The HMC7149 is an 10W Gallium Nitride (GaN) MMIC Power Amplifier which operates between 6 and 18 GHz. The amplifier typically provides 20dB of small signal gain, +40 dBm of saturated output power, and +39.5 dBm output IP3 at +28 dBm output power per tone. The HMC7149 draws 680 mA current from a +28V DC supply. The RF I/Os are matched to 50 Ohms for ease of integration into Multi-Chip-Modules (MCMs). All electrical performance data was acquired with the die eutectically attached to 1.02 mm (40 mil) thick CuMo carrier with multiple 1.0 mil diameter ball bonds connecting the die to 50 Ohm transmission lines on alumina.

Electrical Specifications, Tc = +25°C, Vdd= Vdd1 =Vdd2 = +28 V, Idd = 680 mA [1]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>6 - 10</td>
<td>10 - 14</td>
<td>14 - 16</td>
<td>16 - 18 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>20 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±0.5</td>
<td>±0.6</td>
<td>±0.5</td>
<td>±0.7 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Variation Over Temperature</td>
<td>0.023</td>
<td>0.02</td>
<td>0.02</td>
<td>0.018 dB/ °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>11 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>12 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Power for 4 dB Compression (P4dB)</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>36 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Gain for 4 dB compression (P4dB)</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>17 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3) [2]</td>
<td>39.5</td>
<td>39</td>
<td>39.5</td>
<td>40.5 dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>20 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current (Idd @ Vdd = 28V)</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Adjust Vgg between -3V and 0V to achieve Idd= 680 mA typical.

HMC7149

10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

Gain and Return Loss

Gain vs. Temperature

Gain vs. Vdd

Input Return Loss vs. Temperature

Output Return Loss vs. Temperature

Pout vs. Frequency

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC7149
10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

P4dB vs. Temperature

Psat vs. Temperature

P4dB vs. Supply Voltage

Psat vs. Supply Voltage

P4dB vs. Supply Current

Psat vs. Supply Current

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

Power Gain vs. Frequency

Output IP3 vs. Temperature
Pout/tone = +28 dBm

Output IP3 vs. Supply Voltage
Pout/tone = +28 dBm

Output IM3 @ Vdd= +24V

Output IM3 @ Vdd= +28V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC7149
10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

Output IM3 @ Vdd= +32V

Power Compression @ 6 GHz

Power Compression @ 12 GHz

Power Compression @ 18 GHz

Gain and Power vs. Supply Voltage @ 12 GHz

Gain and Power vs. Supply Current @ 12 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
HMC7149

10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

Reverse Isolation vs. Temperature

Second Harmonics vs. Supply Voltage

Second Harmonics vs. Supply Current

Second Harmonics vs. Pout

Power Dissipation

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC7149

10 WATT GaN MMIC POWER AMPLIFIER, 6 - 18 GHz

Absolute Maximum Ratings[1]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Bias Voltage (Vdd)</td>
<td>+32V</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vgg)</td>
<td>-8V to +0V</td>
</tr>
<tr>
<td>Maximum Forward Gate Current</td>
<td>6 mA</td>
</tr>
<tr>
<td>Maximum RF Input Power (RFIN)</td>
<td>30 dBm</td>
</tr>
<tr>
<td>Maximum Junction Temperature (Tj)</td>
<td>225 °C</td>
</tr>
<tr>
<td>Maximum Pdiss (T=85°C)</td>
<td>50 W</td>
</tr>
<tr>
<td>Thermal Resistance [2]</td>
<td>2.8 °C/W</td>
</tr>
<tr>
<td>Maximum VSWR [3]</td>
<td>6:1</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55 to +150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
</tbody>
</table>

Typical Supply Current vs. Vdd

<table>
<thead>
<tr>
<th>Vdd (V)</th>
<th>Idd (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+28.0</td>
<td>680</td>
</tr>
</tbody>
</table>

Outline Drawing

Die Packaging Information [1]

<table>
<thead>
<tr>
<th>Standard</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-1 (Gel Pack)</td>
<td>[2]</td>
</tr>
</tbody>
</table>

[1] Refer to the “Packaging Information” section for die packaging dimensions.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
Pad Descriptions

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RFIN</td>
<td>This pad is AC coupled and is matched to 50 Ohms. External blocking capacitor is required.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vdd1</td>
<td>Drain Bias</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RFOUT</td>
<td>This pad is DC coupled and is matched to 50 Ohms. External blocking capacitor is required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vgg2</td>
<td>Gate Bias</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vdd2</td>
<td>Drain Bias</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Vgg1</td>
<td>Gate Bias</td>
<td></td>
</tr>
<tr>
<td>Die Bottom</td>
<td>GND</td>
<td>Die bottom must be connected to RF/DC ground.</td>
<td></td>
</tr>
</tbody>
</table>
HMC7149
10 WATT GaN MMIC POWER AMPLIFIER,
6 - 18 GHz

Application Circuit

Assembly Diagram

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Mounting & Bonding Techniques for GaN MMICs

The die should be eutectically attached directly to the ground plane (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a copper tungsten or CuMo heat spreader which is then attached to the thermally conductive ground plane (Figure 2).

Microstrip substrates should be placed as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils).

Handling Precautions

Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

Die placement: A heated vacuum collet (180°C) is the preferred method of pick up. Ensure that the area of vacuum contact on the die is minimized to prevent cracking under differential pressure. All air bridges (if applicable) must be avoided during placement. Minimize impact forces applied to the die during auto-placement.

Mounting

The chip is back-metallized with a minimum of 5 microns of gold and is the RF ground and thermal interface. It is recommended that the chip be die mounted with AuSn eutectic preforms. The mounting surface should be clean and flat.

Eutectic Reflow Process: An 80/20 gold tin 0.5mil (13um) thick preform is recommended with a work surface temperature of 280°C. Limit exposure to temperatures above 300°C to 30 seconds maximum. A die bonder or furnace with 95% N₂ / 5% H₂ reducing atmosphere should be used. No organic flux should be used. Coefficient of thermal expansion matching is critical for long term reliability.

Die Attach Inspection: X-ray or acoustic scan is recommended.

Wire Bonding

Thermosonic ball or wedge bonding is the preferred interconnect technique. Gold wire must be used in a diameter appropriate for the pad size and number of bonds applied. Force, time and ultrasonics are critical parameters: optimize for a repeatable, high bond pull strength. Limit the die bond pad surface temperature to 200°C maximum.