This anomaly list represents the known bugs, anomalies, and workarounds for the ADuC841, ADuC842, and ADuC843 MicroConverter products. The anomalies listed apply to all ADuC841/ADuC842/ADuC843 packaged material branded as follows:

First (CSP) / Second (PQFP) Line ADuC841 or ADuC842 or ADuC843
Third (CSP) / Fourth Line (PQFP) F21

Analog Devices, Inc., is committed, through future silicon revisions, to continuously improving silicon functionality. Analog Devices tries to ensure that these future silicon revisions remain compatible with your present software/systems implementing the recommended workarounds outlined here.

ADuC841/ADuC842/ADuC843 SILICON REVISION HISTORY

<table>
<thead>
<tr>
<th>Silicon Revision Identifier</th>
<th>Kernel Revision Identifier</th>
<th>Chip Marking</th>
<th>Silicon Status</th>
<th>Anomaly Sheet</th>
<th>No. of Reported Anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>All silicon branded ADUC841BS ADuC842BS ADuC843BS</td>
<td>Release</td>
<td>Rev. B</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third/Fourth Line: F21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANOMALIES

1. SPI Interface [er006]
 Background: The SPI can either be used on the standard pins or can be moved to P3.3, P3.4, and P3.5 by setting the MSPI bit in CFG841/CFG842. When the MSPI bit is set, P3.3 should be MISO, P3.4 MOSI, and P3.5 SCLOCK.
 Issue A: By setting the MSPI bit, the P3.3, P3.4, and P3.5 have the following configuration:
 \[P3.3 = \text{MISO}, P3.4 = \text{SCLOCK}, P3.5 = \text{MOSI} \]
 Workaround A: None.
 Issue B: When the ADuC841/ADuC842/ADuC843 is set up as an SPI slave, the device may receive or transmit bytes incorrectly.
 Workaround B: Incorporate checksums into all communication with the ADuC841/ADuC842/ADuC843 slave. This allows the master devices to retransmit if an error occurs.
 Related Issues: None.

2. Interrupts During Reading/Writing to Data FLASH/EE [er007]
 Background: There are 4 k\(\text{B}\) of DATAFLASH/EE that can be used for nonvolatile data storage.
 Issue: If an interrupt occurs during a DATAFLASH/EE read or write operation, code execution following the ISR may resume at a random program memory address.
 Workaround: Disable all interrupts prior to a read or write operation. This can be done by setting the EA bit to 0.
 Related Issues: None.

3. PWM Operation [er008]
 Background: The PWM output rate is determined by the PWMxH and PWMxL registers for the PWM0 and PWM1 outputs.
 Issue: Modifying RAM Address 0x2E causes the PWM timer to be reset.
 Workaround: For Assembly code: Do not use memory location 0x2E.
 For C code: Assign a dummy variable to location 0x2E using the following code:
 \[\text{idata unsigned int } u\text{i32Dummy[2] _at_ 0x2E;} \]
 Related Issues: None.

4. Watchdog Timer [er009]
 Background: The ADuC841, ADuC842, and ADuC843 incorporate a Watchdog Timer. The purpose of the WDT is to ensure the part is never stuck in an endless loop by generating either a hardware reset or an interrupt event that vectors to the WDT ISR.
 Issue: If the WDT generates an interrupt as opposed to a hardware reset, and if the ISR subsequently sets up the WDT to time out to a hardware reset, the reset is ignored.
 Workaround: Ensure that a double write to the WDCON is executed inside the ISR with the first write being a reset of the WDT. For example:
   ```
   void isr_wdt( void ) interrupt 11
   { 
      WDWR = 1; // This first WDT write is required to get the WDT to work inside the ISR.
      WDCON = 0x60; // Reset WDT.
      WDWR = 1; // Now set the WDT to the required is timeout
      WDCON = 0x62; // select reset after 1000mS
      while(1);
   }
   void main(void)
   { 
      EA = 0;
      WDWR = 1; // Allow write to WDCON
      WDCON = 0x6A; // timeout=1000mS, WDT enable, WDT ISR Interrupt
      while (1);
   }
   ```
 Related Issues: None.
5. Level Triggered Interrupt Operation [er010]

Background: The ADuC841/ADuC842/ADuC843 incorporate two external interrupt sources (INT0 and INT1) that can be configured to respond to either an edge event or a level event.

Issue: If an interrupt occurs on the INT0 or INT1 pins and is then removed within one core instruction cycle, the interrupt vector address that is generated may be incorrect resulting in a vector to 0000H. This effectively restarts code execution.

Workaround: To ensure that this does not occur, the level triggered interrupt source must be kept low for a minimum of 9 core clock cycles.

Related Issues: None.

ADuC841/ADuC842/ADuC843 SILICON ANOMALIES

<table>
<thead>
<tr>
<th>Anomaly No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>er001</td>
<td>Mode 0 UART operation</td>
<td>Fixed</td>
</tr>
<tr>
<td>er002</td>
<td>Use of the extended stack pointer</td>
<td>Fixed</td>
</tr>
<tr>
<td>er003</td>
<td>Use of I²C in slave mode with stop interrupt enabled</td>
<td>Fixed</td>
</tr>
<tr>
<td>er004</td>
<td>Use of I²C in slave mode with stop interrupt disabled</td>
<td>Fixed</td>
</tr>
<tr>
<td>er005</td>
<td>I²C data transfer</td>
<td>Fixed</td>
</tr>
<tr>
<td>er006</td>
<td>SPI interface</td>
<td>Pending</td>
</tr>
<tr>
<td>er007</td>
<td>Interrupts during reading/writing to data FLASH/EE</td>
<td>Pending</td>
</tr>
<tr>
<td>er008</td>
<td>PWM operation</td>
<td>Pending</td>
</tr>
<tr>
<td>er009</td>
<td>Watchdog timer</td>
<td>Pending</td>
</tr>
<tr>
<td>er010</td>
<td>Level triggered interrupt operation</td>
<td>Pending</td>
</tr>
<tr>
<td>er011</td>
<td>Stack pointer in ULOAD mode</td>
<td>Fixed</td>
</tr>
</tbody>
</table>