FEATURES

- Complete Switch Mode Power Supply
- Wide Input Voltage Range: 4.5V to 20V
- 10A DC, 14A Peak Output Current
- Parallel Two µModule® DC/DC Converters for 20A Output Current
- 0.6V to 5V Output Voltage
- 1.5% Output Voltage Regulation
- Ultrafast Transient Response
- Current Mode Control
- RoHS Compliant Package
- Up to 92% Efficiency
- Programmable Soft-Start
- Output Overvoltage Protection
- Optional Short-Circuit Shutdown Timer
- Small Footprint, Low Profile (15mm × 15mm × 2.82mm) Surface Mount LGA Package

DESCRIPTION

The LTM®4600 is a complete 10A, DC/DC step down power supply. Included in the package are the switching controller, power FETs, inductor, and all support components. Operating over an input voltage range of 4.5V to 20V, the LTM4600 supports an output voltage range of 0.6V to 5V, set by a single resistor. This high efficiency design delivers 10A continuous current (14A peak), needing no heat sinks or airflow to meet power specifications. Only bulk input and output capacitors are needed to finish the design.

The low profile package (2.82mm) enables utilization of unused space on the bottom of PC boards for high density point of load regulation. High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. Fault protection features include integrated overvoltage and short circuit protection with a defeatable shutdown timer. A built-in soft-start timer is adjustable with a small capacitor.

The LTM4600 is packaged in a compact (15mm × 15mm) and low profile (2.82mm) over-molded Land Grid Array (LGA) package suitable for automated assembly by standard surface mount equipment. The LTM4600 is RoHS compliant.

APPLICATIONS

- Telecom and Networking Equipment
- Servers
- Industrial Equipment
- Point of Load Regulation

TYPICAL APPLICATION

10A µModule Power Supply with 4.5V to 20V Input

![Efficiency vs Load Current with 12VIN (FCB = 0)](image)

For more information www.linear.com/LTM4600
LTM4600

ABSOLUTE MAXIMUM RATINGS

(Note 1)

FCB, EXTVCC, PGOOD, RUN/SS, VOUT –0.3V to 6V
VIN, SVIN, fADJ .. –0.3V to 20V
VSET, COMP .. –0.3V to 2.7V

Operating Temperature Range (Note 2) ... –40°C to 85°C
Junction Temperature 125°C
Storage Temperature Range –55°C to 125°C
Peak Solder Reflow Body Temperature 245°C

ORDER INFORMATION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PAD OR BALL FINISH</th>
<th>PART MARKING*</th>
<th>PACKAGE TYPE</th>
<th>MSL RATING</th>
<th>TEMPERATURE RANGE (SEE NOTE 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTM4600EV#PBF</td>
<td>Au (RoHS)</td>
<td>LTM4600EV</td>
<td>e4</td>
<td>LGA</td>
<td>–40°C to 85°C</td>
</tr>
<tr>
<td>LTM4600IV#PBF</td>
<td></td>
<td>LTM4600IV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Consult Marketing for parts specified with wider operating temperature ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.
- Terminal Finish Part Marking: www.linear.com/leadfree

PIN CONFIGURATION

[Diagram of pin configuration]

- Recommended LGA and BGA PCB Assembly and Manufacturing Procedures: www.linear.com/umodule/pcbassembly
- LGA and BGA Package and Tray Drawings: www.linear.com/packaging
Electrical Characteristics

The ● denotes the specifications which apply over the –40°C to 85°C temperature range, otherwise specifications are at $T_A = 25°C$, $V_{IN} = 12V$. Per typical application (front page) configuration.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IN(DC)}$</td>
<td>Input DC Voltage</td>
<td>●</td>
<td>4.5</td>
<td>20</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
| $V_{OUT(DC)}$ | Output Voltage | $FCB = 0V$
$V_{IN} = 5V$ or $12V$, $V_{OUT} = 1.5V$, $I_{OUT} = 0A$ | 1.478 | 1.50 | 1.522 | V |
| | | ● | 1.470 | 1.50 | 1.530 | V |

Input Specifications

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IN(UVLO)}$</td>
<td>Under Voltage Lockout Threshold</td>
<td>$I_{OUT} = 0A$</td>
<td>3.4</td>
<td>4</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
| $I_{INRUSH(VIN)}$ | Input Inrush Current at Startup | $I_{OUT} = 0A$, $V_{OUT} = 1.5V$, $FCB = 0$
$V_{IN} = 5V$
$V_{IN} = 12V$ | 0.6 | A |
| $I_{Q(VIN)}$ | Input Supply Bias Current | $I_{OUT} = 0A$, $EXTV_{CC}$ Open
$V_{IN} = 12V$, $V_{OUT} = 1.5V$, $FCB = 5V$
$V_{IN} = 12V$, $V_{OUT} = 1.5V$, $FCB = 0V$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$, $FCB = 5V$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$, $FCB = 0V$
Shutdown, $RUN = 0.8V$, $V_{IN} = 12V$ | 1.2 | mA |
| | | ● | 1.0 | 52 | mA |
| $I_{S(VIN)}$ | Input Supply Current | $V_{IN} = 12V$, $V_{OUT} = 1.5V$, $I_{OUT} = 10A$
$V_{IN} = 12V$, $V_{OUT} = 3.3V$, $I_{OUT} = 10A$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$, $I_{OUT} = 10A$ | 1.52 | A |

Output Specifications

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
</table>
| I_{OUTC} | Output Continuous Current Range
(See Output Current Derating Curves for Different V_{IN}, V_{OUT} and T_A) | $V_{IN} = 12V$, $V_{OUT} = 1.5V$ | 0 | 10 | A |
| $\Delta V_{OUT(LINE)}$ | Line Regulation Accuracy | $V_{OUT} = 1.5V$, $I_{OUT} = 0A$, $FCB = 0V$, $V_{IN} = 4.5V$ to 20V | ● | 0.15 | 0.3 | % |
| $\Delta V_{OUT(LOAD)}$ | Load Regulation Accuracy | $V_{OUT} = 1.5V$, $I_{OUT} = 0A$ to $10A$, $FCB = 0V$
$V_{IN} = 5V$
$V_{IN} = 12V$ (Notes 3, 4) | ±1 | % |
| ΔV_{OUTLS} | Voltage Drop for Dynamic Load Step | $V_{OUT} = 1.5V$, Load Step: 0A/µs to 5A/µs
$C_{OUT} = 3\times22µF$
$6.3V, 470µF$
POSCAP, See Table 2 | 36 | mV |
| I_{SETTLE} | Settling Time for Dynamic Load Step | Load: 10% to 90% to 10% of Full Load | 25 | µs |
| I_{OUTPK} | Output Current Limit | Output Voltage in Foldback
$V_{IN} = 12V$, $V_{OUT} = 1.5V$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$ | 14 | A |

Control Stage

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OSET}</td>
<td>Voltage at V_{OSET} Pin</td>
<td>$I_{OUT} = 0A$, $V_{OUT} = 1.5V$</td>
<td>●</td>
<td>0.591</td>
<td>0.6</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>●</td>
<td>0.594</td>
<td>0.6</td>
<td>0.606</td>
<td>V</td>
</tr>
<tr>
<td>$V_{RUN/SS}$</td>
<td>RUN ON/OFF Threshold</td>
<td></td>
<td>0.8</td>
<td>1.5</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>$I_{RUN(C)/SS}$</td>
<td>Soft-Start Charging Current</td>
<td>$V_{RUN/SS} = 0V$</td>
<td>–0.5</td>
<td>–1.2</td>
<td>–3</td>
<td>µA</td>
</tr>
<tr>
<td>$I_{RUN(D)/SS}$</td>
<td>Soft-Start Discharging Current</td>
<td>$V_{RUN/SS} = 4V$</td>
<td>0.8</td>
<td>1.8</td>
<td>3</td>
<td>µA</td>
</tr>
<tr>
<td>$V_{IN} – SV_{IN}$</td>
<td>$EXTV_{CC} = 0V$, $FCB = 0V$</td>
<td>100</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information www.linear.com/LTM4600
The ● denotes the specifications which apply over the –40°C to 85°C temperature range, otherwise specifications are at $T_A = 25°C$, $V_{IN} = 12V$. Per typical application (front page) configuration.

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\text{EXT\text{CC}}</td>
<td>Current into \text{EXT\text{CC}} Pin</td>
<td>$\text{EXT\text{CC}} = 5V$, $\text{FCB} = 0V$, $\text{VOUT} = 1.5V$, $I_{\text{OUT}} = 0A$</td>
<td>16</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R\text{FBHI}</td>
<td>Resistor Between \text{VOUT} and \text{VOSET} Pins</td>
<td></td>
<td>100</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{FCB}</td>
<td>Forced Continuous Threshold</td>
<td>0.57</td>
<td>0.6</td>
<td>0.63</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I\text{FCB}</td>
<td>Forced Continuous Pin Current</td>
<td>$V_{\text{FCB}} = 0.6V$</td>
<td>-1</td>
<td>-2</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

PGOOD Output

$\Delta V\text{OSETH}$	PGOOD Upper Threshold	V_{OSET} Rising	7.5	10	12.5	%
$\Delta V\text{OSETL}$	PGOOD Lower Threshold	V_{OSET} Falling	-7.5	-10	-12.5	%
$\Delta V\text{OSET(HYS)}$	PGOOD Hysteresis	V_{OSET} Returning	2	%		
V_{PGLO}	PGOOD Low Voltage	$I_{\text{PGLO}} = 5mA$	0.15	0.4	V	

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTM4600E is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4600I is guaranteed over the –40°C to 85°C temperature range.

Note 3: Test assumes current derating versus temperature.

Note 4: Guaranteed by correlation.
TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs Load Current with 5V_{IN} (FCB = 0)

Efficiency vs Load Current with 12V_{IN} (FCB = 0)

Efficiency vs Load Current with 18V_{IN} (FCB = 0)

Efficiency vs Load Current with Different FCB Settings

1.2V Transient Response

1.5V Transient Response

1.8V Transient Response

2.5V Transient Response

3.3V Transient Response

For more information www.linear.com/LTM4600
TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 18 for all curves)

Start-Up, I_{OUT} = 0A

![Graph showing V_{OUT} vs. V_{IN} for Start-Up, I_{OUT} = 0A (Resistive Load)]

V_{IN} = 12V
V_{OUT} = 1.5V
C_{OUT} = 200\mu F
NO EXTERNAL SOFT-START CAPACITOR

Start-Up, I_{OUT} = 10A

![Graph showing V_{OUT} vs. V_{IN} for Start-Up, I_{OUT} = 10A (Resistive Load)]

V_{IN} = 12V
V_{OUT} = 1.5V
C_{OUT} = 200\mu F
NO EXTERNAL SOFT-START CAPACITOR

Short-Circuit Protection, I_{OUT} = 0A

![Graph showing V_{OUT} vs. I_{IN} for Short-Circuit Protection, I_{OUT} = 0A]

V_{IN} = 12V
V_{OUT} = 1.5V
C_{OUT} = 200\mu F
NO EXTERNAL SOFT-START CAPACITOR

Short-Circuit Protection, I_{OUT} = 10A

![Graph showing V_{OUT} vs. I_{IN} for Short-Circuit Protection, I_{OUT} = 10A]

V_{IN} = 12V
V_{OUT} = 1.5V
C_{OUT} = 2x 200\mu F/X5R
NO EXTERNAL SOFT-START CAPACITOR

V_{IN} to V_{OUT} Step-Down Ratio

![Graph showing V_{OUT} vs. V_{IN} for V_{IN} to V_{OUT} Step-Down Ratio]

V_{IN} (V)

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

V_{OUT} (V)

5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0.0

LOAD REGULATION %

0.00
0.05
0.10
0.15
0.20
0.25
0.30

LOAD CURRENT

0
5
10

SEE FREQUENCY ADJUSTMENT DISCUSSION FOR $12V_{IN}$ TO $5V_{OUT}$ AND $5V_{IN}$ TO $3.3V_{OUT}$ CONVERSION

12V Input Load Regulation vs Temperature

![Graph showing Load Regulation vs. Temperature for 12V Input Load Regulation]
PIN FUNCTIONS *(See Package Description for Pin Assignment)*

VIN (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between VIN pins and PGND pins.

fADJ (Pin A15): A 110k resistor from VIN to this pin sets the one-shot timer current, thereby setting the switching frequency. The LTM4600 switching frequency is typically 850kHz. An external resistor to ground can be selected to reduce the one-shot timer current, thus lower the switching frequency to accommodate a higher duty cycle step down requirement. See the applications section.

SVIN (Pin A17): Supply Pin for Internal PWM Controller. Leave this pin open or add additional decoupling capacitance.

EXTVCC (Pin A19): External 5V supply pin for controller. If left open or grounded, the internal 5V linear regulator will power the controller and MOSFET drivers. For high input voltage applications, connecting this pin to an external 5V will reduce the power loss in the power module. The EXTVCC voltage should never be higher than VIN.

VOSET (Pin A21): The Negative Input of The Error Amplifier. Internally, this pin is connected to VOUT with a 100k precision resistor. Different output voltages can be programmed with additional resistors between the VOSET and SGND pins.

COMP (Pin B23): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.8V corresponding to zero sense voltage (zero current).

SGND (Pin D23): Signal Ground Pin. All small-signal components should connect to this ground, which in turn connects to PGND at one point.

RUN/SS (Pin F23): Run and Soft-Start Control. Forcing this pin below 0.8V will shut down the power supply. Inside the power module, there is a 1000pF capacitor which provides approximately 0.7ms soft-start time with 200µF output capacitance. Additional soft-start time can be achieved by adding additional capacitance between the RUN/SS and SGND pins. The internal short-circuit latchoff can be disabled by adding a resistor between this pin and the VIN pin. This pull-up resistor must supply a minimum 5µA pull up current. The RUN/SS pin has an internal 6V Zener to ground.

FCB (Pin G23): Forced Continuous Input. Grounding this pin enables forced continuous mode operation regardless of load conditions. Tying this pin above 0.63V enables discontinuous conduction mode to achieve high efficiency operation at light loads. There is an internal 4.75K resistor between the FCB and SGND pins.

PGOOD (Pin J23): Output Voltage Power Good Indicator. When the output voltage is within 10% of the nominal voltage, the PGOOD is open drain output. Otherwise, this pin is pulled to ground.

PGND (Bank 2): Power ground pins for both input and output returns.

VOUT (Bank 3): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing High Frequency output decoupling capacitance directly between these pins and PGND pins.
Simplified Block Diagram

Figure 1. Simplified LTM4600 Block Diagram

Decoupling Requirements $T_A = 25^\circ C$, $V_{IN} = 12V$. Use Figure 1 configuration.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>External Input Capacitor Requirement ($V_{IN} = 4.5V$ to $20V$, $V_{OUT} = 1.5V$)</td>
<td>$I_{OUT} = 10A$</td>
<td>20</td>
<td></td>
<td></td>
<td>μF</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>External Output Capacitor Requirement ($V_{IN} = 4.5V$ to $20V$, $V_{OUT} = 1.5V$)</td>
<td>$I_{OUT} = 10A$, Refer to Table 2 in the Applications Information Section</td>
<td>100</td>
<td>200</td>
<td></td>
<td>μF</td>
</tr>
</tbody>
</table>
µModule Description

The LTM4600 is a standalone non-isolated synchronous switching DC/DC power supply. It can deliver up to 10A of DC output current with only bulk external input and output capacitors. This module provides a precisely regulated output voltage programmable via one external resistor from 0.6VDC to 5.0VDC, not to exceed 80% of the input voltage. The input voltage range is 4.5V to 20V. A simplified block diagram is shown in Figure 1 and the typical application schematic is shown in Figure 18.

The LTM4600 contains an integrated LTC constant on-time current-mode regulator, ultra-low RDS(ON) FETs with fast switching speed and integrated Schottky diode. The typical switching frequency is 850kHz at full load. With current mode control and internal feedback loop compensation, the LTM4600 module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors (X5R or X7R).

Current mode control provides cycle-by-cycle fast current limit. In addition, foldback current limiting is provided in an over-current condition while VOSET drops. Also, the LTM4600 has defeatable short circuit latch off. Internal overvoltage and undervoltage comparators pull the open-drain PGOOD output low if the output feedback voltage exits a ±10% window around the regulation point. Furthermore, in an overvoltage condition, internal top FET Q1 is turned off and bottom FET Q2 is turned on and held on until the overvoltage condition clears.

Pulling the RUN/SS pin low forces the controller into its shutdown state, turning off both Q1 and Q2. Releasing the pin allows an internal 1.2µA current source to charge up the soft-start capacitor. When this voltage reaches 1.5V, the controller turns on and begins switching.

At low load current the module works in continuous current mode by default to achieve minimum output voltage ripple. It can be programmed to operate in discontinuous current mode for improved light load efficiency when the FCB pin is pulled up above 0.8V and no higher than 6V. The FCB pin has a 4.75k resistor to ground, so a resistor to VIN can set the voltage on the FCB pin.

When EXTVCC pin is grounded or open, an integrated 5V linear regulator powers the controller and MOSFET gate drivers. If a minimum 4.7V external bias supply is applied on the EXTVCC pin, the internal regulator is turned off, and an internal switch connects EXTVCC to the gate driver voltage. This eliminates the linear regulator power loss with high input voltage, reducing the thermal stress on the controller. The maximum voltage on EXTVCC pin is 6V. The EXTVCC voltage should never be higher than the VIN voltage. Also EXTVCC must be sequenced after VIN.
The typical LTM4600 application circuit is shown in Figure 18. External component selection is primarily determined by the maximum load current and output voltage.

Output Voltage Programming and Margining

The PWM controller of the LTM4600 has an internal 0.6V±1% reference voltage. As shown in the block diagram, a 100k/0.5% internal feedback resistor connects VOUT and VOSET pins. Adding a resistor RSET from VOSET pin to SGND pin programs the output voltage:

\[
V_O = 0.6V \cdot \frac{100k + R_{SET}}{R_{SET}}
\]

Table 1 shows the standard values of 1% RSET resistor for typical output voltages:

<table>
<thead>
<tr>
<th>RSET (kΩ)</th>
<th>Open</th>
<th>100</th>
<th>66.5</th>
<th>49.9</th>
<th>43.2</th>
<th>31.6</th>
<th>22.1</th>
<th>13.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_O (V)</td>
<td>0.6</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2</td>
<td>2.5</td>
<td>3.3</td>
<td>5</td>
</tr>
</tbody>
</table>

Voltage margining is the dynamic adjustment of the output voltage to its worst case operating range in production testing to stress the load circuitry, verify control/protection functionality of the board and improve the system reliability. Figure 2 shows how to implement margining function with the LTM4600. In addition to the feedback resistor RSET, several external components are added. Turn off both transistor QUP and QDOWN to disable the margining. When QUP is on and QDOWN is off, the output voltage is margin up. The output voltage is margin down when QDOWN is on and QUP is off. If the output voltage V_O needs to be margin up/down by ±M%, the resistor values of R_UP and R_DOWN can be calculated from the following equations:

\[
\frac{(R_{SET}\|R_{UP}) \cdot V_O \cdot (1+M\%) }{(R_{SET}\|R_{UP}) + 100kΩ} = 0.6V
\]

\[
\frac{R_{SET} \cdot V_O \cdot (1-M\%)}{R_{SET} + (100kΩ\|R_{DOWN})} = 0.6V
\]

Input Capacitors

The LTM4600 µModule should be connected to a low ac-impedance DC source. High frequency, low ESR input capacitors are required to be placed adjacent to the module. In Figure 18, the bulk input capacitor CIN is selected for its ability to handle the large RMS current into the converter. For a buck converter, the switching duty-cycle can be estimated as:

\[
D = \frac{V_O}{V_IN}
\]

Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as:

\[
I_{CIN(RMS)} = \frac{I_{O(MAX)}}{\eta\%} \cdot \sqrt{D \cdot (1-D)}
\]

In the above equation, \(\eta\%\) is the estimated efficiency of the power module. C1 can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitors. Note the capacitor ripple current ratings are often based on only 2000 hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements.

In Figure 18, the input capacitors are used as high frequency input decoupling capacitors. In a typical 10A output application, 1-2 pieces of very low ESR X5R or X7R, 10µF ceramic capacitors are recommended. This
decoupling capacitor should be placed directly adjacent the module input pins in the PCB layout to minimize the trace inductance and high frequency AC noise.

Output Capacitors
The LTM4600 is designed for low output voltage ripple. The bulk output capacitors C_{OUT} is chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. C_{OUT} can be low ESR tantalum capacitor, low ESR polymer capacitor or ceramic capacitor (X5R or X7R). The typical capacitance is 200µF if all ceramic output capacitors are used. The internally optimized loop compensation provides sufficient stability margin for all ceramic capacitors applications. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Refer to Table 2 for an output capacitance matrix for each output voltage Droop, peak to peak deviation and recovery time during a 5A/µs transient with a specific output capacitance.

Fault Conditions: Current Limit and Over current Foldback
The LTM4600 has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady state operation, but also in transient.

To further limit current in the event of an over load condition, the LTM4600 provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value.

V_{IN} to V_{OUT} Step-Down Ratios
There are restrictions in the maximum V_{IN} to V_{OUT} step down ratio that can be achieved for a given input voltage. These constraints are shown in V_{IN} to V_{OUT} Step-Down Ratio in the the Typical Performance Characteristics section. Note that additional thermal derating may apply. See the Thermal Considerations and Output Current Derating sections of this data sheet.

Soft-Start and Latchoff with the RUN/SS pin
The RUN/SS pin provides a means to shut down the LTM4600 as well as a timer for soft-start and over-current latchoff. Pulling the RUN/SS pin below 0.8V puts the LTM4600 into a low quiescent current shutdown ($I_Q \leq 75\mu A$). Releasing the pin allows an internal 1.2µA current source to charge up the timing capacitor CSS. Inside LTM4600, there is an internal 1000pF capacitor from RUN/SS pin to ground. If RUN/SS pin has an external capacitor CSS_EXT to ground, the delay before starting is about:

$$t_{\text{DELAY}} = \frac{1.5V}{1.2\mu A} \cdot (\text{CSS}_\text{EXT} + 1000pF)$$

When the voltage on RUN/SS pin reaches 1.5V, the LTM4600 internal switches are operating with a clamping of the maximum output inductor current limited by the RUN/SS pin total soft-start capacitance. As the RUN/SS pin voltage rises to 3V, the soft-start clamping of the inductor current is released.

After the controller has been started and given adequate time to charge up the output capacitor, C_{SS} is used as a short-circuit timer. After the RUN/SS pin charges above 4V, if the output voltage falls below 75% of its regulated value, then a short-circuit fault is assumed. A 1.8µA current then begins discharging C_{SS}. If the fault condition persists until the RUN/SS pin drops to 3.5V, then the controller turns off both power MOSFETs, shutting down the converter permanently. The RUN/SS pin must be actively pulled down to ground in order to restart operation.

The over-current protection timer requires the soft-start timing capacitor C_{SS} be made large enough to guarantee that the output is in regulation by the time C_{SS} has reached the 4V threshold. In general, this will depend upon the size of the output capacitance, output voltage and load current characteristic. A minimum external soft-start capacitor can be estimated from:

$$C_{\text{SS}_\text{EXT}} + 1000pF > \frac{C_{\text{OUT}} \cdot V_{\text{OUT}}}{10kV}$$

Generally 0.1µF is more than sufficient.

For more information www.linear.com/LTM4600
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18)

<table>
<thead>
<tr>
<th>VOUT (V)</th>
<th>CiN (CERAMIC)</th>
<th>CiN (BULK)</th>
<th>COUT1 VENDORS</th>
<th>COUT2 VENDORS</th>
<th>CCOMP</th>
<th>VIN (V)</th>
<th>DROOP (mV)</th>
<th>PEAK TO PEAK (mV)</th>
<th>RECOVERY TIME (µs)</th>
<th>LOAD STEP (A/µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>2 × 10µF 25V</td>
<td>150µF 35V</td>
<td>SANYO POSCAP</td>
<td>TDK</td>
<td>760F</td>
<td>330F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
</tr>
<tr>
<td>1.2</td>
<td>2 × 10µF 25V</td>
<td>150µF 35V</td>
<td>SANYO POSCAP</td>
<td>TAIYO YUDEN</td>
<td>760F</td>
<td>330F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
</tr>
<tr>
<td>1.2</td>
<td>2 × 10µF 25V</td>
<td>150µF 35V</td>
<td>SANYO POSCAP</td>
<td>TAIYO YUDEN</td>
<td>760F</td>
<td>330F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
</tr>
<tr>
<td>1.2</td>
<td>2 × 10µF 25V</td>
<td>150µF 35V</td>
<td>SANYO POSCAP</td>
<td>TAIYO YUDEN</td>
<td>760F</td>
<td>330F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
<td>220F</td>
</tr>
</tbody>
</table>

For more information www.linear.com/LTM4600
APPLICATIONS INFORMATION

Since the load current is already limited by the current mode control and current foldback circuitry during a short circuit, over-current latchoff operation is NOT always needed or desired, especially if the output has a large amount of capacitance or the load draws huge currents during start up. The latchoff feature can be overridden by a pull-up current greater than 5μA but less than 80μA to the RUN/SS pin. The additional currents prevents the discharge of C_{SS} during a fault and also shortens the soft-start period. Using a resistor from RUN/SS pin to V_{IN} is a simple solution to defeat latchoff. Any pull-up network must be able to maintain RUN/SS above 4V maximum latchoff threshold and overcome the 4μA maximum discharge current. With a pull-up resistor, the delay before starting is approximately:

\[
\Delta t_{\text{DELAY}} = -R_{\text{RUN/SS}} \cdot \left(C_{\text{SS_EXT}} + 1000\text{pF} \right) \cdot \ln \left(\frac{1.5V}{V_{\text{IN}} + (1.2\mu A \cdot R_{\text{RUN/SS}})} \right)
\]

Figure 3 shows a conceptual drawing of V_{RUN} during startup and short circuit.

Enable

The RUN/SS pin can be driven from logic as shown in Figure 5. This function allows the LTM4600 to be turned on or off remotely. The ON signal can also control the sequence of the output voltage.
LTM4600

APPLICATIONS INFORMATION

Output Voltage Tracking

For the applications that require output voltage tracking, several LTM4600 modules can be programmed by the power supply tracking controller such as the LTC2923. Figure 6 shows a typical schematic with LTC2923. Coincident, ratiometric and offset tracking for V_O rising and falling can be implemented with different sets of resistor values. See the LTC2923 data sheet for more details.

![Figure 6. Output Voltage Tracking with the LTC2923 Controller](image)

EXTVCC Connection

An internal low dropout regulator produces an internal 5V supply that powers the control circuitry and FET drivers. Therefore, if the system does not have a 5V power rail, the LTM4600 can be directly powered by V_{IN}. The gate driver current through LDO is about 18mA. The internal LDO power dissipation can be calculated as:

$$P_{LDO_LOSS} = 18mA \cdot (V_{IN} - 5V)$$

The LTM4600 also provides an external gate driver voltage pin EXTVCC. If there is a 5V rail in the system, it is recommended to connect EXTVCC pin to the external 5V rail. Whenever the EXTVCC pin is above 4.7V, the internal 5V LDO is shut off and an internal 50mA P-channel switch connects the EXTVCC to internal 5V. Internal 5V is supplied from EXTVCC until this pin drops below 4.5V. Do not apply more than 6V to the EXTVCC pin and ensure that EXTVCC < V_{IN}. The following list summaries the possible connections for EXTVCC:

1. EXTVCC grounded. Internal 5V LDO is always powered from the internal 5V regulator.
2. EXTVCC connected to an external supply. Internal LDO is shut off. A high efficiency supply compatible with the MOSFET gate drive requirements (typically 5V) can improve overall efficiency. With this connection, it is always required that the EXTVCC voltage cannot be higher than V_{IN} pin voltage.

Discontinuous Operation and FCB Pin

The FCB pin determines whether the internal bottom MOSFET remains on when the inductor current reverses. There is an internal 4.75k pull-down resistor connecting this pin to ground. The default light load operation mode is forced continuous (PWM) current mode. This mode provides minimum output voltage ripple.

In the application where the light load efficiency is important, tying the FCB pin above 0.6V threshold enables discontinuous operation where the bottom MOSFET turns off when inductor current reverses. Therefore, the conduction loss is minimized and light load efficiency is improved. The penalty is that the controller may skip cycle and the output voltage ripple increases at light load.

Paralleling Operation with Load Sharing

Two or more LTM4600 modules can be paralleled to provide higher than 10A output current. Figure 7 shows the necessary interconnection between two paralleled modules. The OPTI-LOOP® current mode control ensures good current sharing among modules to balance the thermal stress. The new feedback equation for two or more LTM4600s in parallel is:

$$V_{OUT} = 0.6V \cdot \frac{100k}{N} + \frac{R_{SET}}{R_{SET}}$$

where N is the number of LTM4600s in parallel.
Thermal Considerations and Output Current Derating

The power loss curves in Figures 8 and 13 can be used in coordination with the load current derating curves in Figures 9 to 12, and Figures 14 to 15 for calculating an approximate θ_{JA} for the module with various heat sinking methods. Thermal models are derived from several temperature measurements at the bench, and thermal modeling analysis. Application Note 103 provides a detailed explanation of the analysis for the thermal models, and the derating curves. Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measured values, and improve with air-flow. The case temperature is maintained at 100°C or below for the derating curves. This allows for 4W maximum power dissipation in the total module with top and bottom heat sinking, and 2W power dissipation through the top of the module with an approximate θ_{JC} between 6°C/W to 9°C/W. This equates to a total of 124°C at the junction of the device.

Safety Considerations

The LTM4600 modules do not provide isolation from V_{IN} to V_{OUT}. There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current should be provided to protect each unit from catastrophic failure.

<table>
<thead>
<tr>
<th>DERATING CURVE</th>
<th>V_{IN} (V)</th>
<th>POWER LOSS CURVE</th>
<th>AIR FLOW (LFM)</th>
<th>HEAT SINK</th>
<th>θ_{JA} (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 9, 11</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>0</td>
<td>None</td>
<td>15.2</td>
</tr>
<tr>
<td>Figures 9, 11</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>200</td>
<td>None</td>
<td>14</td>
</tr>
<tr>
<td>Figures 9, 11</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>400</td>
<td>None</td>
<td>12</td>
</tr>
<tr>
<td>Figures 10, 12</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>0</td>
<td>BGA Heat Sink</td>
<td>13.9</td>
</tr>
<tr>
<td>Figures 10, 12</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>200</td>
<td>BGA Heat Sink</td>
<td>11.3</td>
</tr>
<tr>
<td>Figures 10, 12</td>
<td>5, 12</td>
<td>Figure 8</td>
<td>400</td>
<td>BGA Heat Sink</td>
<td>10.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DERATING CURVE</th>
<th>V_{IN} (V)</th>
<th>POWER LOSS CURVE</th>
<th>AIR FLOW (LFM)</th>
<th>HEAT SINK</th>
<th>θ_{JA} (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 14</td>
<td>12</td>
<td>Figure 13</td>
<td>0</td>
<td>None</td>
<td>15.2</td>
</tr>
<tr>
<td>Figure 14</td>
<td>12</td>
<td>Figure 13</td>
<td>200</td>
<td>None</td>
<td>14.6</td>
</tr>
<tr>
<td>Figure 14</td>
<td>12</td>
<td>Figure 13</td>
<td>400</td>
<td>None</td>
<td>13.4</td>
</tr>
<tr>
<td>Figure 15</td>
<td>12</td>
<td>Figure 13</td>
<td>0</td>
<td>BGA Heat Sink</td>
<td>13.9</td>
</tr>
<tr>
<td>Figure 15</td>
<td>12</td>
<td>Figure 13</td>
<td>200</td>
<td>BGA Heat Sink</td>
<td>11.1</td>
</tr>
<tr>
<td>Figure 15</td>
<td>12</td>
<td>Figure 13</td>
<td>400</td>
<td>BGA Heat Sink</td>
<td>10.5</td>
</tr>
</tbody>
</table>
LTM4600

APPLICATIONS INFORMATION

Figure 8. Power Loss vs Load Current

Figure 9. No Heat Sink

Figure 10. BGA Heat Sink

Figure 11. No Heat Sink

Figure 12. BGA Heat Sink

Figure 13. Power Loss vs Load Current

Figure 14. No Heat Sink

Figure 15. BGA Heat Sink
APPLICATIONS INFORMATION

Layout Checklist/Example

The high integration of the LTM4600 makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary.

- Use large PCB copper areas for high current path, including \(V_{IN}\), PGND and \(V_{OUT}\). It helps to minimize the PCB conduction loss and thermal stress.
- Place high frequency ceramic input and output capacitors next to the \(V_{IN}\), PGND and \(V_{OUT}\) pins to minimize high frequency noise.
- Place a dedicated power ground layer underneath the unit.
- To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers.
- Do not put a via directly on pad unless it is capped.
- Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit.

Figure 16 gives a good example of the recommended layout.

LTM4600 Frequency Adjustment

The LTM4600 is designed to typically operate at 850kHz across most input and output conditions. The control architecture is constant on time valley mode current control. The \(f_{ADJ}\) pin is typically left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized to maintain constant output ripple over the operating conditions. The equations for setting the operating frequency are set around a programmable constant on time. This on time is developed by a programmable current into an on board 10pF capacitor that establishes a ramp that is compared to a voltage threshold equal to the output voltage up to a 2.4V clamp. This \(I_{ON}\) current is equal to: \(I_{ON} = (V_{IN} - 0.7V)/110k\), with the 110k onboard resistor from \(V_{IN}\) to \(f_{ADJ}\). The on time is equal to \(t_{ON} = (V_{OUT}/I_{ON}) \cdot 10pF\) and \(t_{OFF} = t_s - t_{ON}\). The frequency is equal to: \(Freq. = DC/t_{ON}\). The \(I_{ON}\) current is proportional to \(V_{IN}\), and the regulator duty cycle is inversely proportional to \(V_{IN}\), therefore the step-down regulator will remain relatively constant frequency as the duty cycle adjustment takes place with lowering \(V_{IN}\). The on time is proportional to \(V_{OUT}\) up to a 2.4V clamp. This will hold frequency relatively constant with different output voltages up to 2.4V. The regulator switching period is comprised of the on time and off time as depicted in Figure 17.

![Figure 16. Recommended PCB Layout](image-url)
The LTM4600 has a minimum \(t_{\text{ON}} \) on time of 100 nanoseconds and a minimum \(t_{\text{OFF}} \) off time of 400 nanoseconds.

The 2.4V clamp on the ramp threshold as a function of \(V_{\text{OUT}} \) will cause the switching frequency to increase by the ratio of \(V_{\text{OUT}}/2.4 \) for 3.3V and 5V outputs. This is due to the fact the on time will not increase as \(V_{\text{OUT}} \) increases past 2.4V. Therefore, if the nominal switching frequency is 850kHz, then the switching frequency will increase to ~1.2MHz for 3.3V and ~1.7MHz for 5V outputs.

When the switching frequency increases to 1.2MHz, then the time period \(t_S \) is reduced to ~833 nanoseconds and at 1.7MHz the switching period reduces to ~588 nanoseconds. When higher duty cycle conversions like 5V to 3.3V and 12V to 5V need to be accommodated, then the switching frequency can be lowered to alleviate the violation of the 400ns minimum off time. Since the total switching period is \(t_S = t_{\text{ON}} + t_{\text{OFF}} \), \(t_{\text{OFF}} \) will be below the 400ns minimum off time. A resistor from the \(f_{\text{ADJ}} \) pin to ground can shunt current away from the on time generator, thus allowing for a longer on time and a lower switching frequency. 12V to 5V and 5V to 3.3V derivations are explained in the data sheet to lower switching frequency and accommodate these step-down conversions.

Equations for setting frequency for 12V to 5V:

\[
I_{\text{ON}} = (V_{\text{IN}} - 0.7)/110k; \quad I_{\text{ON}} = 103\mu A
\]

\[
\text{frequency} = (I_{\text{ON}}[2.4V \cdot 10pF]) \cdot DC = 1.79\text{MHz};
\]

\[
DC = \text{duty cycle, duty cycle is } (V_{\text{OUT}}/V_{\text{IN}})
\]

\[
t_S = t_{\text{ON}} + t_{\text{OFF}}, \quad t_{\text{ON}} = \text{on-time, } t_{\text{OFF}} = \text{off-time of the switching period; } t_S = 1/\text{frequency}
\]

\[
t_{\text{OFF}} \text{ must be greater than } 400\text{ns, or } t_S - t_{\text{ON}} > 400\text{ns.}
\]

\[
t_{\text{ON}} = \text{DC} \cdot t_S
\]

1MHz frequency or 1µs period is chosen for 12V to 5V.

\[
t_{\text{ON}} = 0.41 \cdot 1\mu s = 410\text{ns}
\]

\[
t_{\text{OFF}} = 1\mu s - 410\text{ns} = 590\text{ns}
\]

\(t_{\text{ON}} \) and \(t_{\text{OFF}} \) are above the minimums with adequate guard band.

Using the frequency = \((I_{\text{ON}}[2.4V \cdot 10pF]) \cdot DC\), solve for \(I_{\text{ON}} = (1\text{MHz} \cdot 2.4V \cdot 10pF) \cdot (1/0.41) = 58\mu A\). \(I_{\text{ON}} \) current calculated from 12V input was 103µA, so a resistor from \(f_{\text{ADJ}} \) to ground = (0.7V/15k) = 46µA. 103µA – 46µA = 57µA, sets the adequate \(I_{\text{ON}} \) current for proper frequency range for the higher duty cycle conversion of 12V to 5V. Input voltage range is limited to 9V to 16V. Higher input voltages can be used without the 15k on \(f_{\text{ADJ}} \). The inductor ripple current gets too high above 16V, and the 400ns minimum off-time is limited below 9V.

Equations for setting frequency for 5V to 3.3V:

\[
I_{\text{ON}} = (V_{\text{IN}} - 0.7)/110k; \quad I_{\text{ON}} = 39\mu A
\]

\[
\text{frequency} = (I_{\text{ON}}[2.4V \cdot 10pF]) \cdot DC = 1.07\text{MHz};
\]

\[
DC = \text{duty cycle, duty cycle is } (V_{\text{OUT}}/V_{\text{IN}})
\]

\[
t_S = t_{\text{ON}} + t_{\text{OFF}}, \quad t_{\text{ON}} = DC \cdot t_S, \quad t_{\text{OFF}} = \text{off-time of the switching period; } t_S = 1/\text{frequency}
\]

\[
t_{\text{OFF}} \text{ must be greater than } 400\text{ns, or } t_S - t_{\text{ON}} > 400\text{ns.}
\]

The ~450kHz frequency or 2.22µs period is chosen for 5V to 3.3V. Frequency range is about 450kHz to 650kHz from 4.5V to 7V input.

\[
t_{\text{ON}} = 0.66 \cdot 2.22\mu s = 1.46\mu s
\]

\[
t_{\text{OFF}} = 2.22\mu s - 1.46\mu s = 760\mu s
\]

\(t_{\text{ON}} \) and \(t_{\text{OFF}} \) are above the minimums with adequate guard band.

Using the frequency = \((I_{\text{ON}}[2.4V \cdot 10pF]) \cdot DC\), solve for \(I_{\text{ON}} = (450kHz \cdot 2.4V \cdot 10pF) \cdot (1/0.66) = 16\mu A\). \(I_{\text{ON}} \) current calculated from 5V input was 39µA, so a resistor from \(f_{\text{ADJ}} \) to ground = (0.7V/30.1k) = 23µA. 39µA – 23µA = 16µA, sets the adequate \(I_{\text{ON}} \) current for proper frequency range for the higher duty cycle conversion of 5V to 3.3V. Input voltage range is limited to 4.5V to 7V. Higher input voltages can be used without the 30.1k on \(f_{\text{ADJ}} \). The inductor ripple current gets too high above 7V, and the 400ns minimum off-time is limited below 4.5V.
Applications Information

5V to 3.3V at 8A

- 4.5V to 7V
- C3 10µF 25V
- C1 10µF 25V
- R1 30.1k
- C5 100µF
- 3.3V AT 8A

5V TO 3.3V AT 8A WITH f\text{ADJ} = 30.1k

C1, C3: TDK C3216X5R1E106MT
C2: TAIYO YUDEN, JMK316BJ226ML
C4: SANYO POSCAP 6TPE330MIL

12V to 5V at 8A

- 9V TO 16V
- C3 10µF 25V
- R1 15k
- C5 100µF
- 5V AT 8A

12V TO 5V AT 8A WITH f\text{ADJ} = 15k

C1, C3: TDK C3216X5R1E106MT
C2: TAIYO YUDEN, JMK316BJ226ML
C4: SANYO POSCAP 6TPE330MIL

VIN to VOUT Step-Down Ratio for 12V\text{IN} to 5V\text{OUT} and 5V\text{IN} to 3.3V\text{OUT}

- 3.3V: f\text{ADJ} = 30.1k
- 5V: f\text{ADJ} = 15k

For more information: www.linear.com/LTM4600
Figure 18. Typical Application, 5V to 20V Input, 0.6V to 5V Output, 10A Max
Current Sharing Between Two LTM4600 Modules

\[I_{OUT1} = I_{OUT2} \]

\[12V_{IN} = 2.5V_{OUT} \]

\[20A_{MAX} \]

Total Load (A) vs. Individual Share (%)

- C1, C3, C7, C8: TDK C3216X5R1E106MT
- C2, C9: Taiyo Yuden, JMK316BJ226ML-T501
- C5, C10: Sanyo POSCAP 4TPE470MCL

\[V_{OUT} = 0.6V \times \left(\frac{[100k/N] + R_{SET}}{R_{SET}} \right) \]

Where \(N = 2 \)
LTM4600

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

For more information www.linear.com/LTM4600
LTM4600

Package Description

Pin Assignment Tables (Arranged by Pin Number)

<table>
<thead>
<tr>
<th>PIN NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 -</td>
<td>B1 -</td>
<td>C1 -</td>
<td>D1 -</td>
<td>E1 -</td>
<td>F1 -</td>
<td>G1 -</td>
<td>H1 -</td>
</tr>
<tr>
<td>A2 -</td>
<td>B2 -</td>
<td>C2 -</td>
<td>D2 -</td>
<td>E2 -</td>
<td>F2 -</td>
<td>G2 -</td>
<td>H2 -</td>
</tr>
<tr>
<td>A3 -</td>
<td>B3 -</td>
<td>C3 -</td>
<td>D3 -</td>
<td>E3 -</td>
<td>F3 -</td>
<td>G3 -</td>
<td>H3 -</td>
</tr>
<tr>
<td>A4 -</td>
<td>B4 -</td>
<td>C4 -</td>
<td>D4 -</td>
<td>E4 -</td>
<td>F4 -</td>
<td>G4 -</td>
<td>H4 -</td>
</tr>
<tr>
<td>A5 -</td>
<td>B5 -</td>
<td>C5 -</td>
<td>D5 -</td>
<td>E5 -</td>
<td>F5 -</td>
<td>G5 -</td>
<td>H5 -</td>
</tr>
<tr>
<td>A6 -</td>
<td>B6 -</td>
<td>C6 -</td>
<td>D6 -</td>
<td>E6 -</td>
<td>F6 -</td>
<td>G6 -</td>
<td>H6 -</td>
</tr>
<tr>
<td>A7 -</td>
<td>B7 -</td>
<td>C7 -</td>
<td>D7 -</td>
<td>E7 -</td>
<td>F7 -</td>
<td>G7 -</td>
<td>H7 PGND</td>
</tr>
<tr>
<td>A8 -</td>
<td>B8 -</td>
<td>C8 -</td>
<td>D8 -</td>
<td>E8 -</td>
<td>F8 -</td>
<td>G8 -</td>
<td>H8 -</td>
</tr>
<tr>
<td>A10 -</td>
<td>B10 -</td>
<td>C10 -</td>
<td>D10 -</td>
<td>E10 -</td>
<td>F10 -</td>
<td>G10 -</td>
<td>H10 -</td>
</tr>
<tr>
<td>A11 -</td>
<td>B11 -</td>
<td>C11 -</td>
<td>D11 -</td>
<td>E11 -</td>
<td>F11 -</td>
<td>G11 -</td>
<td>H11 PGND</td>
</tr>
<tr>
<td>A12 -</td>
<td>B12 -</td>
<td>C12 -</td>
<td>D12 -</td>
<td>E12 -</td>
<td>F12 -</td>
<td>G12 -</td>
<td>H12 -</td>
</tr>
<tr>
<td>A14 -</td>
<td>B14 -</td>
<td>C14 -</td>
<td>D14 -</td>
<td>E14 -</td>
<td>F14 -</td>
<td>G14 -</td>
<td>H14 -</td>
</tr>
<tr>
<td>A16 -</td>
<td>B16 -</td>
<td>C16 -</td>
<td>D16 -</td>
<td>E16 -</td>
<td>F16 -</td>
<td>G16 -</td>
<td>H16 -</td>
</tr>
<tr>
<td>A17 -</td>
<td>B17 -</td>
<td>C17 -</td>
<td>D17 -</td>
<td>E17 -</td>
<td>F17 -</td>
<td>G17 -</td>
<td>H17 PGND</td>
</tr>
<tr>
<td>A18 -</td>
<td>B18 -</td>
<td>C18 -</td>
<td>D18 -</td>
<td>E18 -</td>
<td>F18 -</td>
<td>G18 -</td>
<td>H18 -</td>
</tr>
<tr>
<td>A19 -</td>
<td>B19 -</td>
<td>C19 -</td>
<td>D19 -</td>
<td>E19 -</td>
<td>F19 -</td>
<td>G19 -</td>
<td>H19 -</td>
</tr>
<tr>
<td>A20 -</td>
<td>B20 -</td>
<td>C20 -</td>
<td>D20 -</td>
<td>E20 -</td>
<td>F20 -</td>
<td>G20 -</td>
<td>H20 -</td>
</tr>
<tr>
<td>A21 -</td>
<td>B21 -</td>
<td>C21 -</td>
<td>D21 -</td>
<td>E21 -</td>
<td>F21 -</td>
<td>G21 -</td>
<td>H21 -</td>
</tr>
<tr>
<td>A22 -</td>
<td>B22 -</td>
<td>C22 -</td>
<td>D22 -</td>
<td>E22 -</td>
<td>F22 -</td>
<td>G22 -</td>
<td>H22 -</td>
</tr>
<tr>
<td>A23 -</td>
<td>B23 -</td>
<td>C23 -</td>
<td>D23 -</td>
<td>E23 -</td>
<td>F23 -</td>
<td>G23 -</td>
<td>H23 -</td>
</tr>
</tbody>
</table>

For more information www.linear.com/LTM4600
Pin Assignment Tables (Arranged by Pin Number)

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN NAME</th>
<th>PIN NAME</th>
<th>PIN NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>PGND</td>
<td>P2</td>
<td>VOUT</td>
</tr>
<tr>
<td>H7</td>
<td>PGND</td>
<td>P4</td>
<td>VOUT</td>
</tr>
<tr>
<td>H9</td>
<td>PGND</td>
<td>P6</td>
<td>VOUT</td>
</tr>
<tr>
<td>H11</td>
<td>PGND</td>
<td>P8</td>
<td>VOUT</td>
</tr>
<tr>
<td>H13</td>
<td>PGND</td>
<td>P10</td>
<td>VOUT</td>
</tr>
<tr>
<td>H15</td>
<td>PGND</td>
<td>P12</td>
<td>VOUT</td>
</tr>
<tr>
<td>H17</td>
<td>PGND</td>
<td>P14</td>
<td>VOUT</td>
</tr>
<tr>
<td>J1</td>
<td>PGND</td>
<td>P16</td>
<td>VOUT</td>
</tr>
<tr>
<td>K7</td>
<td>PGND</td>
<td>P18</td>
<td>VOUT</td>
</tr>
<tr>
<td>K9</td>
<td>PGND</td>
<td>P20</td>
<td>VOUT</td>
</tr>
<tr>
<td>K11</td>
<td>PGND</td>
<td>P22</td>
<td>VOUT</td>
</tr>
<tr>
<td>K13</td>
<td>PGND</td>
<td>R2</td>
<td>VOUT</td>
</tr>
<tr>
<td>K15</td>
<td>PGND</td>
<td>R4</td>
<td>VOUT</td>
</tr>
<tr>
<td>K17</td>
<td>PGND</td>
<td>R6</td>
<td>VOUT</td>
</tr>
<tr>
<td>L2</td>
<td>PGND</td>
<td>R8</td>
<td>VOUT</td>
</tr>
<tr>
<td>L4</td>
<td>PGND</td>
<td>R10</td>
<td>VOUT</td>
</tr>
<tr>
<td>L6</td>
<td>PGND</td>
<td>R12</td>
<td>VOUT</td>
</tr>
<tr>
<td>L8</td>
<td>PGND</td>
<td>R14</td>
<td>VOUT</td>
</tr>
<tr>
<td>L10</td>
<td>PGND</td>
<td>R16</td>
<td>VOUT</td>
</tr>
<tr>
<td>L12</td>
<td>PGND</td>
<td>R18</td>
<td>VOUT</td>
</tr>
<tr>
<td>L14</td>
<td>PGND</td>
<td>R20</td>
<td>VOUT</td>
</tr>
<tr>
<td>L16</td>
<td>PGND</td>
<td>R22</td>
<td>VOUT</td>
</tr>
<tr>
<td>L18</td>
<td>PGND</td>
<td>T2</td>
<td>VOUT</td>
</tr>
<tr>
<td>L20</td>
<td>PGND</td>
<td>T4</td>
<td>VOUT</td>
</tr>
<tr>
<td>L22</td>
<td>PGND</td>
<td>T6</td>
<td>VOUT</td>
</tr>
<tr>
<td>M2</td>
<td>PGND</td>
<td>T8</td>
<td>VOUT</td>
</tr>
<tr>
<td>M4</td>
<td>PGND</td>
<td>T10</td>
<td>VOUT</td>
</tr>
<tr>
<td>M6</td>
<td>PGND</td>
<td>T12</td>
<td>VOUT</td>
</tr>
<tr>
<td>M8</td>
<td>PGND</td>
<td>T14</td>
<td>VOUT</td>
</tr>
<tr>
<td>M10</td>
<td>PGND</td>
<td>T16</td>
<td>VOUT</td>
</tr>
<tr>
<td>M12</td>
<td>PGND</td>
<td>T18</td>
<td>VOUT</td>
</tr>
<tr>
<td>M14</td>
<td>PGND</td>
<td>T20</td>
<td>VOUT</td>
</tr>
<tr>
<td>M16</td>
<td>PGND</td>
<td>T22</td>
<td>VOUT</td>
</tr>
<tr>
<td>M18</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M20</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N14</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N16</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N18</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N20</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N22</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision History

(Revision history begins at Rev D)

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>6/14</td>
<td>Updated Order Information table.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated RUN/SS pin description.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Soft-Start section.</td>
<td>13</td>
</tr>
</tbody>
</table>
1.8V, 10A Regulator

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTM4649</td>
<td>16VIN, 10A Step-Down μModule Regulator</td>
<td>4.5V ≤ VIN ≤ 16V, 0.6V ≤ VOUT ≤ 3.3V, PLL input, Remote Sense Amplifier, VOUT tracking, 9mm × 15mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTM4641</td>
<td>38VIN, 10A Step-Down μModule Regulator with Advanced Input & Load Protection</td>
<td>4.5V ≤ VIN ≤ 38V, 0.6V ≤ VOUT ≤ 6V, Adjustable Protection Trip Thresholds for Many Faults: (Output Overvoltage, Input Overvoltage, Input Undervoltage, Overtemperature), 15mm × 15mm × 5.01mm BGA</td>
</tr>
<tr>
<td>LTM4633</td>
<td>Triple 10A, 16VIN Step-Down DC/DC μModule Regulator</td>
<td>4.7V ≤ VIN ≤ 16V, 0.8V ≤ VOUT1,2 < 1.8V, 0.8V ≤ VOUT3 ≤ 5.5V, PLL input, VOUT Soft-Start and Tracking, PGOOD, Internal Temperature Monitor, 15mm × 15mm × 5.01mm BGA</td>
</tr>
<tr>
<td>LTM4627</td>
<td>20VIN, 15A DC/DC Step-Down μModule Regulator</td>
<td>4.5V ≤ VIN ≤ 20V, 0.6V ≤ VOUT ≤ 5V, PLL input, VOUT Tracking, Remote Sense Amplifier, 15mm × 15mm × 4.32mm LGA or 15mm × 15mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTM4611</td>
<td>1.5VIN(MIN), 15A DC/DC Step-Down μModule Regulator</td>
<td>1.5V ≤ VIN ≤ 5.5V, 0.8V ≤ VOUT ≤ 5V, PLL input, Remote Sense Amplifier, VOUT Tracking, 15mm × 15mm × 4.32mm LGA</td>
</tr>
<tr>
<td>LTM4613</td>
<td>36VIN, 8A EN55022 Class B DC/DC Step-Down μModule Regulator</td>
<td>5V ≤ VIN ≤ 36V, 3.3V ≤ VOUT ≤ 15V, PLL input, VOUT Tracking and Margining, 15mm × 15mm × 4.32mm LGA</td>
</tr>
<tr>
<td>LTM8061</td>
<td>32V, 2A Step-Down μModule Battery Charger with Programmable Input Current Limit</td>
<td>Compatible with Single Cell or Dual Cell Li-Ion or Li-Poly Battery Stacks (4.1V, 4.2V, 8.2V, or 8.4V), 4.95V ≤ VIN ≤ 32V, C/10 or Adjustable Timer Charge Termination, NTC Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA</td>
</tr>
<tr>
<td>LTM8045</td>
<td>Inverting or SEPIC μModule DC/DC Converter with Up to 700mA Output Current</td>
<td>2.8V ≤ VIN ≤ 18V, ±2.5V ≤ VOUT ≤ ±15V, Synchronizable, No Derating or Logic Level Shift for Control Inputs When Inverting, 6.25mm × 11.25mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTM8048</td>
<td>1.5W, 725VDC Galvanically Isolated μModule Converter with LDO Post Regulator</td>
<td>3.1V ≤ VIN ≤ 32V, 2.5V ≤ VOUT ≤ 12V, 1mVp-p Output Ripple, Internal Isolated Transformer, 9mm × 11.25mm × 4.92mm BGA</td>
</tr>
<tr>
<td>LTC2977</td>
<td>8-Channel PMBus Power System Manager</td>
<td>0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision</td>
</tr>
<tr>
<td>LTC2974</td>
<td>4-Channel PMBus Power System Manager</td>
<td>0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision</td>
</tr>
</tbody>
</table>

This product contains technology licensed from Silicon Semiconductor Corporation.