LTC6800
Rail-to-Rail, Input and Output, Instrumentation Amplifier

FEATURES
- 116dB CMRR Independent of Gain
- Maximum Offset Voltage: 100µV
- Maximum Offset Voltage Drift: 250nV/°C
- –40°C to 125°C Operation
- Rail-to-Rail Input Range
- Rail-to-Rail Output Swing
- Supply Operation: 2.7V to 5.5V
- Available in MS8 and 3mm × 3mm × 0.8mm DFN Packages

APPLICATIONS
- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition

DESCRIPTION
The LTC®6800 is a precision instrumentation amplifier. The CMRR is typically 116dB with a single 5V supply and is independent of gain. The input offset voltage is guaranteed below 100µV with a temperature drift of less than 250nV/°C. The LTC6800 is easy to use; the gain is adjustable with two external resistors, like a traditional op amp.

The LTC6800 uses charge balanced sampled data techniques to convert a differential input voltage into a single ended signal that is in turn amplified by a zero-drift operational amplifier.

The differential inputs operate from rail-to-rail and the single ended output swings from rail-to-rail. The LTC6800 is available in an MS8 surface mount package. For space limited applications, the LTC6800 is available in a 3mm × 3mm × 0.8mm dual fine pitch leadless package (DFN).

High Side Power Supply Current Sense

Typical Input Referred Offset vs Input Common Mode Voltage (V_S = 3V)
LTC6800

ABSOLUTE MAXIMUM RATINGS (Note 1)

<table>
<thead>
<tr>
<th>Total Supply Voltage ($V^+ \text{ to } V^-$)</th>
<th>5.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Current</td>
<td>±10mA</td>
</tr>
<tr>
<td>$</td>
<td>V^+{\text{IN}} - V{\text{REF}}</td>
</tr>
<tr>
<td>$</td>
<td>V^-{\text{IN}} - V{\text{REF}}</td>
</tr>
</tbody>
</table>

Output Short-Circuit Duration.................. Indefinite

Operating Temperature Range
(Note 7)... –40°C to 125°C

PIN CONFIGURATION

ORDER INFORMATION

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC6800HDD#PBF</td>
<td>LTC6800HDD#TRPBF</td>
<td>LAEP</td>
<td>8-Lead (3mm × 3mm) Plastic DFN</td>
<td>–40°C to 125°C</td>
</tr>
<tr>
<td>LTC6800HMS8#PBF</td>
<td>LTC6800HMS8#TRPBF</td>
<td>LTAD</td>
<td>8-Lead Plastic MSOP</td>
<td>–40°C to 125°C</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges.

Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V^+ = 5V$, $V^- = 0V$, REF = 200mV. Output voltage swing is referenced to V^-. All other specifications reference the OUT pin to the REF pin.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage (Note 2)</td>
<td>$V_{CM} = 200mV$</td>
<td></td>
<td>± 100</td>
<td>µV</td>
<td></td>
</tr>
<tr>
<td>Average Input Offset Drift (Note 2)</td>
<td>$T_A = -40^\circ C$ to $85^\circ C$</td>
<td>●</td>
<td>± 250</td>
<td>nV/°C</td>
<td></td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>$AV = 1$, $V_{CM} = 0V$ to $3V$</td>
<td>●</td>
<td>85</td>
<td>113</td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio (Note 6)</td>
<td>$V_S = 2.7V$ to 5.5V</td>
<td>●</td>
<td>110</td>
<td>116</td>
<td>dB</td>
</tr>
<tr>
<td>Gain Error</td>
<td>$AV = 1$</td>
<td></td>
<td>0.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Gain Nonlinearity</td>
<td>$AV = 1$</td>
<td></td>
<td>100</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Internal Op Amp Gain Bandwidth</td>
<td>No Load</td>
<td></td>
<td>200</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. V_{OS} is measured to a limit determined by test equipment capability.
Electrical Characteristics

Note 3: If the total source resistance is less than 10k, no DC errors result from the input bias currents or the mismatch of the input bias currents or the mismatch of the resistances connected to –IN and +IN.

Note 4: The CMRR with a voltage gain, A_V, larger than 10 is 120dB (typ).

Note 5: At temperatures above 70°C, the common mode rejection ratio lowers when the common mode input voltage is within 100mV of the supply rails.

Note 6: The power supply rejection ratio (PSRR) measurement accuracy depends on the proximity of the power supply bypass capacitor to the device under test. Because of this, the PSRR is 100% tested to relaxed limits at final test. However, their values are guaranteed by design to meet the data sheet limits.

Note 7: The LTC6800H is guaranteed functional over the operating temperature range of –40°C to 125°C. Specifications over the –40°C to 125°C range (denoted by ●) are assured by design and characterization but are not tested or QA sampled at these temperatures.

Typical Performance Characteristics

Input Offset Voltage vs Input Common Mode Voltage

V_S = 3V, V_REF = 0V, T_A = 25°C

G = 1000, G = 100, G = 10, G = 1

Input Offset Voltage vs Input Common Mode Voltage

V_S = 5V, V_REF = 0V, T_A = 25°C

G = 1000, G = 100, G = 10, G = 1

Input Offset Voltage vs Input Common Mode Voltage

V_S = 3V, V_REF = 0V, T_A = 70°C, T_A = 55°C

G = 10

Input Offset Voltage vs Input Common Mode Voltage

V_S = 5V, V_REF = 0V, T_A = 85°C, T_A = 125°C

G = 10

Input Offset Voltage vs Input Common Mode Voltage

V_S = 3V, V_REF = 0V, T_A = 85°C, T_A = 125°C

G = 10
TYPICAL PERFORMANCE CHARACTERISTICS

Additional Input Offset Due to Input R_S vs Input Common Mode ($C_{IN} < 100pF$)

Additional Input Offset Due to Input R_S vs Input Common Mode ($C_{IN} < 100pF$)

Additional Input Offset Due to Input R_S Mismatch vs Input Common Mode ($C_{IN} < 100pF$)

Additional Input Offset Due to Input R_S Mismatch vs Input Common Mode ($C_{IN} > 1pF$)

Additional Input Offset Due to Input R_S Mismatch vs Input Common Mode ($C_{IN} > 1pF$)

Additional Input Offset Due to Input R_S Mismatch vs Input Common Mode ($C_{IN} > 1pF$)

Offset Voltage vs Temperature
TYPICAL PERFORMANCE CHARACTERISTICS

V\\text{OS} vs V\\text{REF}

- **V\\text{IN\\text{H}} = V\\text{IN\\text{L}} = V\\text{REF}**
- **G = 10**
- **T\\text{A} = 25°C**
- **V\\text{S} = 3V**
- **V\\text{S} = 5V**

Gain Nonlinearity, G = 1

- **V\\text{S} = \pm 2.5V**
- **V\\text{REF} = 0V**
- **G = 1**
- **R\\text{L} = 10k**
- **T\\text{A} = 25°C**

Gain Nonlinearity, G = 10

- **V\\text{S} = \pm 2.5V**
- **V\\text{REF} = 0V**
- **G = 10**
- **R\\text{L} = 10k**
- **T\\text{A} = 25°C**

CMRR vs Frequency

- **V\\text{S} = 3V, 5V**
- **V\\text{IN} = 1Vp-p**
- **T\\text{A} = 25°C**
- **R\\text{+} = R\\text{–} = 1k**
- **R\\text{+} = R\\text{–} = 10k**

Input Voltage Noise Density vs Frequency

- **G = 10**
- **T\\text{A} = 25°C**
- **V\\text{S} = 5V**
- **V\\text{S} = 3V**

Input Referred Noise in 10Hz Bandwidth

- **V\\text{S} = 5V**
- **T\\text{A} = 25°C**

Output Voltage Swing vs Output Current

- **T\\text{A} = 25°C**
- **V\\text{S} = 5V, SOURCING**
- **V\\text{S} = 5V, SINKING**

Supply Current vs Supply Voltage

- **T\\text{A} = 85°C**
- **T\\text{A} = 125°C**
- **T\\text{A} = –55°C**
- **T\\text{A} = 0°C**
TYPICAL PERFORMANCE CHARACTERISTICS

Low Gain Settling Time vs Settling Accuracy

Settling Time vs Gain

Internal Clock Frequency vs Supply Voltage

PIN FUNCTIONS

NC (Pin 1): Not Connected.
–IN (Pin 2): Inverting Input.
+IN (Pin 3): Noninverting Input.
V− (Pin 4): Negative Supply.
REF (Pin 5): Voltage Reference (VREF) for Amplifier Output.

RG (Pin 6): Inverting Input of Internal Op Amp. See Figure 1.
OUT (Pin 7): Amplifier Output. See Figure 1.
V+ (Pin 8): Positive Supply.
LTC6800

Block Diagram

The LTC6800 uses an internal capacitor (C_S) to sample a differential input signal riding on a DC common mode voltage (see the Block Diagram). This capacitor's charge is transferred to a second internal hold capacitor (C_H) translating the common mode of the input differential signal to that of the REF pin. The resulting signal is amplified by a zero-drift op amp in the noninverting configuration. The RG pin is the negative input of this op amp and allows external programmability of the DC gain. Simple filtering can be realized by using an external capacitor across the feedback resistor.

Input Voltage Range

The input common mode voltage range of the LTC6800 is rail-to-rail. However, the following equation limits the size of the differential input voltage:

$$V^- \leq (V_{+\text{IN}} - V_{-\text{IN}}) + V_{\text{REF}} \leq V^+ - 1.3$$

Where $V_{+\text{IN}}$ and $V_{-\text{IN}}$ are the voltages of the $+\text{IN}$ and $-\text{IN}$ pins, respectively, V_{REF} is the voltage at the REF pin and V^+ is the positive supply voltage.

For example, with a 3V single supply and a 0V to 100mV differential input voltage, V_{REF} must be between 0V and 1.6V.

Settling Time

The sampling rate is 3kHz and the input sampling period during which C_S is charged to the input differential voltage V_{IN} is approximately 150µs. First assume that on each input sampling period, C_S is charged fully to V_{IN}. Since $C_S = C_H (= 1000pF)$, a change in the input will settle to N bits of accuracy at the op amp noninverting input after N clock cycles or $333\mu s(N)$. The settling time at the OUT pin is also affected by the settling of the internal op amp. Since the gain bandwidth of the internal op amp is typically 200kHz, the settling time is dominated by the switched capacitor front end for gains below 100 (see the Typical Performance Characteristics section).
Input Current

Whenever the differential input V_{IN} changes, C_H must be charged up to the new input voltage via C_S. This results in an input charging current during each input sampling period. Eventually, C_H and C_S will reach V_{IN} and, ideally, the input current would go to zero for DC inputs.

In reality, there are additional parasitic capacitors which disturb the charge on C_S every cycle even if V_{IN} is a DC voltage. For example, the parasitic bottom plate capacitor on C_S must be charged from the voltage on the REF pin to the voltage on the –IN pin every cycle. The resulting input charging current decays exponentially during each input sampling period with a time constant equal to $R_S C_S$. If the voltage disturbance due to these currents settles before the end of the sampling period, there will be no errors due to source resistance or the source resistance mismatch between –IN and +IN. With R_S less than 10k, no DC errors occur due to this input current.

In the Typical Performance Characteristics section of this data sheet, there are curves showing the additional error from nonzero source resistance in the inputs. If there are no large capacitors across the inputs, the amplifier is less sensitive to source resistance and source resistance mismatch. When large capacitors are placed across the inputs, the input charging currents previously described result in larger DC errors, especially with source resistor mismatches.

Power Supply Bypassing

The LTC6800 uses a sampled data technique and, therefore, contains some clocked digital circuitry. It is, therefore, sensitive to supply bypassing. A 0.1µF ceramic capacitor must be connected between Pin 8 (V^+) and Pin 4 (V^-) with leads as short as possible.
TYPICAL APPLICATIONS

Precision ÷2

Precision Doubler (General Purpose)

Precision Inversion (General Purpose)
NOTE:
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE
PACKAGE DESCRIPTION

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG # 05-08-1660 Rev F)

RECOMMENDED SOLDER PAD LAYOUT

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

NOTE:
- 5.23 (.206) MIN
- 0.42 ± 0.038 (.0165 ± .0015) TYP
- 0.18 (.007)
- 0.0508 (.002) BSC

DETAIL "A"
- 0.254 (.010)
- 0.53 ± 0.152 (.021 ± .006)
- 300 ± 0.102 (.118 ± .004) (NOTE 3)

DETAIL "A"
- 0.22 – 0.38 (.009 – .015) TYP
- 0.65 (.0256) BSC
- 0.86 (.034) REF

GAUGE PLANE
- 0.889 ± 0.127 (.035 ± .005)
- 3.20 – 3.45 (.126 – .136)

SEATING PLANE
- 8 – 7 – 6 – 5
- 4.90 ± 0.152 (.193 ± .006) (NOTE 4)
- 0.86 ± 0.0508 (.034 ± .002) MSOP (MS8) 05-08 REV F

8-Lead Plastic MSOP

Gauge Plane

Seating Plane
REVISION HISTORY
(Revision history begins at Rev B)

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7/10</td>
<td>Corrected text in the Absolute Maximum Ratings section</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Pin 6 and Pin 7 text in the Pin Functions section</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replaced Figure 1</td>
<td>9</td>
</tr>
</tbody>
</table>

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
LTC6800

Typical Application

![Differential Bridge Amplifier Diagram](image)

Related Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1100</td>
<td>Precision Zero-Drift Instrumentation Amplifier</td>
<td>Fixed Gains of 10 or 100, 10µV Offset, 50pA Input Bias Current</td>
</tr>
<tr>
<td>LT®1101</td>
<td>Precision, Micropower, Single Supply Instrumentation Amplifier</td>
<td>Fixed Gains of 10 or 100, IS < 105µA</td>
</tr>
<tr>
<td>LT1167</td>
<td>Single Resistor, Gain-Programmable, Precision Instrumentation Amplifier</td>
<td>Single-Gain Set Resistor: G = 1 to 10,000, Low Noise: 7.5nV/√Hz</td>
</tr>
<tr>
<td>LT1168</td>
<td>Low Power, Single Resistor, Gain-Programmable, Precision Instrumentation Amplifier</td>
<td>ISUPPLY = 530µA</td>
</tr>
<tr>
<td>LTC1043</td>
<td>Dual Precision Instrumentation Switched-Capacitor Building Block</td>
<td>Rail-to-Rail Input, 120dB CMRR</td>
</tr>
<tr>
<td>LT1789-1</td>
<td>Single Supply, Rail-to-Rail Output, Micropower Instrumentation Amplifier</td>
<td>ISUPPLY = 80µA Maximum</td>
</tr>
<tr>
<td>LTC2050</td>
<td>Zero-Drift Operational Amplifier</td>
<td>SOT-23 Package, 3µV Max VOS, 30nV/°C Max Drift</td>
</tr>
<tr>
<td>LTC2051</td>
<td>Dual Zero-Drift Operational Amplifier</td>
<td>MS8 Package, 3µV Max VOS, 30nV/°C Max Drift</td>
</tr>
<tr>
<td>LTC2052</td>
<td>Quad Zero-Drift Operational Amplifier</td>
<td>GN-16 Package, 3µV Max VOS, 30nV/°C Max Drift</td>
</tr>
<tr>
<td>LTC2053</td>
<td>Single Supply, Zero-Drift, Rail-to-Rail Input and Output Instrumentation Amplifier</td>
<td>MS8 Package, 10µV Max VOS, 50nV/°C Max Drift</td>
</tr>
</tbody>
</table>