The LTC®4558 provides the power conversion and signal level translation needed for advanced cellular telephones to interface with 1.8V or 3V subscriber identity modules (SIMs). The device meets all requirements for 1.8V and 3V SIMs and contains LDO regulators to power 1.8V or 3V SIM cards from a 2.7V to 5.5V input. The output voltages can be set using the two voltage selection pins and up to 50mA of load current can be supplied. A channel select pin determines which channel is open for communication. Separate enable pins for each channel allow both cards to be powered at once and allow for faster transition from one channel to the other.

Internal level translators allow controllers operating with supplies as low as 1.4V to interface with 1.8V or 3V Smart Cards. Battery life is maximized by a low operating current of 65μA and a shutdown current of less than 1μA. Board area is minimized by the low profile 20-Lead (3mm x 3mm) QFN package.

Features:
- Power Management and Control for Two SIM Cards or Smart Cards
- Independent 1.8V/3V VCC Control for Both Cards
- Supports Simultaneous Powering of Both Cards
- Fast Channel Switching
- Automatic Level Translation
- Dynamic Pull-Ups Deliver Fast Signal Rise Times*
- Built-In Fault Protection Circuitry
- Automatic Activation/Deactivation Sequencing Circuitry
- Low Operating/Shutdown Current
- > 10kV ESD on SIM Card Pins
- Meets EMV Fault Tolerance Requirements
- Low Profile 20-Lead (3mm x 3mm) QFN Package

Applications:
- GSM, TD-SCDMA and other 3G+ Cellular Phones
- Wireless Point-of-Sale Terminals
- Multiple SIM Card Interfaces

Typical Application

LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

*Protected by U.S. Patents, including 6356140.
LTC4558

ABSOLUTE MAXIMUM RATINGS
(Note 1)

$V_{BATT}, DV_{CC}, DATA, RSTIN, CLKIN, CLKRUNA, CLKRUNB, ENABLA, ENABLB, CSEL, VSELA, VSELB$ to GND ...-0.3V to 6V

$I/OA, CLKA, RSTA$...-0.3V to $VCCA + 0.3\text{V}$

$I/OB, CLKB, RSTB$...-0.3V to $VCCB + 0.3\text{V}$

$I_{CCA,B}$ (Note 4) ...80mA

$V_{CCA,B}$ Short-Circuit Duration.............................. Indefinite

Operating Temperature Range (Note 3) ...-40°C to 85°C

Storage Temperature Range-65°C to 125°C

ELECTRICAL CHARACTERISTICS

The● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25\text{°C}$. $V_{BATT} = 3.3\text{V}$, $DV_{CC} = 1.8\text{V}$, $C_A = C_B = 1\text{µF}$, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{BATT} Operating Voltage</td>
<td></td>
<td>2.7</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{VBATT} Operating Current</td>
<td>$V_{CCA} = 3\text{V}, V_{CCB} = 0\text{V}, I_{CCA} = 0\text{µA}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CCA} = 1.8\text{V}, V_{CCB} = 0\text{V}, I_{CCA} = I_{CCB} = 0\text{µA}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV_{CC} Operating Voltage</td>
<td></td>
<td>1.4</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$IDVCC$ Operating Current</td>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
<td>µA</td>
</tr>
<tr>
<td>$IDVCC$ Shutdown Current</td>
<td></td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>I_{VBATT} Shutdown Current</td>
<td>$DV_{CC} = 0\text{V}$</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>µA</td>
</tr>
</tbody>
</table>

SIM Card Supplies

$V_{CCA,B}$ Output Voltage

3V Mode, $0\text{mA} < I_{CCA,B} < 50\text{mA}$

1.8V Mode, $0\text{mA} < I_{CCA,B} < 30\text{mA}$

$V_{CCA,B}$ Turn-On Time

$I_{CCA,B} = 0\text{mA}, ENABLA.B \uparrow$ to $V_{CCA,B}$ at 90% Selected Voltage

Channel Switching Time

$ENABLA = ENABLB = RSTIN = DV_{CC}$

$CSEL \uparrow$ to $RSTB \uparrow$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V_{BATT} = 3.3V$, $DV_{CC} = 1.8V$, $C_A = C_B = 1\mu F$, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKA,B</td>
<td>Low Level Output Voltage (V_{OL})</td>
<td>0.2 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Level Output Voltage (V_{OH})</td>
<td>$V_{CCA,B}$</td>
<td>0.2 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Time</td>
<td>16 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLKA,B Frequency</td>
<td>10 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSTA,B</td>
<td>Low Level Output Voltage (V_{OL})</td>
<td>0.2 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Level Output Voltage (V_{OH})</td>
<td>$V_{CCA,B}$</td>
<td>0.2 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Time</td>
<td>100 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-Circuit Current</td>
<td>5 mA</td>
<td>10 mA</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I/OA, I/OB</td>
<td>Low Level Output Voltage (V_{OL})</td>
<td>0.3 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Level Output Voltage (V_{OH})</td>
<td>$0.85 \cdot DV_{CC}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Time</td>
<td>500 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-Circuit Current</td>
<td>5 mA</td>
<td>10 mA</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>DATA</td>
<td>Low Level Output Voltage (V_{OL})</td>
<td>0.3 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Level Output Voltage (V_{OH})</td>
<td>$0.8 \cdot DV_{CC}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Time</td>
<td>125 500 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: This specification applies to both Smart Card classes.

Note 3: The LTC4558E is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 4: Based on long-term current density limitations.
TYPICAL PERFORMANCE CHARACTERISTICS \(T_A = 25^\circ C \) unless otherwise noted.

![Graphs and tables showing typical performance characteristics](4587-021.png)
TYPICAL PERFORMANCE CHARACTERISTICS \(T_A = 25^\circ C \) unless otherwise noted.

Data – I/O Channel, \(C_L = 40\text{pF} \)

Deactivation Sequence, \(C_{VCCX} = 1\text{pF} \)
PIN FUNCTIONS

DVCC (Pin 2): Power. Reference voltage for the control logic.

VBATT (Pin 3): Power. Supply voltage for the analog sections of the LTC4558.

VCCA, VCCB (Pins 4, 1): Card Socket. The VCCA, VCCB pins should be connected to the VCC pins of the respective card sockets. The activation of the VCCA, VCCB pins are controlled by ENABLEA and ENABLEB. They can be set to 1.8V or 3V via the VSELA and VSELB inputs.

CLKA, CKLB (Pins 5, 20): Card Socket. The CLKA, CKLB pins should be connected to the CLK pins of the respective card sockets. The CLKA, CKLB signals are derived from the CLKIN pin. They provide a level shifted CLKIN signal to the selected card. The CLKA, CKLB pins are gated off until VCCA, VCCB attain their correct values. When a card socket is deselected, its CLK pin may be left active or brought LOW using the CLKRUNA, CLKRUNB pins.

RSTA, RSTB (Pins 6, 19): Card Socket. The RSTA, RSTB pins should be connected to the RST pins of the respective card sockets. The RSTA, RSTB signals are derived from the RSTIN pin. When a card is selected, its RST pin follows RSTIN. The RSTA, RSTB pins are gated off until VCCA, VCCB attain their correct values. When a card socket is deselected, the state of its RST pin is latched to its current state.

I/OA, I/OB (Pins 7, 18): Card Socket. The I/OA, I/OB pins should be connected to the I/O pins of the respective card sockets. When a card is selected, its I/O pin transmits/receives data to/from the DATA pin. The I/OA, I/OB pins are gated off until VCCA, VCCB attain their correct values.

DATA (Pin 8): Input/Output. Microcontroller side data I/O pin. The DATA pin provides the bidirectional communication path to both cards. One of the cards may be selected to communicate via the DATA pin at a time. The pin possesses a weak pull-up current source, allowing the controller to use an open drain output and maintain a HIGH state during shutdown, as long as DVCC is powered.

RSTIN (Pin 9): Input. The RSTIN pin supplies the reset signal to the cards. It is level shifted and transmitted directly to the RST pin of the selected card.

CLKIN (Pin 10): Input. The CLKIN pin supplies the clock signal to the cards. It is level shifted and transmitted directly to the CLK pin of the selected card. If CLKRUNA, B is HIGH, the clock signal will be transmitted to the CLKA, B pin, regardless of whether that card is selected, as long as that card socket is enabled.

ENABLEA, ENABLEB (Pins 11, 17): Inputs. The ENABLEA and ENABLEB pins enable or disable channel A and channel B, respectively.

VSELA, VSELB (Pins 12, 16): Inputs. The VSELA and VSELB pins select the voltage level of each set of SIM/Smart Card pins. Bringing either of these pins HIGH will set the output level of its respective channel to 3V. Bringing either of these pins LOW will set the output level of its respective channel to 1.8V.

CSEL (Pin 13): Input. The CSEL pin selects which set of SIM/Smart Card pins are active.

CLKRUNA, CLKRUNB (Pins 14, 15): Inputs. The CLKRUNA and CLKRUNB inputs are used to select whether the clock signal is always sent to card sockets that are enabled or whether the clock is gated with the CSEL pin.

Exposed Pad (Pin 21): Ground. This ground pad must be soldered directly to a PCB ground plane.
The LTC4558 features two independent SIM/Smart Card channels. Only one of these channels may be open for communication at a time however both channels can be enabled and made ready for communication using the ENABLEA and ENABLEB pins. This allows faster transition from one channel to the other. Each channel is able to produce two voltage levels, 1.8V and 3V. The channel selection and voltage selection are controlled by the CSEL, VSELA and VSELB pins as shown in the table below:

Table 1. Channel and Voltage Truth Table

<table>
<thead>
<tr>
<th>CSEL</th>
<th>VSELA</th>
<th>VSELB</th>
<th>SELECTED CARD</th>
<th>VOLTAGES A</th>
<th>VOLTAGES B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A</td>
<td>1.8V</td>
<td>1.8V</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A</td>
<td>1.8V</td>
<td>3V</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A</td>
<td>3V</td>
<td>1.8V</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A</td>
<td>3V</td>
<td>3V</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>1.8V</td>
<td>1.8V</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>B</td>
<td>1.8V</td>
<td>3V</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>B</td>
<td>3V</td>
<td>1.8V</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>3V</td>
<td>3V</td>
</tr>
</tbody>
</table>

Dynamic Pull-Up Current Sources

The current sources on the bidirectional pins (DATA, I/OA,B) are dynamically activated to achieve a fast rise time with a relatively small static current. Once a bidirectional pin is relinquished, a small start-up current begins to charge the node. An edge rate detector determines if the pin is released by comparing its slew rate with an internal reference value. If a valid transition is detected, a large pull-up current enhances the edge rate on the node. The higher slew rate corroborates the decision to charge the node thereby affecting a dynamic form of hysteresis.

![Dynamic Pull-Up Current Source](image)

Bidirectional Channels

The bidirectional channels are level shifted to the appropriate VCCA,B voltages at the I/OA,B pins. An NMOS pass transistor performs the level shifting. The gate of the NMOS transistor is biased such that the transistor is completely off when both sides have relinquished the channel. If one side of the channel asserts a LOW, then the transistor will convey the LOW to the other side. Note that current passes from the receiving side of the channel to the transmitting side. The low output voltage of the receiving side will be dependent upon the voltage at the transmitting side plus the IR drop of the pass transistor.

When a card socket is selected, it becomes a candidate to drive data on the DATA pin and likewise receive data from the DATA pin. When a card socket is deselected, its I/O pin will be pulled HIGH and communication with the DATA pin will be disabled. If both channels are disabled, a weak pull-up ensures that the DATA pin is held HIGH, as long as DVCC is powered.

Reset Channels

When a card is selected, the reset channel provides a level shifted path from the RSTIN pin to the RST pin of the selected card. When a card is deselected, the last state of the RSTA,B pin is latched. This allows a deselected card to remain active, and therefore eliminates delays associated with card initialization.

Clock Run Mode

Various SIM/Smart Cards may have different requirements for the state of the clock pin when the channel is not open for communication. The CLKRUNA,B pins allow the user to select whether the clock is brought LOW after the channel is deselected or allowed to run. If a channel is enabled, bringing its CLKRUN pin HIGH will transmit the clock to the corresponding card socket, whether or not the channel is selected using the CSEL.
Activation/Deactivation

Activation and deactivation sequencing is handled by built-in circuitry. Each channel may be activated or deactivated independently of the other. The activation sequence for each channel is initiated by bringing the ENABLEA,B pin HIGH. The activation sequence is outlined below:

1. The RSTA,B, CLKA,B and I/OA,B pins are held LOW.
2. $V_{CCA,B}$ is enabled.
3. After $V_{CCA,B}$ is stable at its selected level, the I/OA,B and RSTA,B channels are enabled.
4. The clock channel is enabled on the rising edge of the second clock cycle after the I/OA,B pin is enabled.

The deactivation sequence is initiated by bringing the ENABLEA,B pin LOW. The deactivation sequence is outlined below:

1. The reset channel is disabled and RSTA,B is brought LOW.
2. The clock channel is disabled and the CLKA,B pin is brought LOW two clock cycles after ENABLEA,B is brought LOW. If the clock is not running, the clock channel will be disabled approximately 9μs after the ENABLEA,B pin is brought LOW.
3. The I/O channel is disabled and the I/OA,B pin is brought LOW approximately 9μs after the ENABLEA,B pin is brought LOW.
4. $V_{CCA,B}$ will be depowered after the I/OA,B pin is brought LOW.

The activation or deactivation sequences will take place every time a card channel is enabled or disabled. When a channel is deselected using the CSEL pin, the RSTA,B state is latched, the I/OA,B channel becomes high impedance and CLKA,B is brought LOW after a maximum of two clock cycles.

Fault Detection

The $V_{CCA,B}$, I/OA,B, RSTA,B, CLKA,B and DATA pins are all protected against short-circuit faults. While there are no logic outputs to indicate that a fault has occurred, these pins will be able to tolerate the fault condition until it has been removed.

The $V_{CCA,B}$, I/OA,B, and RSTA,B pins possess fault protection circuitry which will limit the current available to the pins. Each V_{CC} pin is capable of supplying approximately 90mA (typ) before the output voltage is reduced.

The CLKA,B pins are designed to tolerate faults by reducing the current drive capability of their output stages. After a fault is detected by the internal fault detection logic, the logic waits for a fault detection delay to elapse before reducing the current drive capability of the output stage. The reduced current drive allows the LTC4558 to detect when the fault has been removed.
APPLICATIONS INFORMATION

10kV ESD Protection

All Smart Card pins (CLKA,B, RSTA,B, I/OA,B, VCCA,B and GND) can withstand over 10kV of human body model ESD in-situ. In order to ensure proper ESD protection, careful board layout is required. The GND pin should be tied directly to a ground plane. The VCCA,B capacitors should be located very close to the VCCA,B pins and tied immediately to the ground plane.

Capacitor Selection

A total of four capacitors is required to operate the LTC4558. An input bypass capacitor is required at VBATT and DVCC. Output bypass capacitors are required on each of the Smart Card VCC pins.

There are several types of ceramic capacitors available, each having considerably different characteristics. For example, X7R ceramic capacitors have excellent voltage and temperature stability but relatively low packing density. Y5V and X5R ceramic capacitors have apparently higher packing density but poor performance over their rated voltage or temperature ranges. Under certain voltage and temperature conditions Y5V, X5R and X7R ceramic capacitors can be compared directly by case size rather than specified value for a desired minimum capacitance.

The VCCA,B outputs should be bypassed to GND with a 1μF capacitor. A low ESR ceramic capacitor is recommended on each VCC pin to ensure ESD compliance.

V_BATT and D_VCC should be bypassed with 0.1μF ceramic capacitors.

Compliance Testing

Inductance due to long leads on type approval equipment can cause ringing and overshoot that leads to testing problems. Small amounts of capacitance and damping resistors can be included in the application without compromising the normal electrical performance of the LTC4558 or Smart Card system. Generally a 100Ω resistor and a 20pF capacitor will accomplish this, as shown in Figure 2.

Figure 2. Additional Components for Improved Compliance Testing
PACKAGE DESCRIPTION

UD Package
20-Lead Plastic QFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1720 Rev A)

NOTE:
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
Related Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1555L/</td>
<td>1MHz, SIM Power Supply and Level Translator for 1.8V/3V/5V SIM Cards</td>
<td>V_{IN}: 2.6V to 6.6V, $V_{OUT} = 1.8$V/3V/5V, $I_Q = 32$µA, $I_{SD} < 1$µA, SSOP16</td>
</tr>
<tr>
<td>LTC1555L-1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTC1555/LTC1556</td>
<td>650kHz, SIM Power Supply and Level Translator for 3V/5V SIM Cards</td>
<td>V_{IN}: 2.7V to 10V, $V_{OUT} = 3$V/5V, $I_Q = 60$µA, $I_{SD} < 1$µA, SSOP16, SSOP20</td>
</tr>
<tr>
<td>LTC1755/LTC1756</td>
<td>850kHz, Smart Card Interface with Serial Control for 3V/5V Smart Card Applications</td>
<td>V_{IN}: 2.7V to 7V, $V_{OUT} = 3$V/5V, $I_Q = 60$µA, $I_{SD} < 1$µA, SSOP16, SSOP24</td>
</tr>
<tr>
<td>LTC1955</td>
<td>Dual Smart Card Interface with Serial Control for 1.8V/3V/5V Smart Card Applications</td>
<td>V_{IN}: 3V to 5.5V, $V_{OUT} = 1.8$V/3V/5V, $I_Q = 200$µA, $I_{SD} < 1$µA, QFN32</td>
</tr>
<tr>
<td>LTC1986</td>
<td>900kHz, SIM Power Supply for 3V/5V SIM Cards</td>
<td>V_{IN}: 2.6V to 4.4V, $V_{OUT} = 3$V/5V, $I_Q = 14$µA, $I_{SD} < 1$µA, ThinSOT</td>
</tr>
<tr>
<td>LTC4555</td>
<td>SIM Power Supply and Level Translator for 1.8V/3V SIM Cards</td>
<td>V_{IN}: 3V to 6V, $V_{OUT} = 1.8$V/3V, $I_Q = 40$µA, $I_{SD} < 1$µA, QFN16</td>
</tr>
<tr>
<td>LTC4556</td>
<td>Smart Card Interface with Serial Control</td>
<td>V_{IN}: 2.7V to 5.5V, $V_{OUT} = 1.8$V/3V/5V, $I_Q = 250$µA, $I_{SD} < 1$µA, 4 x 4 QFN24</td>
</tr>
<tr>
<td>LTC4557</td>
<td>Dual SIM/Smart Card Power Supply and Level Translator for 1.8V/3V Cards</td>
<td>V_{IN}: 2.7V to 5.5V, $V_{OUT} = 1.8$V/3V, $I_Q = 250$µA, $I_{SD} < 1$µA, QFN16</td>
</tr>
</tbody>
</table>

ThinSOT is a trademark of Linear Technology Corporation.