frac{0.7 \cdot 12V \cdot C_{\text{LOAD}}}{R_G \cdot C_G}
\]

For the values shown in Figure 12 the inrush current will be:

\[
I_{\text{IN,RUSH}} \approx \frac{0.7 \cdot 12V \cdot 100\mu F}{100k\Omega \cdot 0.047\mu F} = 180mA
\]

Correspondingly, the ramp rate at the load for the circuit in Figure 12 is approximately:

\[
\frac{\Delta V_{\text{LOAD}}}{\Delta T} = \frac{0.7 \cdot 12V}{R_G \cdot C_G} = 2V/\text{ms}
\]

When \(C_G \) is added to the circuit in Figure 12, the value of the bootstrap capacitor, \(C_B \), must be increased to be able to supply the charge to both to MOSFET gate and capacitor \(C_G \). The relationship for \(C_B \) that needs to be maintained when \(C_G \) is used is given by:

\[
C_B > \frac{\text{MOSFET } Q_G}{1V} + 10 \cdot C_G
\]

Optional Schottky Diode Usage on TS

When turning off a power MOSFET that is connected to an inductive load (inductor, long wire or complex load), the TS pin can be pulled below ground until the current in the inductive load has completely discharged. The TS pin is tolerant of voltages down to \(-6V\), however, an optional Schottky diode with a voltage rating at least as high as the load voltage should be connected between TS and ground to prevent discharging the load through the TS pin of the LTC7003. See Figure 13.

Reverse Current Protection

To protect the load from discharging back into \(V_{\text{IN}} \) when the external MOSFET is off and the \(V_{\text{IN}} \) voltage drops below the load voltage, two external N-channel MOSFETs should be used and must be configured in a back-to-back arrangement as shown in Figure 14. Dual N-channel packages such as the following devices are good choices for space saving designs:

- FDS3890, Fairchild/ON Semiconductor
- IRF7380PBF, Infineon/IR
- SQJB80EP, Vishay/Siliconix

Design Example

As a design example, consider a fast power supply switch with the following specifications:

\(V_{\text{IN}} = V_{\text{LOAD}} = 4V \) to \(60V \),
\(I_{\text{LOAD}} = 3A \)

Insertion Loss \(< 0.5W\) at room temp with maximum load, output rise time with a \(1\mu F \) load is \(1V/\mu s \) (1A inrush current) and a shorted load should immediately turn off the MOSFET.

The first item to select is the N-channel MOSFET. The Si7812DN is selected because it has sufficient breakdown voltage (\(BV_{\text{DSS,MIN}} = 75V \)), sufficient continuous current rating for a 3A load (\(I_D_{\text{MAX}} = 5.7A \)) and the on-resistance is low enough (\(R_{\text{DSS(ON)}} = 46m\Omega \)) to be able to meet the power loss specification.

Examining the MOSFET data sheet, the \(V_{\text{GS}} \) vs \(R_{\text{DSS(ON)}} \) typical performance curve shows a sharp increase in \(R_{\text{DSS(ON)}} \) as the MOSFET \(V_{\text{GS}} \) gets below 5.0V. Since the default \(V_{\text{CC UVLO}} \) is 7.0V, the \(V_{\text{CC UVLO}} \) pin can be left open. The OVLO pin is connected to ground since there is no specification for Overvoltage Lockout.
APPLICATIONS INFORMATION

The value of the current sense resistor, R_{SNS}, is calculated next. With I_{SET} open, the LTC7003 has a fixed current sense threshold, ΔV_{TH}, of 30mV typical and 22mV minimum. To provide a minimum 3A load current, the minimum specified $\Delta V_{TH} = 22mV$ should be used for the R_{SNS} calculation below:

$$R_{SNS} = \frac{22mV}{3A} = 7.3m\Omega$$

The closest standard value is 7mΩ. The power dissipation of R_{SNS} is 63mW so choose a power rating of greater than 0.25W to provide adequate margin.

The next item to check is to make sure the insertion loss specification is satisfied. The insertion loss is given by:

$$P_{LOSS} = I_{LOAD}^2 \cdot (R_{DS(ON)(MAX)} + R_{SNS})$$

$$= 3A^2 \cdot (0.046\Omega + 0.007\Omega) = 0.48W$$

Which meets the design specification of less than 0.5W.

The fast output slew rate specification of 1V/µs into a 1µF load can be met by placing a resistor, R_G, in series with the TGUP pin to the MOSFET gate, as well as connecting TGDN and a capacitor, C_G, to ground on the MOSFET gate. The values of R_G and T_G can be calculated from the following expression:

$$R_G \cdot C_G = \frac{0.7 \cdot 12V}{1V/\mu s} = 8.4\mu s$$

C_G needs to have a voltage rating as high as the BV_{DSS} of the MOSFET. A good choice for C_G is the AVX 06031C471KAT2A which has a value of 470pF and a voltage rating of 100V. R_G is then calculated to be 17.8kΩ.

The bootstrap capacitor C_B can be calculated from the gate charge as specified in the MOSFET data sheet and C_G as follows:

$$C_B > \frac{Q_G}{1V} + 10 \cdot C_G = \frac{24nC}{1V} + 10 \cdot 470pF = 0.33nF$$

100nF will be used.

To meet the short-circuit specification, the TIMER pin should be connected to V_{CC} to enable immediate turn-off (approximately 70ns) of the MOSFET in the case of an overcurrent condition. If an overcurrent condition turns off the MOSFET, it will not turn back on until the INP pin has cycled low then back high.

The complete circuit is shown in Figure 15.

PC Board Layout Considerations

1. **Solder the exposed pad** on the backside of the LTC7003 packages directly to the ground plane of the board.
2. Kelvin connect the SNS+ pin to the current sense resistor.
3. Limit the resistance of the TS trace, by making it short and wide.
4. C_B needs to be close to chip.
5. Always include an option in the PC board layout to place a resistor in series with the gate of any external MOSFET. High frequency oscillations are design dependent and having the option to add a series dampening resistor can save a design iteration of the PC board.

![Figure 15. Design Example](image-url)
TYPICAL APPLICATIONS

Source Side Current Sense

NOTE: WITH THE SENSE RESISTOR ON THE SOURCE SIDE OF THE EXTERNAL MOSFET, THE LOAD NEEDS TO RISE HIGHER THAN 3.5V WITHIN 140µSEC OF INP GOING HIGH OR A FAULT WILL BE INDICATED AND THE LTC7003 WILL RETRY.

Protected Redundant Supply Switchover with Shoot Through Protection

VLOAD vs Main Power Voltage

VMAIN Falling Through 33V

VMAIN Rising Through 36V
TYPICAL APPLICATIONS

High Side Switch with Input Overvoltage and Overcurrent Protection

![Circuit Diagram](image)

High Side Switch with Overcurrent Protection and Fault Latchoff

![Circuit Diagram](image)

R_\text{TIMER} = \text{OPEN}

12Ω/100ms LOAD PULSE

- V_\text{LOAD} 10kΩ/DIV
- V_\text{LOAD} 10V/DIV
- I_\text{LOAD} 1A/DIV
- V_\text{TIMER} 1A/DIV

100ms/DIV

VIN = 12V
VINP = 4V

R_\text{TIMER} = 100k

12Ω/100ms LOAD PULSE

- V_\text{LOAD} 10kΩ/DIV
- V_\text{LOAD} 10V/DIV
- I_\text{LOAD} 1A/DIV
- V_\text{TIMER} 1A/DIV

100ms/DIV

VIN = 12V
VINP = 4V

For more information www.analog.com
TYPICAL APPLICATIONS

Average Current Trip

Response to 1.2A Load Step

High Side Switch with Auto-Retry, Inrush Control and OVLO

Turn-On Response
MSE Package

16-Lead Plastic MSOP, Exposed Die Pad

(Reference LTC DWG # 05-08-1667 Rev F)

NOTE:

1. DIMENSIONS IN MILLIMETER/INCH
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL NOT EXCEED 0.254mm (.010") PER SIDE.
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
</table>
| A | 09/18 | Added 100Ω resistor to Typical Application
Added Total Supply Current with Charge Pump Regulating section to Electrical Characteristics table
Removed the temperature dot from the TIMER Pin Pull-Down Current specification.
Updated SNS+ and SNS− in Pin Functions
Added RFLT | 1, 4, 5, 9, 18, 19, 20, 21, 22, 23, 26 |
TYPICAL APPLICATION

Protected Motor Driver

VIN: 40V TO 60V

PWM −20kHz

VIn

40V TO 60V

400mA

3.5V

Fast

High Efficiency Switching Surge Stopper

Low Quiescent Current Surge Stopper

Surge Stopper with Ideal Diode

8V

Fast

High Efficiency, 3.5V Dual

4V

Fast

9V

COMMENTS

Fast Micropower Hot Swap Controller

40V TO 60V

100V

2.7V

100mA

105V

100mA

1.5Ω

4.4V

Fixed Frequency

PLL Fixed Frequency

TVS Required for Most Applications

Wide Operating Range

TVS Required for Most Applications

2MHz

2.5V

Peak Pull-Up/35µA

Peak Pull-Down

Integrated Power MOSFETs, Charge Pump

Internal Charge Pump

100mA

8A CONTINUOUS MAX

48V, 500W MOTOR

40V TO 60V

80V

50kHz

Protection Range

Protection Range

Protection Range

Protection Range

9/18

www.analog.com

© ANALOG DEVICES, INC. 2017-2018

Rev. A

26

ANALOG DEVICES, INC. 2017-2018