FEATURES

- Wide Operating V_{IN} Range: Up to 80V
- Rugged Architecture Tolerant of 100V V_{IN} Transients
- Powerful 1.5Ω Driver Pull-Down
- Powerful 2.4A Peak Current Driver Pull-Up
- 7ns Fall Time Driving 1000pF Load
- 10ns Rise Time Driving 1000pF Load
- Drives Standard Threshold MOSFETs
- TTL/CMOS Compatible Inputs with Hysteresis
- Input Thresholds are Independent of Supply
- Undervoltage Lockout
- Low Profile (1mm) SOT-23 (ThinSOT)™ and Thermally Enhanced 8-Pin MSOP Packages

APPLICATIONS

- Telecommunications Power Systems
- Distributed Power Architectures
- Server Power Supplies
- High Density Power Modules

DESCRIPTION

The LTC®4440 is a high frequency high side N-channel MOSFET gate driver that is designed to operate in applications with V_{IN} voltages up to 80V. The LTC4440 can also withstand and continue to function during 100V V_{IN} transients. The powerful driver capability reduces switching losses in MOSFETs with high gate capacitances. The LTC4440’s pull-up has a peak output current of 2.4A and its pull-down has an output impedance of 1.5Ω.

The LTC4440 features supply independent TTL/CMOS compatible input thresholds with 350mV of hysteresis. The input logic signal is internally level-shifted to the bootstrapped supply, which may function at up to 115V above ground.

The LTC4440 contains both high side and low side undervoltage lockout circuits that disable the external MOSFET when activated.

The LTC4440 is available in the low profile (1mm) SOT-23 and thermally enhanced 8-lead MSOP packages.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>LTC4440</th>
<th>LTC4440-5</th>
<th>LTC4440A-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Operating TS</td>
<td>80V</td>
<td>60V</td>
<td>80V</td>
</tr>
<tr>
<td>Absolute Max TS</td>
<td>100V</td>
<td>80V</td>
<td>100V</td>
</tr>
<tr>
<td>MOSFET Gate Drive</td>
<td>8V to 15V</td>
<td>4V to 15V</td>
<td>4V to 15V</td>
</tr>
<tr>
<td>V_{CC} UV$^+$</td>
<td>6.3V</td>
<td>3.2V</td>
<td>3.2V</td>
</tr>
<tr>
<td>V_{CC} UV$^-$</td>
<td>6.0V</td>
<td>3.04V</td>
<td>3.04V</td>
</tr>
</tbody>
</table>

TYPICAL APPLICATION

Synchronous Phase-Modulated Full-Bridge Converter

LTC4440 Driving a 1000pF Capacitive Load
ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage
- \(V_{CC} \) ... –0.3V to 15V
- \(V_{BOOS} – TS \) ... –0.3V to 15V

INP Voltage ... –0.3V to 15V

BOOST Voltage (Continuous) –0.3V to 95V

BOOST Voltage (100ms) –0.3V to 115V

TS Voltage (Continuous) –5V to 80V

TS Voltage (100ms) –5V to 100V

Peak Output Current < 1µs (TG) 4A

Driver Output TG (with Respect to TS) –0.3V to 15V

Operating Temperature Range (Note 2)

LTC4440E ... –40°C to 85°C

LTC4440I ... –40°C to 125°C

Junction Temperature (Note 3) 125°C

Storage Temperature Range –65°C to 150°C

Lead Temperature (Soldering, 10 sec) 300°C

EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4440EMS8E#PBF | LTC4440EMS8E#TRPBF | LTF9 | 8-Lead Plastic MSOP | –40°C to 85°C
LTC4440IMS8E#PBF | LTC4440IMS8E#TRPBF | LTF9 | 8-Lead Plastic MSOP | –40°C to 125°C
LTC4440ES6#PBF | LTC4440ES6#TRPBF | LTZY | 6-Lead Plastic SOT-23 | –40°C to 85°C
LTC4440IS6#PBF | LTC4440IS6#TRPBF | LTZY | 6-Lead Plastic SOT-23 | –40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V_{CC} = V_{BOOST} = 12V$, $V_{TS} = GND = 0V$, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{VCC}</td>
<td>DC Supply Current</td>
<td>Normal Operation</td>
<td>$V_{INP} = 0V$</td>
<td>250</td>
<td>400</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UVLO</td>
<td>$V_{CC} < UVLO$ (Falling) – 0.1V</td>
<td>25</td>
<td>80</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>UVLO</td>
<td>Undervoltage Lockout Threshold</td>
<td>V_{CC} Rising</td>
<td>●</td>
<td>5.7</td>
<td>6.5</td>
<td>7.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} Falling</td>
<td>●</td>
<td>5.4</td>
<td>6.2</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bootstrapped Supply (BOOST – TS)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{BOOST}</td>
<td>DC Supply Current</td>
<td>Normal Operation</td>
<td>$V_{INP} = 0V$</td>
<td>110</td>
<td>180</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UVLO</td>
<td>$V_{BOOST} – V_{TS}$ < $UVLO_{HS}$ (Falling) – 0.1V, $V_{CC} = INP = 5V$</td>
<td>86</td>
<td>170</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>$UVLO_{HS}$</td>
<td>Undervoltage Lockout Threshold</td>
<td>$V_{BOOST} – V_{TS}$ Rising</td>
<td>●</td>
<td>6.75</td>
<td>7.4</td>
<td>7.95</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{BOOST} – V_{TS}$ Falling</td>
<td>●</td>
<td>6.25</td>
<td>6.9</td>
<td>7.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Signal (INP)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High Input Threshold</td>
<td>INP Ramping High</td>
<td></td>
<td>1.3</td>
<td>1.6</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low Input Threshold</td>
<td>INP Ramping Low</td>
<td></td>
<td>0.85</td>
<td>1.25</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IH} – V_{IL}$</td>
<td>Input Voltage Hysteresis</td>
<td></td>
<td></td>
<td>0.350</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{INP}</td>
<td>Input Pin Bias Current</td>
<td></td>
<td></td>
<td>±0.01</td>
<td>±2</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Output Gate Driver (TG)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>High Output Voltage</td>
<td>$I_{TG} = –10mA$, $V_{OH} = V_{BOOST} – V_{TG}$</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low Output Voltage</td>
<td>$I_{TG} = 100mA$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ C \leq T_A \leq 85^\circ C$</td>
<td></td>
<td>150</td>
<td>220</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$–40^\circ C \leq T_A \leq 125^\circ C$</td>
<td></td>
<td>150</td>
<td>300</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_{PU}</td>
<td>Peak Pull-Up Current</td>
<td></td>
<td></td>
<td>1.7</td>
<td>2.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ C \leq T_A \leq 85^\circ C$</td>
<td></td>
<td>1.5</td>
<td>2.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>R_{DS}</td>
<td>Output Pull-Down Resistance</td>
<td></td>
<td></td>
<td>1.5</td>
<td>2.2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ C \leq T_A \leq 85^\circ C$</td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$–40^\circ C \leq T_A \leq 125^\circ C$</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching Timing

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_r</td>
<td>Output Rise Time</td>
<td>10% – 90%, $C_L = 1nF$</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% – 90%, $C_L = 10nF$</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Output Fall Time</td>
<td>10% – 90%, $C_L = 1nF$</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% – 90%, $C_L = 10nF$</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Output Low-High Propagation Delay</td>
<td>$0^\circ C \leq T_A \leq 85^\circ C$</td>
<td></td>
<td>30</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$–40^\circ C \leq T_A \leq 125^\circ C$</td>
<td></td>
<td>30</td>
<td>75</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Output High-Low Propagation Delay</td>
<td>$0^\circ C \leq T_A \leq 85^\circ C$</td>
<td></td>
<td>28</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$–40^\circ C \leq T_A \leq 125^\circ C$</td>
<td></td>
<td>28</td>
<td>75</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The LTC4440E is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTC4440I is guaranteed and tested over the –40°C to 125°C operating temperature range.

Note 3: T_J is calculated from the ambient temperature T_A and power dissipation PD according to the following formula:

$$ T_J = T_A + (PD \times 0\mu A^\circ C/W) $$

Note 4: Failure to solder the exposed back side of the MS8E package to the PC board will result in a thermal resistance much higher than 40°C/W.
TYPICAL PERFORMANCE CHARACTERISTICS

VCC Supply Quiescent Current vs Voltage

![Graph showing VCC Supply Quiescent Current vs Voltage](image1)

BOOST – TS Supply Quiescent Current vs Voltage

![Graph showing BOOST – TS Supply Quiescent Current vs Voltage](image2)

Output Low Voltage (VOL) vs Supply Voltage

![Graph showing Output Low Voltage (VOL) vs Supply Voltage](image3)

Output High Voltage (VOH) vs Supply Voltage

![Graph showing Output High Voltage (VOH) vs Supply Voltage](image4)

Input Thresholds (INP) vs Supply Voltage

![Graph showing Input Thresholds (INP) vs Supply Voltage](image5)

VCC Supply Current at TTL Input Levels

![Graph showing VCC Supply Current at TTL Input Levels](image6)

VCC Supply Current (VCC = 12V) vs Temperature

![Graph showing VCC Supply Current (VCC = 12V) vs Temperature](image7)

VCC Undervoltage Lockout Thresholds vs Temperature

![Graph showing VCC Undervoltage Lockout Thresholds vs Temperature](image8)

For more information www.linear.com/LTC4440
TYPICAL PERFORMANCE CHARACTERISTICS

Boost Supply Current vs Temperature

![Graph showing Boost Supply Current vs Temperature](image)

Boost Supply (BOOST – TS) Undervoltage Lockout Thresholds vs Temperature

![Graph showing Boost Supply (BOOST – TS) Undervoltage Lockout Thresholds vs Temperature](image)

Input Threshold vs Temperature

![Graph showing Input Threshold vs Temperature](image)

Output Driver Pull-Down Resistance vs Temperature

![Graph showing Output Driver Pull-Down Resistance vs Temperature](image)

Peak Driver (TG) Pull-Up Current vs Temperature

![Graph showing Peak Driver (TG) Pull-Up Current vs Temperature](image)

Propagation Delay vs Temperature

![Graph showing Propagation Delay vs Temperature](image)

For more information www.linear.com/LTC4440
PIN FUNCTIONS

SOT-23 Package

VCC (Pin 1): Chip Supply. This pin powers the internal low side circuitry. A low ESR ceramic bypass capacitor should be tied between this pin and the GND pin (Pin 2).

GND (Pin 2): Chip Ground.

INP (Pin 3): Input Signal. TTL/CMOS compatible input referenced to GND (Pin 2).

TS (Pin 4): Top (High Side) Source Connection.

TG (Pin 5): High Current Gate Driver Output (Top Gate). This pin swings between TS and BOOST.

BOOST (Pin 6): High Side Bootstrapped Supply. An external capacitor should be tied between this pin and TS (Pin 4). Normally, a bootstrap diode is connected between VCC (Pin 1) and this pin. Voltage swing at this pin is from VCC – VD to VIN + VCC – VD, where VD is the forward voltage drop of the bootstrap diode.

Exposed Pad MS8E Package

INP (Pin 1): Input Signal. TTL/CMOS compatible input referenced to GND (Pin 2).

GND (Pins 2, 4): Chip Ground.

VCC (Pin 3): Chip Supply. This pin powers the internal low side circuitry. A low ESR ceramic bypass capacitor should be tied between this pin and the GND pin (Pin 2).

NC (Pin 5): No Connect. No connection required. For convenience, this pin may be tied to Pin 6 (BOOST) on the application board.

BOOST (Pin 6): High Side Bootstrapped Supply. An external capacitor should be tied between this pin and TS (Pin 8). Normally, a bootstrap diode is connected between VCC (Pin 3) and this pin. Voltage swing at this pin is from VCC – VD to VIN + VCC – VD, where VD is the forward voltage drop of the bootstrap diode.

TG (Pin 7): High Current Gate Driver Output (Top Gate). This pin swings between TS and BOOST.

TS (Pin 8): Top (High Side) Source Connection.

Exposed Pad (Pin 9): Ground. Must be electrically connected to Pins 2 and 4 and soldered to PCB ground for optimum thermal performance.
BLOCK DIAGRAM

- **VIN**: UP TO 80V, TRANSIENT UP TO 100V
- **LEVEL SHIFTER**: 8V TO 15V
- **INPUT (INP)**
 - **INPUT RISE/FALL TIME**: <10ns
- **OUTPUT (TG)**
 - **90%**: 10%
 - **tPLH**: tPHL

TIMING DIAGRAM

- **INPUT RISE/FALL TIME**: <10ns
Overview

The LTC4440 receives a ground-referenced, low voltage digital input signal to drive a high side N-channel power MOSFET whose drain can float up to 100V above ground, eliminating the need for a transformer between the low voltage control signal and the high side gate driver. The LTC4440 normally operates in applications with input supply voltages (VIN) up to 80V, but is able to withstand and continue to function during 100V, 100ms transients on the input supply.

The powerful output driver of the LTC4440 reduces the switching losses of the power MOSFET, which increase with transition time. The LTC4440 is capable of driving a 1nF load with 10ns rise and 7ns fall times using a bootstrapped supply voltage VBOOST–TS of 12V.

Input Stage

The LTC4440 employs TTL/CMOS compatible input thresholds that allow a low voltage digital signal to drive standard power MOSFETs. The LTC4440 contains an internal voltage regulator that biases the input buffer, allowing the input thresholds (VITH = 1.6V, VIL = 1.25V) to be independent of variations in VCC. The 350mV hysteresis between VITH and VIL eliminates false triggering due to noise during switching transitions. However, care should be taken to keep this pin from any noise pickup, especially in high frequency, high voltage applications. The LTC4440 input buffer has a high input impedance and draws negligible input current, simplifying the drive circuitry required for the input.

Output Stage

A simplified version of the LTC4440’s output stage is shown in Figure 3. The pull-down device is an N-channel MOSFET (N1) and the pull-up device is an NPN bipolar junction transistor (Q1). The output swings from the lower rail (TS) to within an NPN VBE (~0.7V) of the positive rail (BOOST). This large voltage swing is important in driving external power MOSFETs, whose RDS(ON) is inversely proportional to its gate overdrive voltage (VGS – VTH).

The LTC4440’s peak pull-up (Q1) current is 2.4A while the pull-down (N1) resistance is 1.5Ω. The low impedance of N1 is required to discharge the power MOSFET’s gate capacitance during high-to-low signal transitions. When the power MOSFET’s gate is pulled low (gate shorted to source through N1) by the LTC4440, its source (TS) is pulled low by its load (e.g., an inductor or resistor). The slew rate of the source/gate voltage causes current to flow back to the MOSFET’s gate through the gate-to-drain capacitance (CGD). If the MOSFET driver does not have sufficient sink current capability (low output impedance), the current through the power MOSFET’s CGD can momentarily pull the gate high, turning the MOSFET back on.

A similar scenario exists when the LTC4440 is used to drive a low side MOSFET. When the low side power MOSFET’s gate is pulled low by the LTC4440, its drain voltage is pulled high by its load (e.g., inductor or resistor). The slew rate of the drain voltage causes current to flow back to the MOSFET’s gate through its gate-to-drain capacitance. If

Figure 3. Capacitance Seen by TG During Switching
APPLICATIONS INFORMATION

the MOSFET driver does not have sufficient sink current capability (low output impedance), the current through the power MOSFET’s C_{GD} can momentarily pull the gate high, turning the MOSFET back on.

Rise/Fall Time

Since the power MOSFET generally accounts for the majority of the power loss in a converter, it is important to quickly turn it on or off, thereby minimizing the transition time in its linear region. The LTC4440 can drive a 1nF load with a 10ns rise time and 7ns fall time.

The LTC4440’s rise and fall times are determined by the peak current capabilities of Q1 and N1. The predriver that drives Q1 and N1 uses a nonoverlapping transition scheme to minimize cross-conduction currents. N1 is fully turned off before Q1 is turned on and vice versa.

Power Dissipation

To ensure proper operation and long-term reliability, the LTC4440 must not operate beyond its maximum temperature rating. Package junction temperature can be calculated by:

$$T_J = T_A + PD (\theta_{JA})$$

where:

- T_J = Junction Temperature
- T_A = Ambient Temperature
- PD = Power Dissipation
- θ_{JA} = Junction-to-Ambient Thermal Resistance

Power dissipation consists of standby and switching power losses:

$$PD = P_{STDBY} + P_{AC}$$

where:

- P_{STDBY} = Standby Power Losses
- P_{AC} = AC Switching Losses

The LTC4440 consumes very little current during standby. The DC power loss at $V_{CC} = 12V$ and $V_{BOOST-\text{TS}} = 12V$ is only $(250\mu A + 110\mu A)(12V) = 4.32\text{mW}.$

AC switching losses are made up of the output capacitive load losses and the transition state losses. The capacitive load losses are primarily due to the large AC currents needed to charge and discharge the load capacitance during switching. Load losses for the output driver driving a pure capacitive load C_{OUT} would be:

$$\text{Load Capacitive Power} = (C_{\text{OUT}})(f)(V_{\text{BOOST-\text{TS}}})^2$$

The power MOSFET’s gate capacitance seen by the driver output varies with its V_{GS} voltage level during switching. A power MOSFET’s capacitive load power dissipation can be calculated using its gate charge, Q_G. The Q_G value corresponding to the MOSFET’s V_{GS} value (V_{CC} in this case) can be readily obtained from the manufacturer’s Q_G vs V_{GS} curves:

$$\text{Load Capacitive Power (MOS)} = (V_{\text{BOOST-\text{TS}}})(Q_G)(f)$$

Transition state power losses are due to both AC currents required to charge and discharge the driver’s internal nodal capacitances and cross-conduction currents in the internal gates.
APPLICATIONS INFORMATION

Undervoltage Lockout (UVLO)

The LTC4440 contains both low side and high side undervoltage lockout detectors that monitor VCC and the bootstrapped supply VBOOST–TS. When VCC falls below 6.2V, the internal buffer is disabled and the output pin OUT is pulled down to TS. When VBOOST – TS falls below 6.9V, OUT is pulled down to TS. When both supplies are undervoltage, OUT is pulled low to TS and the chip enters a low current mode, drawing approximately 25μA from VCC and 86μA from BOOST.

Bypassing and Grounding

The LTC4440 requires proper bypassing on the VCC and VBOOST–TS supplies due to its high speed switching (nanoseconds) and large AC currents (Amperes). Careless component placement and PCB trace routing may cause excessive ringing and under/overshoot.

To obtain the optimum performance from the LTC4440:

A. Mount the bypass capacitors as close as possible between the VCC and GND pins and the BOOST and TS pins. The leads should be shortened as much as possible to reduce lead inductance.

B. Use a low inductance, low impedance ground plane to reduce any ground drop and stray capacitance. Remember that the LTC4440 switches >2A peak currents and any significant ground drop will degrade signal integrity.

C. Plan the power/ground routing carefully. Know where the large load switching current is coming from and going to. Maintain separate ground return paths for the input pin and the output power stage.

D. Keep the copper trace between the driver output pin and the load short and wide.

E. When using the MS8E package, be sure to solder the exposed pad on the back side of the LTC4440 package to the board. Correctly soldered to a 2500mm² double-sided 1oz copper board, the LTC4440 has a thermal resistance of approximately 40°C/W. Failure to make good thermal contact between the exposed back side and the copper board will result in thermal resistances far greater than 40°C/W.
TYPICAL APPLICATIONS

LTC3722/LTC4440 420W 36V-72V in to 12V/35A isolated Full-Bridge Supply

For more information www.linear.com/LTC4440
PACKAGE DESCRIPTION

MS8E Package
8-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG # 05-08-1662 Rev K)

NOTE:
1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BET 0.102mm (.004") MAX
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD
 SHALL NOT EXCEED 0.254mm (.010") PER SIDE.

For more information www.linear.com/LTC4440
PACKAGE DESCRIPTION

S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1636)

Recommended Solder Pad Layout
PER IPC CALCULATOR

NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254mm
6. JEDEC PACKAGE REFERENCE IS MO-193

For more information www.linear.com/LTC4440
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1013</td>
<td>Added comparison table</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0215</td>
<td>Released I-Grade Version</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
TYPICAL APPLICATION

LTC3723-2/LTC4440/LTC3901 240W 42V-56VIN to Unregulated 12V Half-Bridge Converter

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC4441</td>
<td>6A N-Channel MOSFET Gate Driver</td>
<td>Up to 25V Supply Voltage, Adjustable Gate Drive Voltage from 5V to 8V</td>
</tr>
<tr>
<td>LT1910</td>
<td>Protected High Side MOSFET Driver</td>
<td>Up to 48V/60V Surge Supply Voltage, Adjustable Current Limit</td>
</tr>
<tr>
<td>LTC4442</td>
<td>High Speed Synchronous N-Channel MOSFET Driver</td>
<td>Up to 38V Supply Voltage, 6V ≤ VCC ≤ 9.5V</td>
</tr>
<tr>
<td>LTC4449</td>
<td>High Speed Synchronous N-Channel MOSFET Driver</td>
<td>Up to 38V Supply Voltage, 4.5V ≤ VCC ≤ 6.5V</td>
</tr>
<tr>
<td>LTC4444/4-5</td>
<td>High Voltage Synchronous N-Channel MOSFET Driver with Shoot-Through Protection</td>
<td>Up to 100V Supply Voltage, 4.5V/7.2V ≤ VCC ≤ 13.5V, 3A Peak Pull-Up/0.55Ω Peak Pull-Down</td>
</tr>
<tr>
<td>LTC4446</td>
<td>High Voltage Synchronous N-Channel MOSFET Driver without Shoot-Through Protection</td>
<td>Up to 100V Supply Voltage, 7.2V ≤ VCC ≤ 13.5V, 3A Peak Pull-Up/0.55Ω Peak Pull-Down</td>
</tr>
<tr>
<td>LTC1154</td>
<td>High Side Micropower MOSFET Driver</td>
<td>Up to 18V Supply Voltage, 85μA Quiescent Current, Internal Charge Pump</td>
</tr>
<tr>
<td>LTC1155</td>
<td>Dual High Side Micropower MOSFET Driver</td>
<td>Up to 18V Supply Voltage, 85μA Quiescent Current, Internal Charge Pump</td>
</tr>
<tr>
<td>LTC3900</td>
<td>Synchronous Rectifier Driver for Forward Converters</td>
<td>Pulse Transformer Synchronous Input</td>
</tr>
<tr>
<td>LTC3901</td>
<td>Synchronous Rectifier Driver for Push-Pull and Full-Bridge Converters</td>
<td>Pulse Transformer Synchronous Input</td>
</tr>
<tr>
<td>LTC3722-1/2</td>
<td>Synchronous Phase Modulated Full-Bridge Controllers</td>
<td>Adjustable Synchronous Rectification Timing for Highest Efficiency</td>
</tr>
<tr>
<td>LTC3723-1/2</td>
<td>Synchronous Push-Pull and Full-Bridge Controllers</td>
<td>High Efficiency with On-Chip MOSFET Drivers</td>
</tr>
</tbody>
</table>