FEATURES

- 50mΩ Ideal Diode from V_IN to V_OUT
- Smart Charge Current Profile Limits Inrush Current
- Internal Cell Balancer (No External Resistors)
- Programmable Output Voltage (LDO Mode)
- Programmable V_IN to V_OUT Current Limit
- Continuous Monitoring of V_IN to V_OUT Current via PROG Pin
- Low Quiescent Current: 20µA
- V_IN Power Fail, PGOOD Indicator
- 2.45V/2.7V Cell Protection Shunts (4.9V/5.4V SuperCap Max Top-Off Voltage)
- 3A Peak Current Limit, Thermal Limiting
- Tiny Application Circuit, 3mm × 3mm × 0.75mm DFN and 12-Lead MSOP Packages

APPLICATIONS

- High Peak Power Battery/USB Powered Equipment
- Industrial PDAs
- Portable Instruments/Monitoring Equipment
- Power Meters, SuperCap Backup Circuits
- PC Card/USB Modems

DESCRIPTION

The LTC4425 is a constant-current/constant-voltage linear charger designed to charge a 2-cell supercap stack from either a Li-Ion/Polymer battery, a USB port, or a 2.7V to 5.5V current-limited supply. The part operates as an ideal diode with an extremely low 50mΩ on-resistance making it suitable for high peak-power/low average power applications. The LTC4425 charges the output capacitors to an externally programmed output voltage in LDO mode at a constant charge current, or to V_IN in normal mode with a smart charge current profile to limit the inrush current until the V_IN to V_OUT differential is less than 250mV. In addition the LTC4425 can be set to clamp the output voltage to 4.9V or 5.4V.

Charge current (V_OUT current limit) is programmed by connecting a resistor between PROG and GND. The voltage on the PROG pin represents the current flowing from V_IN to V_OUT for current monitoring. An internal active balancing circuit maintains equal voltages across each supercapacitor and clamps the peak voltage across each cell to a pin-selectable maximum value. The LTC4425 operates at a very low 20µA quiescent current (shutdown current <3µA) and is available in a low profile 12-pin 3mm × 3mm DFN or a 12-lead MSOP package.

TYPICAL APPLICATION

Charging 2-Cell Series Supercapacitor from Li-Ion Source

Charge Current vs V_IN to V_OUT Differential
LTC4425

ABSOLUTE MAXIMUM RATINGS
(Notes 1, 2)

\[V_{IN}, V_{OUT}, V_{MID}, FB, PFI_RET, PFO \] Voltage: –0.3V to 6V

\[EN, SEL, PFI \] Voltage: –0.3V to MAX(V_{IN}, V_{OUT}) + 0.3V

Operating Junction Temperature: \(-40°C\) to \(125°C\)

Storage Temperature Range: \(-65°C\) to \(150°C\)

Lead Temperature, MSOP Only (Soldering, 10 sec) \(300°C\)

PIN CONFIGURATION

![TOP VIEW](image)

ORDER INFORMATION

(http://www.linear.com/product/LTC4425#orderinfo)

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC4425EDD#PBF</td>
<td>LTC4425EDD#TRPBF</td>
<td>LFMQ</td>
<td>12-Lead (3mm x 3mm) Plastic DFN</td>
<td>(-40°C) to (125°C)</td>
</tr>
<tr>
<td>LTC4425IDD#PBF</td>
<td>LTC4425IDD#TRPBF</td>
<td>LFMQ</td>
<td>12-Lead (3mm x 3mm) Plastic DFN</td>
<td>(-40°C) to (125°C)</td>
</tr>
<tr>
<td>LTC4425EMSE#PBF</td>
<td>LTC4425EMSE#TRPBF</td>
<td>4425</td>
<td>12-Lead Plastic MSOP</td>
<td>(-40°C) to (125°C)</td>
</tr>
<tr>
<td>LTC4425IMSE#PBF</td>
<td>LTC4425IMSE#TRPBF</td>
<td>4425</td>
<td>12-Lead Plastic MSOP</td>
<td>(-40°C) to (125°C)</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tapes and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.
ELECTRICAL CHARACTERISTICS

The • denotes the specifications which apply over the full operating junction temperature range, otherwise specifications are at $T_A = 25^\circ C$, $V_{IN} = 3.8V$. (Note 4)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating Supply Range</td>
</tr>
<tr>
<td>$I_{Q(IN)}$</td>
<td>Quiescent Current from V_{IN}</td>
</tr>
<tr>
<td>$I_{Q(OUT)}$</td>
<td>Quiescent Current from V_{OUT}</td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Quiescent Current in Shutdown</td>
</tr>
<tr>
<td>V_{RWD}</td>
<td>Forward Voltage</td>
</tr>
<tr>
<td>R_{RWD}</td>
<td>Open Loop Forward On-Resistance</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Voltage</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback Pin Input Leakage</td>
</tr>
<tr>
<td>I_{CHG}</td>
<td>Charge Current in LDO Mode (FB = 0V)</td>
</tr>
<tr>
<td>V_{PROG}</td>
<td>PROG Pin Servo Voltage in LDO Mode</td>
</tr>
<tr>
<td>I_{PROG}</td>
<td>Ratio of Charge Current to PROG Pin Current</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Charger Short-Circuit Current Limit</td>
</tr>
<tr>
<td>T_{LIM}</td>
<td>Junction Temperature in Constant Temperature Mode (Note 5)</td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>Maximum Voltage Across the Top Capacitor</td>
</tr>
<tr>
<td>V_{RIP}</td>
<td>V_{OUT} Clamp Hysteresis</td>
</tr>
<tr>
<td>$I_{SH(TOP)}$</td>
<td>Top Shunt Current</td>
</tr>
<tr>
<td>$I_{SH(BOT)}$</td>
<td>Bottom Shunt Current</td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>Maximum Voltage Across the Bottom Capacitor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$I_{Q(IN)}$</td>
<td>20</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Q(OUT)}$</td>
<td>3</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SD}</td>
<td>3</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{RWD}</td>
<td>15</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{RWD}</td>
<td>50</td>
<td>mΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>1.18</td>
<td>1.2</td>
<td>1.22</td>
<td>V</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CHG}</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CHG}</td>
<td>0.2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{PROG}</td>
<td>1.00</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{PROG}</td>
<td>1000</td>
<td>mA/mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>3</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{LIM}</td>
<td>105</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>2.45</td>
<td>2.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>2.7</td>
<td>2.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>2.45</td>
<td>2.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CLAMP}</td>
<td>2.7</td>
<td>2.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{RIP}</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SH(TOP)}$</td>
<td>160</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SH(BOT)}$</td>
<td>140</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating junction temperature range, otherwise specifications are at $T_A = 25^\circ C$, $V_{IN} = 3.8V$. (Note 4)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leakage Balancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{MID} Output Voltage</td>
<td>$V_{OUT} = 3.6V$</td>
<td>1.76</td>
<td>1.8</td>
<td>1.84</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{MID} Maximum Current Sourcing Capability</td>
<td>$V_{MID} < V_{OUT}/2$, $V_{MID} < V_{CLAMP}$</td>
<td>0.7</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>V_{MID} Maximum Current Sinking Capability</td>
<td>$V_{MID} > V_{OUT}/2$, $V_{MID} < V_{CLAMP}$</td>
<td>1.2</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>P_{FO}, P_{FI} RET, P_{FI}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Low Voltage (P_{FO}, P_{FI} RET)</td>
<td>$I_{PIN} = 5mA$</td>
<td>65</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Pin Leakage Current (P_{FO}, P_{FI} RET)</td>
<td>$V_{PIN} = 5V$, $EN = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>FB Threshold Voltage for Power Good (Rising)</td>
<td>LDO Mode</td>
<td>●</td>
<td>1.09</td>
<td>1.11</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>Input-to-Output Differential for Power Good (Rising) Normal Mode</td>
<td></td>
<td>265</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>V_{PFI} PFI Threshold (Falling)</td>
<td></td>
<td>●</td>
<td>1.18</td>
<td>1.2</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>PFI Hysteresis</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>I_{PFI} PFI Pin Input Leakage</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Power Good Timer Delay</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>Logic Inputs (EN, SEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{IL} Logic Low Input Voltage</td>
<td></td>
<td>●</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{IH} Logic High Input Voltage</td>
<td></td>
<td>●</td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>I_{IH} Input Current High</td>
<td>EN, SEL Pins at 5.5V</td>
<td>−1</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>I_{IL} Input Current Low</td>
<td>EN, SEL Pins at GND</td>
<td>−1</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The current limit features of this part are intended to protect the IC from short term or intermittent fault conditions. Continuous operation above the maximum specified pin current rating may result in device degradation or failure.

Note 3: Failure to solder the exposed backside of the package to the PC board ground plane will result in a thermal resistance much greater than 43°C/W on the DD package and greater than 35°C/W on MSE package.

Note 4: The LTC4425E (E grade) is guaranteed to meet specifications from 0°C to 85°C junction temperature. Specifications over the −40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LTC4425I (I grade) is guaranteed over the full −40°C to 125°C operating junction temperature range. The junction temperature, T_J, is calculated from the ambient temperature, T_A, and power dissipation, P_D, according to the formula:

$$T_J = T_A + (P_D \cdot \theta_{JA} \degree C/W).$$

Note that the maximum ambient temperature is determined by specific operating conditions in conjunction with board layout, the rated thermal package thermal resistance and other environmental factors.

Note 5: I_{VIN} to V_{OUT} charge current is reduced by thermal foldback as junction temperature approaches 105°C.
TYPICAL PERFORMANCE CHARACTERISTICS \(T_A = 25^\circ C, \) unless otherwise noted.

LDO Regulation Voltage vs Charge Current

LDO Regulation Voltage vs Temperature

Charger FET On-Resistance vs Supply Voltage

Charge Current vs (\(V_{IN} - V_{OUT} \)) Differential

PROG Pin Voltage vs (\(V_{IN} - V_{OUT} \)) Differential

\(V_{IN} = 3.8V \)
\(R_{PROG} = 1k \)
\(V_{OUT} \) SET FOR 3.3V

\(V_{IN} = 3.8V \)
\(R_{PROG} = 1k \)

VIN TO VOUT DIFFERENTIAL (V)

CHARGE CURRENT (mA)

VOUT (V)

TEMPEATURE (°C)

VIN = 3.8V
RPROG = 1k
VOUT SET FOR 3.3V

VIN TO VOUT DIFFERENTIAL (V)

CHARGE CURRENT (mA)

VOUT (V)

ON-RESISTANCE (m/uni03A9)

VIN = 3.8V
VOUT SET FOR 3.3V

VIN TO VOUT DIFFERENTIAL (V)

PROG VOLTAGE (mV)

VOUT (V)

TEMPERATURE (°C)

VIN = 3.8V
RPROG = 1k

VIN TO VOUT DIFFERENTIAL (V)

PROG VOLTAGE (mV)

CURRENT (µA)

VIN = 3.8V

VIN TO VOUT DIFFERENTIAL (V)

PROG VOLTAGE (mV)

CURRENT (µA)

\(V_{IN} \) QUIESCENT CURRENT vs \(V_{OUT} \) in Thermal Regulation

Charge Current vs Junction Temperature

Charge Current vs \(V_{OUT} \) in Thermal Regulation

\(V_{IN} = 3.8V \)
\(R_{PROG} = 1k, FB \) GROUNDED

\(V_{IN} = 3.8V \)
\(FB, PROG \) PINS SHORTED TO GND

AMBIENT TEMP 25°C

\(V_{IN} = 5V \)

THERMAL REGULATION

ON-CHIP POWER DISSIPATION ~4W

CASE TEMP ~100°C

\(V_{OUT} = 3.8V \)

\(V_{OUT} = 2.7V \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)

\(V_{OUT} = 200 \)

\(V_{OUT} = 400 \)

\(V_{OUT} = 600 \)

\(V_{OUT} = 800 \)

\(V_{OUT} = 1200 \)

\(V_{OUT} = 3.3V \)

\(V_{OUT} = 3.6V \)

\(V_{OUT} = 3.9V \)

\(V_{OUT} = 4.2V \)

\(V_{OUT} = 4.5V \)
LTC4425

Typical Performance Characteristics

$T_A = 25°C$, unless otherwise noted.

- **Logic Inputs (EN and SEL)**
 - Threshold Voltage vs Temperature
 - $V_{IN} = 3.8V$

- **Open Drain Outputs**
 - (PFI, RET and PFO)
 - FET On-Resistance vs Temperature
 - $V_{IN} = 3.8V$

- **PROG Pin Short Circuit Charge Current vs Temperature**
 - $V_{IN} = 3.8V$
 - $V_{OUT} = 3.3V$

- **Charge Current vs Voltage Across Top Capacitor ($V_{OUT} - V_{MID}$)**
 - V_{OUT} to V_{MID} differential (V)
 - $V_{IN} = 3.8V$

- **Charge Current vs Voltage Across Bottom Capacitor (V_{MID})**
 - V_{MID} (V)

- **Output Voltage Transient Step Response Waveform (LDO Mode)**
 - $V_{IN} = 3.8V$
 - $V_{OUT} = 3.3V$

- **Output Voltage Waveform When V_{MID} is Shorted to GND**
 - V_{OUT} to V_{MID} differential (V)

- **Output Voltage Waveform When V_{MID} is Shorted to V_{OUT}**
 - $V_{IN} = 3.8V$

- **PROG Pin Soft-Start Waveform**
 - (Normal Mode)

For more information www.linear.com/LTC4425
PIN FUNCTIONS

V\textsubscript{OUT} (Pin 1, 2): Output Pin of the Charger. Typically connects to the top of the 2-cell supercap stack.

PROG (Pin 3): Charge Current Program and Charge Current Monitor Pin. A resistor connected from PROG to ground programs the charge current. In LDO mode, this pin always serves to 1V. However, if the charge current profile is turned on, this pin serves to a voltage between 1V and 0.1V depending on the input-to-output differential. In all cases, the voltage on this pin always represents the actual charge current.

SEL (Pin 4): Logic Input to Select One of the Two Possible Clamp Voltages (V\textsubscript{CLAMP}). If the pin is a logic low, the maximum voltage across any supercap of the stack is 2.45V. If the pin is a logic high, it is 2.7V. Do not float this pin.

FB (Pin 5): In LDO mode, output voltage is programmed by a resistor divider from V\textsubscript{OUT} via the FB pin. In this mode, the voltage on this pin always servos to the internal reference voltage of 1.2V. If the FB pin is pulled up to V\textsubscript{IN}, the LDO mode is disabled and the charge current profile mode is turned on. Shorting the FB pin to GND turns off charge current profile mode. Do not float this pin.

EN (Pin 6): Digital Input to Enable the Charger. If this pin is a logic high, the part is enabled and it draws only 20\textmu{A} of quiescent current from the input or output when idle. If this pin is a logic low, the part is in shutdown mode and draws less than 3\textmu{A}. Do not float this pin.

PFI_RET (Pin 7): This pin connects to the bottom of the external resistor divider for the input power-fail comparator. In shutdown mode, an internal switch opens up this path to reduce the current drawn by the resistor divider.

PF\textsubscript{O} (Pin 8): Open Drain Output of the Power-Fail Comparator. This pin is driven to logic low if at least one of the following conditions is true: (1) V\textsubscript{IN} is less than a value programmed by an external divider via PFI, (2) V\textsubscript{OUT} has not reached within 7.5% of its final programmed value in LDO mode, or (3) V\textsubscript{OUT} is not within 250mV of V\textsubscript{IN} in charge current profile mode. When all these conditions are false for at least 200ms, this pin goes high impedance indicating that power is good.

PFI (Pin 9): Input to the Power-Fail Comparator. The input voltage below which PF\textsubscript{O} pin indicates a power-fail condition can be programmed by connecting this pin to an external resistor divider between V\textsubscript{IN} and PFI_RET pin.

VMID (Pin 10): Connects to the Midpoint of the 2-Cell supercap stack. An internal leakage balancing amplifier drives this pin to a voltage which is exactly half of V\textsubscript{OUT}.

V\textsubscript{IN} (Pin 11, 12): Input Power Pin. Typically connected to a DC source like a Li-Ion/Polymer battery or a USB port. This pin should be bypassed with a low ESR ceramic capacitor.

GND (Exposed Pad Pin 13): GND. The Exposed Pad should be connected to a continuous ground plane on the second layer of the printed circuit board by several vias directly under the part to achieve optimum thermal conduction.
Figure 1. LTC4425 Block Diagram
OPERATION

The LTC4425 is a linear charger designed to charge a two-cell series supercap stack by employing a constant-current, constant-voltage, and constant-temperature architecture. It has two modes of operation: charge current profile mode (also referred to as normal mode) and LDO mode. In LDO mode, the LTC4425 charges the top of the stack to an externally programmed output voltage with a fixed charge current that is also externally programmable. In charge current profile mode, the LTC4425 charges the top of the stack to the input voltage V_{IN} with a charge current that varies based on the input-to-output differential voltage.

LDO Mode

In LDO mode, the output voltage V_{OUT} is programmed by an external resistor divider network consisting of R_{FB1} and R_{FB2} via the FB pin and the charge current is programmed by an external resistor R_{PROG} via the PROG pin. Please refer to the Block Diagram shown in Figure 1. The charger control circuitry consists of a constant-current amplifier and a constant-voltage amplifier. When the part is enabled to charge a discharged supercap stack, initially the constant-current amplifier is in control and servos the PROG pin voltage to 1V. The current through the PROG resistor gets multiplied by approximately 1000, the ratio of the sense MOSFET (MPSNS) and the power MOSFET (MPSW), to charge the supercap stack. As the output voltage V_{OUT} gets close to the programmed value, the constant-voltage amplifier takes over and backs off the charge current as necessary to maintain the FB pin voltage equal to an internal reference voltage of 1.2V. Since the PROG pin current is always about 1/1000 of the charge current, the PROG pin voltage continues to give an indication of the actual charge current even when the constant-voltage amplifier is in control.

Charge Current Profile or Normal Mode

The LTC4425 is in charge current profile mode when the FB pin is shorted to the input voltage V_{IN}. In this mode of operation, the constant-voltage amplifier is internally disabled but the charge current is still programmed by the external R_{PROG} resistor. The charger provides 1/10 of the programmed charge current if the input-to-output voltage differential ($V_{\text{IN}}-V_{\text{OUT}}$) is more than 750mV to limit the power dissipation within the chip. As this differential voltage decreases from 750mV, the charge current increases linearly to its full programmed value when V_{OUT} is within 250mV or closer to V_{IN}. As V_{OUT} rises further, the voltage across the charger FET gets too small to support the full charge current. So the charge current gradually falls off and the charger FET enters into its triode (ohmic) region of operation (see Figure 2). Since the charger FET $R_{\text{DS(ON)}}$ is approximately 50mΩ, with a programmed charge current of 2A, the FET will enter the ohmic (triode) region and the charge current will start to fall off when V_{OUT} is within about 100mV of V_{IN}.

![Figure 2. Different Regions of Charge Current Profile](image)

The Ideal Diode Controller

When the input-to-output differential approaches 15mV, the ideal diode controller takes over the control from the constant-current amplifier and backs off the charge current by pulling up the gate of the charger FET as much as necessary to maintain a 15mV delta across the FET (see Figure 2). As a result, V_{OUT} can only be charged to 15mV below V_{IN}. In the event V_{IN} suddenly drops below V_{OUT}, the controller will quickly turn the FET completely off to prevent any loss of charge due to the reverse flow of charge from the supercap back to the supply.
OPERATION

Thermal Regulation

In either mode, if the die temperature starts to approach 105°C due to internal power dissipation, a thermal regulator limits the die temperature to approximately 105°C by reducing the charge current. Even in thermal regulation, the PROG pin continues to give an indication of the charge current. The thermal regulation protects the LTC4425 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without the risk of damaging the LTC4425 or the external components. Another benefit of this feature is that the charge current can be set according to typical, rather than worst-case, ambient temperatures for a given application with the assurance that the charger will automatically reduce the charge current in worst-case conditions.

Voltage Clamp Circuitry

The LTC4425 is equipped with circuitry to limit the voltage across any supercap of the stack to a maximum allowable voltage V_{CLAMP}. There are two preset voltages, 2.45V or 2.7V, for V_{CLAMP} selectable by the SEL pin. The SEL pin should be set to logic low for lower V_{CLAMP} voltage of 2.45V and to logic high for the higher V_{CLAMP} voltage of 2.7V. If the voltage across the bottom capacitor, i.e., the V_{MID} pin voltage reaches V_{CLAMP} first, an NMOS shunt transistor turns on and starts to bleed charge off of the bottom capacitor to GND. Similarly, if the voltage across the top capacitor, V_{TOP}, reaches the V_{CLAMP} voltage first, a PMOS shunt transistor turns on and starts to bleed charge off of the top capacitor to the bottom one.

When the voltage across any of the supercaps reaches within 50mV of V_{CLAMP}, a transconductance amplifier starts to cut back the charge current linearly. By the time any of the shunt devices are on, the charge current gets reduced to 1/10 of the programmed value and stays at this reduced level as long as the shunt device is on. This is to prevent the shunt devices from getting damaged by excessive heat. The comparators that control the shunt devices have a 50mV hysteresis meaning that when the voltage across either capacitor is reduced by 50mV, the shunt devices turn off and normal charging resumes with full charge current unless limited by any of the other amplifiers controlling the gate of the charger FET. In the event both capacitors exceed their maximum allowable voltage, V_{CLAMP}, the main charger FET completely shuts off and both shunt devices turn on. Both shunt devices are actually current mirrors guaranteed to shunt more current away than that coming through the charger FET.

Leakage Balancing Circuitry

The LTC4425 is equipped with an internal leakage balancing amplifier, LBA, which servos the midpoint, i.e., V_{MID} pin voltage, to exactly half of the output voltage, V_{OUT}. However it has a very limited source and sink capability of approximately 1mA. It is designed to handle slight mismatch of the supercaps due to leakage currents; not to correct any gross mismatch due to defects. The balancer is only active as long as there is an input present. The internal balancer eliminates the need for external balancing resistors.

Short-Circuit Current Limit

In the event the PROG pin gets shorted to GND, the LTC4425 limits the PROG pin current to approximately 3mA which, in turn, limits the maximum charge current to about 3A. While in short-circuit, if one of the supercaps approaches within 50mV of its maximum allowable voltage, V_{CLAMP}, a current-limit foldback circuit cuts back the short-circuit current limit to approximately 1/10 of its full value or to about 300mA.

Supply Status Monitor

The LTC4425 includes an input power-fail comparator, PFC, which monitors the input voltage V_{IN} via the PFI pin. At anytime, if V_{IN} falls below a certain externally programmable threshold, it reports the undervoltage situation by pulling down the open-drain output PFO low. This under-voltage threshold is programmed by connecting an external resistor divider network (consisting of R_{PF1} and R_{PF2}) between V_{IN} and the PFI_RET pins. When the part is enabled, a low $R_{DS(ON)}$ (approx. 13Ω) internal pull-down transistor pulls the bottom end of R_{PF2}, i.e., the PFI_RET pin to GND to complete the divider network. When the part is disabled, this transistor opens R_{PF2} from GND, thereby saving the current drawn by the divider network. The power-fail comparator has a built-in filter to reject any transient supply glitch that is less than 10μS long.
OPERATION

Output Status Monitor

The LTC4425 has an internal comparator to always monitor the output voltage V_{OUT}. At any time, if V_{OUT} falls below 7.5% of its final programmed value in LDO mode or more than 250mV below the input voltage V_{IN} in charge current profile mode, the comparator reports the power-fail condition by pulling the same open-drain output PFO low. When both input and output voltages are good for at least 200ms, the PFO pin goes high impedance and can be pulled up to any external supply by a resistor to indicate a power good situation. In normal mode, the load should not exceed 1/10th of the programmed charge current until PFO is high.

$V_{OUT} > V_{IN}$ Operation

If the EN pin is pulled high and V_{IN} is below V_{OUT} or floating, most of the circuitry including the voltage clamp circuitry is kept alive and the part draws about 20µA from the output capacitors. However, the internal leakage balancer is turned off under this condition.

Shutdown Mode

The LTC4425 can be shut down by pulling the EN pin low. In shutdown mode, very minimal circuitry is alive and the part draws less than 3µA from the supply or from the output capacitors if the supply is not present.

Charge Current Soft-Start

The LTC4425 includes a soft-start circuit to minimize the inrush current at the start of a charge cycle. When a charge cycle is initiated, the charge current ramps from zero to full-scale over a period of approximately 1ms and this soft-start can be monitored by observing the PROG pin voltage. This has the effect of minimizing the transient current load on the power supply during start-up.

Thermal Shutdown

The LTC4425 includes a thermal shutdown circuit in addition to the thermal regulator. If for any reason, the die temperature exceeds 160°C, the entire part shuts down. It resumes normal operation once the temperature drops by about 14°C, to approximately 146°C.
Programming the Output Voltage
In LDO mode, the LTC4425 output voltage can be programmed for any voltage between 2.7V and VIN by using a resistor divider from VOUT pin to GND via the FB pin such that:

\[V_{OUT} = V_{FB} \cdot \left(1 + \frac{R_{FB1}}{R_{FB2}}\right) \]

where \(V_{FB} \) is 1.2V. See Figure 3.

Typical values for \(R_{FB} \) are in the range of 40k to 1M. Too small a resistor will result in a large quiescent current whereas too large a resistor coupled with FB pin capacitance will create an additional pole and may cause loop instability.

Programming the Charge Current
The LTC4425 charge current is programmed using a single resistor from the PROG pin to ground. The charge current out of the VOUT pin is 1000 times the current out of the PROG pin. The program resistor and the charge current are calculated using the following equations:

\[R_{PROG} = 1000 \cdot \left(1/I_{CHRG}\right), I_{CHRG} = 1000 \cdot \left(1/R_{PROG}\right) \]

where \(I_{CHRG} \) is the charge current out of the VOUT pin. The charge current out of the VOUT pin can be determined at any time by monitoring the PROG pin voltage and using the following equation:

\[I_{CHRG} = 1000 \cdot \left(V_{PROG}/R_{PROG}\right) \]

Stability Considerations
In LDO mode, the LTC4425 supercapacitor charger has two principal control loops: constant-voltage and constant-current. The constant-voltage loop is stable when connected to a supercap of at least 0.2F. However, when disconnected from the supercap, the voltage loop requires at least 10µF capacitance in series with 500Ω resistance for stability.

In constant-current mode, the PROG pin voltage is in the feedback loop, not the VOUT pin voltage. Because of the additional pole created by the PROG pin capacitance, capacitance on this pin must be kept to a minimum. With no additional capacitance on the PROG pin, the charger is stable with a program resistor as high as 100k. However, any additional capacitance on this node reduces the maximum allowed program resistor. The pole frequency at the PROG pin should be kept above 100kHz. Therefore, if the PROG pin is loaded with a capacitance, \(C_{PROG} \), the following equation should be used to calculate the maximum resistance value for \(R_{PROG} \):

\[R_{PROG} \leq \frac{1}{2\pi \cdot 100kHz \cdot C_{PROG}} \]
APPLICATIONS INFORMATION

Board Layout Considerations

To be able to deliver maximum charge current under all conditions, it is critical that the exposed metal pad on the backside of the LTC4425’s two packages have a good thermal contact to the PC board ground. Correctly soldered to a 2500mm² double-sided 1 oz. copper board, the DFN package has a thermal resistance of approximately 43°C/W. Failure to make thermal contact between the exposed pad on the backside of the package and the copper board will result in a thermal resistance far greater than 43°C/W.

Charge Current Reduction by the Thermal Regulator

To protect the part against excessive heat generated by internal power dissipation, the LTC4425 is equipped with a thermal regulator which automatically reduces the charge current to maintain a maximum die temperature of 105°C. Ignoring the quiescent current, the power dissipation can be approximated by the following equation:

\[P_D = (V_{IN} - V_{OUT}) \cdot I_{CHRG} \]

If \(\theta_{JA} \) is the thermal resistance and \(T_A \) is the ambient temperature, then the die temperature can be calculated as:

\[T_{DIE} = T_A + P_D \cdot \theta_{JA} \]

When the part is in thermal regulation, the die temperature is 105°C and for a given \(V_{IN} \) and \(V_{OUT} \), the charge current can be determined by the following equation:

\[I_{CHRG} = \frac{105 - T_A}{(V_{IN} - V_{OUT}) \cdot \theta_{JA}} \]

For example, if the LTC4425 in the DFN package is used in LDO mode to charge a completely discharged supercap stack (\(V_{OUT} = 0V \)) at a room temperature of 25°C from a 5V source, the charge current, at first, will be limited to approximately:

\[I_{CHRG} = \frac{105°C - 25°C}{(5 - 0)V \cdot 43°C/W} = \frac{80°C}{215°C/A} = 372mA \]

As the output voltage rises, the charge current will gradually rise to the full charge current programmed by the PROG pin resistor as long as the constant-current loop is in control. If the LTC4425 is programmed for a charge current of 2A, the output voltage at which the part will deliver full charge current can be determined by the following equation:

\[V_{OUT} = V_{IN} - \frac{105 - T_A}{I_{CHRG} \cdot \theta_{JA}} \]

Using the previous example, for full charge current, the output voltage has to rise to at least:

\[V_{OUT} = 5V - \frac{(105 - 25)°C}{2A \cdot 43°C/W} = 5V - \frac{80°C}{86°C/V} = 4.07V \]

Figure 4 shows the graph of charge current vs output voltage when the charge current profile is turned off by shorting the FB pin to GND and the charge current is limited by thermal regulation.

Figure 4. Charge Current vs Output Voltage under Thermal Regulation (LDO Mode)
Charging a Single Supercapacitor

The LTC4425 can also be used to charge a single supercapacitor by connecting two series-connected matched ceramic capacitors (minimum 100µF), or two matched series resistors (~470k), in parallel with the supercapacitor as shown in Figure 5. Refer to Table 1 for supercapacitor manufacturers.

Table 1. Supercapacitor Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP-XX</td>
<td>www.cap-xx.com</td>
</tr>
<tr>
<td>NESS CAP</td>
<td>www.nesscap.com</td>
</tr>
<tr>
<td>Maxwell</td>
<td>www.maxwell.com</td>
</tr>
<tr>
<td>Bussmann</td>
<td>www.cooperbussmann.com</td>
</tr>
<tr>
<td>AVX</td>
<td>www.avx.com</td>
</tr>
<tr>
<td>Illinois Capacitor</td>
<td>www.illcap.com</td>
</tr>
<tr>
<td>Tecate Group</td>
<td>www.tecategroup.com</td>
</tr>
</tbody>
</table>

Figure 5. Charging a Single Supercapacitor
USB to High Peak Power 3.3V Charging

3 × AA Alkaline to High Peak Power 3.3V Charging

Li-Ion High Peak Power Battery Buffer
High Current USB Charging with Power Path Control

L1: COILCRAFT LPS4018-332MLC
M1: SILICONIX Si2333
R2: VISHAY-DALE NTHS0603N011-N1003F
C1, C3: MURATA GRM21BR61A106KE19
C2: MURATA GRM188R71C104KA01
CSC: CAP-XX HS203F

3.3V Peak-Power/Back-up Supply

For more information www.linear.com/LTC4425
TYPICAL APPLICATIONS

12V to 5V/3.3V High Peak Power Supply

12V Input to 5V Outputs with Input Voltage Monitoring

For more information www.linear.com/LTC4425
Redundant High Peak Power Battery Supplies
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LTC4425#packaging for the most recent package drawings.

DD Package
12-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1725 Rev A)

NOTE:
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD AND TIE BARS SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

For more information www.linear.com/LTC4425
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LTC4425#packaging for the most recent package drawings.

MSE Package

12-Lead Plastic MSOP, Exposed Die Pad

(Reference LTC DWG # 05-08-1666 Rev G)

Recommended Solder Pad Layout

Bottom View of Exposed Pad Option

Note:
1. Dimensions in millimeter/inch
2. Drawing not to scale
3. Dimension does not include mold flash, protrusions or gate burrs.
4. Dimension does not include interlead flash or protrusions.
5. Lead coplanarity (bottom of leads after forming) shall be 0.102mm (.004") max.
6. Exposed pad dimension does include mold flash. Mold flash on E-pad shall not exceed 0.254mm (.010") per side.
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>02/16</td>
<td>Enhanced Charging a Single Supercapacitor section</td>
<td>14</td>
</tr>
</tbody>
</table>

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
TYPICAL APPLICATION

Embedded Automotive Backup Controller

PART NUMBER

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC3225-1</td>
<td>150mA Supercapacitor Charger</td>
<td>Programmable Supercapacitor Charger Designed to Charge Two Supercapacitors in Series to a Fixed Output Voltage (4.8V/5V/3V Selectable)</td>
</tr>
<tr>
<td>LTC3225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT3485-0/LT3485-1/ LT3485-2/LT3485-3</td>
<td>1.4A/0.7A/1A/2A Photoflash Capacitor Charger with Output Voltage Monitor and IGBT</td>
<td>V_{IN}: 1.8V to 10V, Charge Time = 3.7 Seconds for the LT3485-0 (OV to 320V, 100µF, V_{IN} = 3.6V), I_{SO} < 1µA, 3mm × 3mm 10-Lead DFN</td>
</tr>
<tr>
<td>LT3750</td>
<td>Capacitor Charger Controller</td>
<td>Charges Any Size Capacitor, 10-Lead MS Package</td>
</tr>
<tr>
<td>LT3751</td>
<td>Capacitor Controller with Regulation</td>
<td>Charges Any Size Capacitor, 4mm × 5mm QFN-20 Package</td>
</tr>
<tr>
<td>LTC4040</td>
<td>Buck Battery Charger + Boost Backup for Li-ion Batteries</td>
<td>2.5A Backup from 3.2V Battery 4mm × 5mm QFN-24 Package</td>
</tr>
<tr>
<td>LTC3643</td>
<td>Bi-Directional Boost Charger/Buck Backup for Electrolytic Caps</td>
<td>V_{IN}: 3V to 17V, V_{BACKUP}: Up to 40V, 2A Cap Charge Current, 3mm × 5mm QFN-24</td>
</tr>
</tbody>
</table>