1 Ω On Resistance, ±15 V/±12 V/±5 V

*iCMOS SPST Switches

ADG1401/ADG1402

FEATURES

1 Ω on resistance
0.2 Ω on resistance flatness
Up to 430 mA continuous current
Fully specified at +12 V, ±15 V, ±5 V
No V↓ supply required
3 V logic-compatible inputs
Rail-to-rail operation
8-lead MSOP and 8-lead, 3 mm × 2 mm LFCSP packages

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems
Relay replacements

GENERAL DESCRIPTION

The ADG1401/ADG1402 contain a single-pole/single-throw (SPST) switch. Figure 1 shows that with a logic input of 1, the switch of the ADG1401 is closed and that of the ADG1402 is open. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The *iCMOS®* (industrial CMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, *iCMOS* components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and a reduced package size.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. The *iCMOS* construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. 1.3 Ω maximum on resistance at 25°C.
2. Minimum distortion.
3. 3 V logic-compatible digital inputs: $V_{\text{INH}} = 2.0$ V, $V_{\text{INL}} = 0.8$ V.
4. No V↓ logic power supply required.
5. 8-lead MSOP and 8-lead, 3 mm × 2 mm LFCSP packages.
TABLE OF CONTENTS

Features .. 1
Applications .. 1
Functional Block Diagram ... 1
General Description ... 1
Product Highlights ... 1
Revision History ... 2
Specifications ... 3
 ±15 V Dual Supply .. 3
 +12 V Single Supply ... 4
 ±5 V Dual Supply ... 5

Continuous Current Per Channel, S or D .. 6
Absolute Maximum Ratings ... 7
Thermal Resistance .. 7
ESD Caution .. 7
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics ... 9
Test Circuits .. 12
Terminology .. 14
Outline Dimensions .. 15
Ordering Guide ... 15

REVISION HISTORY

10/09—Revision 0: Initial Version
SPECIFICATIONS

±15 V DUAL SUPPLY

$V_{DD} = +15 \, V \pm 10\%$, $V_{SS} = -15 \, V \pm 10\%$, GND = 0 V, unless otherwise noted.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$25^\circ C$</th>
<th>$-40^\circ C$ to $+125^\circ C$</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td>V_{DD} to V_{SS}</td>
<td>V</td>
<td>$V_{S} = \pm 10 , V, I_{S} = -10 , mA$; see Figure 20</td>
</tr>
<tr>
<td>On Resistance, R_{ON}</td>
<td>1</td>
<td>Ω typ</td>
<td>$V_{DO} = +13.5 , V, V_{SS} = -13.5 , V$</td>
</tr>
<tr>
<td>On Resistance Flatness, $R_{FLAT(ON)}$</td>
<td>0.2</td>
<td>Ω typ</td>
<td>$V_{S} = \pm 10 , V, I_{S} = -10 , mA$</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>Ω max</td>
<td></td>
</tr>
<tr>
<td>LEAKAGE CURRENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Off Leakage, $I_{S\mbox{ (Off)}}$</td>
<td>± 0.05</td>
<td>nA typ</td>
<td>$V_{DD} = +16.5 , V, V_{SS} = -16.5 , V$</td>
</tr>
<tr>
<td></td>
<td>± 0.4</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>Drain Off Leakage, $I_{D\mbox{ (Off)}}$</td>
<td>± 0.05</td>
<td>nA typ</td>
<td>$V_{S} = \pm 10 , V, V_{D} = \pm 10 , V$; see Figure 21</td>
</tr>
<tr>
<td></td>
<td>± 0.4</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>Channel On Leakage, $I_{ON, I_{S\mbox{ (On)}}}$</td>
<td>± 0.2</td>
<td>nA typ</td>
<td>$V_{S} = V_{D} = \pm 10 , V$; see Figure 22</td>
</tr>
<tr>
<td></td>
<td>± 1</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage, V_{INH}</td>
<td>2.0</td>
<td>V min</td>
<td>$V_{IN} = V_{GND}$ or V_{DD}</td>
</tr>
<tr>
<td>Input Low Voltage, V_{INL}</td>
<td>0.8</td>
<td>V max</td>
<td></td>
</tr>
<tr>
<td>Input Current, I_{INL} or I_{INH}</td>
<td>0.002</td>
<td>μA typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.1</td>
<td>μA max</td>
</tr>
<tr>
<td>Digital Input Capacitance, C_{IN}</td>
<td>4</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{ON}</td>
<td>120</td>
<td>ns typ</td>
<td>$R_{L} = 300 , \Omega, C_{L} = 35 , pF$</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>ns max</td>
<td>$V_{S} = 10 , V$; see Figure 23</td>
</tr>
<tr>
<td>t_{OFF}</td>
<td>120</td>
<td>ns typ</td>
<td>$R_{L} = 300 , \Omega, C_{L} = 35 , pF$</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>ns max</td>
<td>$V_{S} = 10 , V$; see Figure 23</td>
</tr>
<tr>
<td>Charge Injection</td>
<td>-12</td>
<td>pC typ</td>
<td>$V_{S} = 0 , V, R_{L} = 0 , \Omega, C_{L} = 1 , nF$; see Figure 24</td>
</tr>
<tr>
<td>Off Isolation</td>
<td>-58</td>
<td>dB typ</td>
<td>$R_{L} = 50 , \Omega, C_{L} = 5 , pF, f = 1 , MHz$; see Figure 25</td>
</tr>
<tr>
<td>Total Harmonic Distortion + Noise</td>
<td>0.008</td>
<td>% typ</td>
<td>$R_{L} = 10 , k\Omega, 5 , V , \text{rms}, f = 20 , Hz$ to $20 , kHz$; see Figure 27</td>
</tr>
<tr>
<td>$-3 , dB$ Bandwidth</td>
<td>120</td>
<td>MHz typ</td>
<td>$R_{L} = 50 , \Omega, C_{L} = 5 , pF$; see Figure 26</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.08</td>
<td>dB typ</td>
<td>$R_{L} = 50 , \Omega, C_{L} = 5 , pF, f = 1 , MHz$; see Figure 26</td>
</tr>
<tr>
<td>$C_{S\mbox{ (Off)}}$</td>
<td>36</td>
<td>pF typ</td>
<td>$f = 1 , MHz, V_{S} = 0 , V$</td>
</tr>
<tr>
<td>$C_{D\mbox{ (Off)}}$</td>
<td>41</td>
<td>pF typ</td>
<td>$f = 1 , MHz, V_{S} = 0 , V$</td>
</tr>
<tr>
<td>$C_{D}, C_{S\mbox{ (On)}}$</td>
<td>187</td>
<td>pF typ</td>
<td>$f = 1 , MHz, V_{S} = 0 , V$</td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>0.002</td>
<td>μA typ</td>
<td>$V_{DD} = +16.5 , V, V_{SS} = -16.5 , V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μA max</td>
<td>Digital inputs = 0 V or V_{DD}</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>60</td>
<td>μA typ</td>
<td>Digital inputs = 5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μA max</td>
<td></td>
</tr>
<tr>
<td>I_{SS}</td>
<td>0.002</td>
<td>μA typ</td>
<td>Digital inputs = 0 V, 5 V, or V_{DD}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μA max</td>
<td></td>
</tr>
<tr>
<td>V_{DD}/V_{SS}</td>
<td>$\pm 4.5/\pm 16.5$</td>
<td>V min/max</td>
<td>Ground = 0 V</td>
</tr>
</tbody>
</table>

1 Guaranteed by design, not subject to production test.
ADG1401/ADG1402

+12 V SINGLE SUPPLY

\(V_{DD} = +12 \, \text{V} \pm 10\%, \, V_{SS} = 0 \, \text{V}, \, \text{GND} = 0 \, \text{V}, \) unless otherwise noted.

Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>25°C</th>
<th>−40°C to +85°C</th>
<th>−40°C to +125°C</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td></td>
<td>0 V to (V_{DD})</td>
<td></td>
<td>V</td>
<td>(V_{S} = 0 , \text{V}) to 10 V, (I_{S} = -10 , \text{mA}); see Figure 20</td>
</tr>
<tr>
<td>On Resistance, (R_{ON})</td>
<td>2</td>
<td>2.4</td>
<td>2.9</td>
<td>(2 , \Omega) typ (V_{S} = 0 , \text{V}) to 10 V, (I_{S} = -10 , \text{mA}); see Figure 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
<td>(2.4 , \Omega \max) (V_{DD} = 10.8 , \text{V}, , V_{SS} = 0 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>On Resistance Flatness, (R_{FLAT (ON)})</td>
<td>0.6</td>
<td>0.68</td>
<td>0.8</td>
<td>(0.6 , \Omega) typ (V_{S} = 0 , \text{V}) to 10 V, (I_{S} = -10 , \text{mA})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
<td>(0.68 , \Omega \max) (V_{S} = 0 , \text{V}) to 10 V, (I_{S} = -10 , \text{mA})</td>
<td></td>
</tr>
<tr>
<td>LEAKAGE CURRENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Off Leakage, (I_{S}) (Off)</td>
<td>±0.05</td>
<td>±0.4</td>
<td>±150</td>
<td>nA typ</td>
<td>(V_{S} = 1 , \text{V/10 V}, , V_{D} = 10 , \text{V/1 V}); see Figure 21</td>
</tr>
<tr>
<td>Drain Off Leakage, (I_{D}) (Off)</td>
<td>±0.05</td>
<td>±0.4</td>
<td>±150</td>
<td>nA typ</td>
<td>(V_{S} = 1 , \text{V/10 V}, , V_{D} = 10 , \text{V/1 V}); see Figure 21</td>
</tr>
<tr>
<td>Channel On Leakage, (I_{S}, I_{D}) (On)</td>
<td>±0.2</td>
<td>±1</td>
<td>±150</td>
<td>nA typ</td>
<td>(V_{S} = V_{D} = 1 , \text{V or 10 V};) see Figure 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage, (V_{INH})</td>
<td>2.0</td>
<td>2</td>
<td>V min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage, (V_{INL})</td>
<td>0.8</td>
<td></td>
<td>V max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current, (I_{INL}) or (I_{INH})</td>
<td>0.002</td>
<td></td>
<td>(0.002 , \mu A) typ (V_{IN} = V_{GND}) or (V_{DD})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Input Capacitance, (C_{IN})</td>
<td>4</td>
<td></td>
<td>(4 , \mu F) typ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{ON})</td>
<td>180</td>
<td>235</td>
<td>295</td>
<td>335</td>
<td>ns typ</td>
</tr>
<tr>
<td>(t_{OFF})</td>
<td>140</td>
<td>185</td>
<td>215</td>
<td>260</td>
<td>ns typ</td>
</tr>
<tr>
<td>Charge Injection</td>
<td>57</td>
<td></td>
<td>pC typ</td>
<td>(V_{S} = 6 , \text{V}, , R_{S} = 0 , \Omega, , C_{L} = 1 , \mu F); see Figure 24</td>
<td></td>
</tr>
<tr>
<td>Off Isolation</td>
<td>−58</td>
<td></td>
<td>dB typ</td>
<td>(R_{L} = 50 , \Omega, , C_{L} = 5 , \mu F); see Figure 25</td>
<td></td>
</tr>
<tr>
<td>−3 dB Bandwidth</td>
<td>82</td>
<td></td>
<td>MHz typ</td>
<td>(R_{L} = 50 , \Omega, , C_{L} = 5 , \mu F); see Figure 26</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.15</td>
<td></td>
<td>dB typ</td>
<td>(f = 1 , \text{MHz}, , V_{S} = 6 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>(C_{S}) (Off)</td>
<td>61</td>
<td></td>
<td>(61 , \mu F) typ</td>
<td>(f = 1 , \text{MHz}, , V_{S} = 6 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>(C_{D}) (Off)</td>
<td>68</td>
<td></td>
<td>(68 , \mu F) typ</td>
<td>(f = 1 , \text{MHz}, , V_{S} = 6 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>(C_{D}, C_{S}) (On)</td>
<td>181</td>
<td></td>
<td>(181 , \mu F) typ</td>
<td>(f = 1 , \text{MHz}, , V_{S} = 6 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>0.001</td>
<td>1.0</td>
<td></td>
<td>(\mu A) typ</td>
<td></td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>60</td>
<td></td>
<td>(60 , \mu A) typ</td>
<td></td>
<td>(V_{DD} = 13.2 , \text{V})</td>
</tr>
<tr>
<td>(V_{DD})</td>
<td>5/16.5</td>
<td></td>
<td>(5/16.5 , \text{V min/max})</td>
<td></td>
<td>Ground = 0 V, (V_{SS} = 0 , \text{V})</td>
</tr>
</tbody>
</table>

1 Guaranteed by design, not subject to production test.
±5 V DUAL SUPPLY

$V_{DD} = +5 V ± 10\%$, $V_{SS} = −5 V ± 10\%$, GND = 0 V, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>25°C</th>
<th>−40°C to +85°C</th>
<th>−40°C to +125°C</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>$V_{S} = ±4.5 V, I_{S} = −10 mA$; see Figure 20</td>
</tr>
<tr>
<td>On Resistance, R_{ON}</td>
<td>2.3</td>
<td>2.7</td>
<td>3.3</td>
<td>3.7</td>
<td>$V_{DD} = +4.5 V, V_{SS} = −4.5 V$</td>
</tr>
<tr>
<td>On Resistance Flatness, $R_{FLAT(ON)}$</td>
<td>0.65</td>
<td>0.72</td>
<td>0.85</td>
<td>0.9</td>
<td>$V_{S} = ±4.5 V, I_{S} = −10 mA$</td>
</tr>
<tr>
<td>LEAKAGE CURRENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Off Leakage, $I_{S(Off)}$</td>
<td>±0.02</td>
<td>±0.4</td>
<td>±3</td>
<td>±150</td>
<td>$V_{DD} = +5.5 V, V_{SS} = −5.5 V$</td>
</tr>
<tr>
<td>Drain Off Leakage, $I_{D(Off)}$</td>
<td>±0.02</td>
<td>±0.4</td>
<td>±3</td>
<td>±150</td>
<td>$V_{S} = ±4.5 V, V_{D} = ±4.5 V$; see Figure 21</td>
</tr>
<tr>
<td>Channel On Leakage, $I_{O(On)}$</td>
<td>±0.1</td>
<td>±1</td>
<td>±3</td>
<td>±150</td>
<td>$V_{S} = V_{D} = ±4.5 V$; see Figure 22</td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage, V_{INH}</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>V min</td>
<td>$V_{IN} = V_{GND}$ or V_{DD}</td>
</tr>
<tr>
<td>Input Low Voltage, V_{INL}</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>V max</td>
<td>$V_{IN} = V_{GND}$ or V_{DD}</td>
</tr>
<tr>
<td>Input Current, I_{INL} or I_{INH}</td>
<td>0.002</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>$V_{IN} = V_{GND}$ or V_{DD}</td>
</tr>
<tr>
<td>Digital Input Capacitance, C_{IN}</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>pF typ</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{ON}</td>
<td>290</td>
<td>375</td>
<td>460</td>
<td>520</td>
<td>ns typ $R_{L} = 300 \Omega, C_{L} = 35 \text{pF}$</td>
</tr>
<tr>
<td>t_{OFF}</td>
<td>235</td>
<td>305</td>
<td>365</td>
<td>405</td>
<td>ns typ $V_{S} = 3 V$; see Figure 23</td>
</tr>
<tr>
<td>Charge Injection</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>pC typ $R_{L} = 0 \Omega, C_{I} = 1 \text{nF}$; see Figure 24</td>
</tr>
<tr>
<td>Off Isolation</td>
<td>−58</td>
<td>−58</td>
<td>−58</td>
<td>−58</td>
<td>dB typ $R_{L} = 50 \Omega, C_{I} = 5 \text{pF}$; $f = 1 \text{MHz}$; see Figure 25</td>
</tr>
<tr>
<td>Total Harmonic Distortion + Noise</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>% typ $R_{L} = 10 \text{k}\Omega, 5 \text{V p-p}$, $f = 20 \text{Hz}$ to 20 kHz; see Figure 27</td>
</tr>
<tr>
<td>~3 dB Bandwidth</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>MHz typ $R_{L} = 50 \Omega, C_{I} = 5 \text{pF}$; see Figure 26</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>dB typ $R_{L} = 50 \Omega, C_{I} = 5 \text{pF}$; $f = 1 \text{MHz}$; see Figure 26</td>
</tr>
<tr>
<td>$C_{I}(Off)$</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>pF typ $V_{S} = 0 V, f = 1 \text{MHz}$</td>
</tr>
<tr>
<td>$C_{D}(Off)$</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>pF typ $V_{S} = 0 V, f = 1 \text{MHz}$</td>
</tr>
<tr>
<td>$C_{D}, C_{I}(On)$</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>pF typ $V_{S} = 0 V, f = 1 \text{MHz}$</td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>0.001</td>
<td>0.001</td>
<td>1.0</td>
<td>1.0</td>
<td>μA typ Digital inputs = 0 V or V_{DD}</td>
</tr>
<tr>
<td>I_{SS}</td>
<td>0.001</td>
<td>0.001</td>
<td>1.0</td>
<td>1.0</td>
<td>μA typ Digital inputs = 0 V or V_{DD}</td>
</tr>
<tr>
<td>V_{DD}/V_{SS}</td>
<td>±4.5/±16.5</td>
<td>±4.5/±16.5</td>
<td>±4.5/±16.5</td>
<td>±4.5/±16.5</td>
<td>V min/max Ground = 0 V</td>
</tr>
</tbody>
</table>

1 Guaranteed by design, not subject to production test.
CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>25°C</th>
<th>85°C</th>
<th>125°C</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>±15 V Dual Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Lead MSOP (θJA = 206°C/W)</td>
<td>275</td>
<td>190</td>
<td>125</td>
<td>mA maximum</td>
<td>VDD = +13.5 V, VSS = −13.5 V</td>
</tr>
<tr>
<td>8-Lead LFCSP (θJA = 50.8°C/W)</td>
<td>430</td>
<td>275</td>
<td>160</td>
<td>mA maximum</td>
<td>VDD = +10.8 V, VSS = 0 V</td>
</tr>
<tr>
<td>+12 V Single Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Lead MSOP (θJA = 206°C/W)</td>
<td>255</td>
<td>180</td>
<td>120</td>
<td>mA maximum</td>
<td>VDD = +10.8 V, VSS = 0 V</td>
</tr>
<tr>
<td>8-Lead LFCSP (θJA = 50.8°C/W)</td>
<td>355</td>
<td>235</td>
<td>145</td>
<td>mA maximum</td>
<td>VDD = +4.5 V, VSS = −4.5 V</td>
</tr>
<tr>
<td>±5 V Dual Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Lead MSOP (θJA = 206°C/W)</td>
<td>250</td>
<td>175</td>
<td>120</td>
<td>mA maximum</td>
<td>VDD = +4.5 V, VSS = −4.5 V</td>
</tr>
<tr>
<td>8-Lead LFCSP (θJA = 50.8°C/W)</td>
<td>340</td>
<td>225</td>
<td>140</td>
<td>mA maximum</td>
<td>VDD = +4.5 V, VSS = −4.5 V</td>
</tr>
</tbody>
</table>

1 Guaranteed by design, not subject to production test.
ABSOLUTE MAXIMUM RATINGS

$T_A = 25^\circ C$, unless otherwise noted.

Table 5.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD} to V_{SS}</td>
<td>35 V</td>
</tr>
<tr>
<td>V_{DD} to GND</td>
<td>$-0.3\ \text{V to } +25\ \text{V}$</td>
</tr>
<tr>
<td>V_{SS} to GND</td>
<td>$+0.3\ \text{V to } -25\ \text{V}$</td>
</tr>
<tr>
<td>Analog Inputs1</td>
<td>$V_{SS} - 0.3\ \text{V to } V_{DD} + 0.3\ \text{V}$ or 30 mA, whichever occurs first</td>
</tr>
<tr>
<td>Digital Inputs1</td>
<td>GND $- 0.3\ \text{V to } V_{DD} + 0.3\ \text{V}$ or 30 mA, whichever occurs first</td>
</tr>
<tr>
<td>Peak Current, S or D</td>
<td>500 mA</td>
</tr>
<tr>
<td>(Pulsed at 1 ms, 10% Duty-Cycle Maximum)</td>
<td>700 mA</td>
</tr>
<tr>
<td>8-Lead MSOP (4-Layer Board)</td>
<td></td>
</tr>
<tr>
<td>8-Lead LFCSP</td>
<td></td>
</tr>
<tr>
<td>Continuous Current per Channel, S or D</td>
<td>Data in Table 4 $+ 15%$</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>$-40^\circ\ \text{C to } +125^\circ\ \text{C}$</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>$-65^\circ\ \text{C to } +150^\circ\ \text{C}$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$150^\circ\ \text{C}$</td>
</tr>
<tr>
<td>Reflow Soldering Peak Temperature, Pb Free</td>
<td>$260^\circ\ \text{C}$</td>
</tr>
</tbody>
</table>

1 Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 6. Thermal Resistance

<table>
<thead>
<tr>
<th>Package Type</th>
<th>θ_{JA}</th>
<th>θ_{JC}</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Lead MSOP (4-Layer Board)</td>
<td>206</td>
<td>44</td>
<td>°C/W</td>
</tr>
<tr>
<td>8-Lead LFCSP</td>
<td>50.8</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Table 7. ADG1401/ADG1402 Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>Source Terminal. This pin can be an input or output.</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>No Connect.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground (0 V) Reference.</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Most Positive Power Supply Potential.</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>No Connect.</td>
</tr>
<tr>
<td>6</td>
<td>IN</td>
<td>Logic Control Input.</td>
</tr>
<tr>
<td>7</td>
<td>VSS</td>
<td>Most Negative Power Supply Potential.</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>Drain Terminal. This pin can be an input or output.</td>
</tr>
<tr>
<td></td>
<td>EPAD</td>
<td>Exposed pad tied to substrate, VSS, for LFCSP package.</td>
</tr>
</tbody>
</table>

Table 8. ADG1401/ADG1402 Truth Table

<table>
<thead>
<tr>
<th>ADG1401 IN</th>
<th>ADG1402 IN</th>
<th>Switch Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>On</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Off</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 5. On Resistance as a Function of V_D (V_S) for Single Supply

Figure 6. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, ±15 V Dual Supply

Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, +12 V Single Supply

Figure 9. On Resistance as a Function of V_D (V_S) for Different Temperatures, ±5 V Dual Supply
Figure 10. Leakage Currents as a Function of Temperature, ±15 V Dual Supply

Figure 11. Leakage Currents as a Function of Temperature, +12 V Single Supply

Figure 12. Leakage Currents as a Function of Temperature, ±5 V Dual Supply

Figure 13. I_DQ vs. Logic Level

Figure 14. Charge Injection vs. Source Voltage

Figure 15. t_ON/t_OFF Times vs. Temperature
Figure 16. Off Isolation vs. Frequency

Figure 17. On Response vs. Frequency

Figure 18. THD + N vs. Frequency

Figure 19. ACPSRR vs. Frequency
ADG1401/ADG1402

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Off Leakage

Figure 22. On Leakage

Figure 23. Switching Times, \(t_{ON} \) and \(t_{OFF} \)

Figure 24. Charge Injection
Figure 25. Off Isolation

Figure 26. Bandwidth

Figure 27. THD + N
TERMINOLOGY

IDD
The positive supply current.

ISS
The negative supply current.

V_D (V_S)
The analog voltage on Terminal D and Terminal S.

RON
The ohmic resistance between Terminal D and Terminal S.

R_{FLAT (ON)}
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_s (Off)
The source leakage current with the switch off.

I_D (Off)
The drain leakage current with the switch off.

I_D, I_S (On)
The channel leakage current with the switch on.

V_{INL}
The maximum input voltage for Logic 0.

V_{INH}
The minimum input voltage for Logic 1.

I_{INL} (I_{INH})
The input current of the digital input.

C_s (Off)
The off switch source capacitance, measured with reference to ground.

C_D (Off)
The off switch drain capacitance, measured with reference to ground.

C_{Dy, C_s (On)}
The on switch capacitance, measured with reference to ground.

C_{IN}
The digital input capacitance.

t_{ON}
Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 23.

t_{OFF}
Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 23.

Charge Injection
A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 24.

Off Isolation
A measure of unwanted signal coupling through an off switch. See Figure 25.

Bandwidth
The frequency at which the output is attenuated by 3 dB. See Figure 26.

On Response
The frequency response of the on switch.

Insertion Loss
The loss due to the on resistance of the switch. See Figure 26.

THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 27.

AC Power Supply Rejection Ratio (ACPSRR)
ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 19.
OUTLINE DIMENSIONS

Figure 28. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

Figure 29. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
3 mm × 2 mm Body, Very Thin, Dual Lead (CP-8-4)
Dimensions shown in millimeters

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
<th>Branding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG1401BRMZ1</td>
<td>−40°C to +125°C</td>
<td>8-Lead Mini Small Outline Package [MSOP]</td>
<td>RM-8</td>
<td>S2T</td>
</tr>
<tr>
<td>ADG1401BRMZ-REEL71</td>
<td>−40°C to +125°C</td>
<td>8-Lead Mini Small Outline Package [MSOP]</td>
<td>RM-8</td>
<td>S2T</td>
</tr>
<tr>
<td>ADG1401BCPZ-REEL71</td>
<td>−40°C to +125°C</td>
<td>8-Lead Lead Frame Chip Scale Package [LFCSP_WD]</td>
<td>CP-8-4</td>
<td>2Y</td>
</tr>
<tr>
<td>ADG1402BRMZ1</td>
<td>−40°C to +125°C</td>
<td>8-Lead Mini Small Outline Package [MSOP]</td>
<td>RM-8</td>
<td>S2U</td>
</tr>
<tr>
<td>ADG1402BRMZ-REEL71</td>
<td>−40°C to +125°C</td>
<td>8-Lead Mini Small Outline Package [MSOP]</td>
<td>RM-8</td>
<td>S2U</td>
</tr>
<tr>
<td>ADG1402BCPZ-REEL71</td>
<td>−40°C to +125°C</td>
<td>8-Lead Lead Frame Chip Scale Package [LFCSP_WD]</td>
<td>CP-8-4</td>
<td>1F</td>
</tr>
</tbody>
</table>

1 Z = RoHS Compliant Part.