FEATURES
Interfaces, amplifies, & filters input voltages from a J, K, T, E, R, S, or B-type thermocouple.
High accuracy internal cold junction compensation.
Module provides simultaneous precision voltage and current outputs.
Current output withstands 130V rms without damage.
All 3B37 series modules are mix-and-match and Hot Swappable.

APPLICATIONS
Industrial signal conditioning
Industrial signal isolation
Industrial signal filtering

PRODUCT OVERVIEW
The 3B Series of Signal Conditioning I/O Subsystems provide a low-cost, versatile method of transferring analog transducer signals to a data acquisition, monitoring or control system without the inherent noise, non-linearity, drift and extraneous voltages. The modules are designed to directly accept analog signals from Thermocouples, RTD's, AC and DC Strain Gages, Torque Transducers, Frequency Transducers, LVDTs, millivolt or process current signals. The modules amplify, isolate, linearize and convert the transducer output signals to standardized analog inputs for high-level analog I/O subsystems. The 3B Series Subsystem consists of a 10” relay rack with universal mounting backplane and a family of plug-in (up to 16 per rack) input and output signal conditioning modules.

Eight and four channel backplanes are also available. Each backplane incorporates screw terminals for sensor inputs and current outputs and a 26-pin connector for high-level single-ended voltage outputs to the user’s equipment.

The input modules feature complete signal conditioning circuitry optimized for specific sensors or analog signals and provide two simultaneous high-level analog outputs: 0 to +10V (or ±10V) and 4-20 mA (or 0-20 mA).

FUNCTIONAL BLOCK DIAGRAM
Output modules accept 0 to +10V (or ±10V) single-ended signals and provide an isolated 4-20 mA (or 0-20 mA) process signal. All modules feature a universal pin-out and may be readily hot-swapped under full power and interchanged without disrupting field wiring.

The Analog Devices 3B Series Signal Conditioning Subsystem is designed to easily handle signal conditioning problems in measurement and control applications. Some typical uses are in microcomputer-based data acquisition systems, programmable controllers, analog recorders, dedicated control systems, and any other applications where monitoring of temperature, pressure, flow and analog signals are required. Since each input module features two simultaneous outputs, the voltage output can be used to provide an input to a microprocessor-based data acquisition or control system while the current output can be used for analog transmission, operator interface, or an analog backup system.

Each input module is a single-channel signal conditioner which plugs into a socket on the backplane and accepts its signal from the input screw terminals. All input modules provide input protection, amplification and filtering of the input signal, accuracy of ±0.1%, low drift of ±1 uV/°C (low-level input modules), and feature two high-level analog outputs that are compatible with most process instrumentation. The isolated input modules also provide ±1500 V peak isolation.

The choice of a specific 3B module depends upon the type of input signal. Input modules are available to accept millivolt, volt, process current, thermocouple, RTD, AC and DC strain gage, frequency and LVDT inputs. The voltage output of each module is available from the system I/O connector while the current output is available on the output screw terminals.
GENERAL DESCRIPTION

The 3B37 is a single-channel signal conditioning module that interfaces, amplifies and filters input voltages from a J, K, T, E, R, S or B-type thermocouple and provides isolated simultaneous voltage and current outputs linear with input voltage. High accuracy internal cold junction compensation and a predictable upscale open circuit indication provide a complete signal conditioning solution. To accurately measure low level signals in electrically noisy environments, ±1500 V peak of galvanic transformer-based isolation with a common mode rejection (CMR) of 160 dB @ 50/60 Hz and a normal mode rejection (NMR) of 60 dB @ 50/60 Hz are provided. The current output withstands 130 V rms without damage and interfaces user equipment through screw terminals located on the 3B Series backplane. This plug-in, mix-and-match, hot-swappable module is easily field calibrated via front-panel zero and span adjustments for both voltage and current outputs.

Accurate and System Ready – Internal cold-junction compensation largely corrects errors arising from parasitic thermocouples formed by thermocouple connection to the input screw terminals, providing an accuracy of ±0.5°C over the +5°C to +45°C ambient temperature range. The module generates a predictable upscale signal to indicate an open thermocouple; for a downscale response, connect a 47MΩ, 0.25 Watt resistor across screw terminals 2 and 4 on the 3B Series backplane.

3B Series Custom Ranging Program – Externally-programmable version Model 3B37-X-00, enable the user to configure a special input range by using the optional plug-on AC1310 ranging card, which houses user-supplied resistors to determine zero and span. To facilitate selecting resistors, a Windows program, 3B-Custom, calculates resistor values based on the user-desired input/output ranges.

Inside the 3B37 Module – A chopper-stabilized low-drift input amplifier assures stable long-term stability. At the amplifier input, a zero-scale input voltage is subtracted from the input signal to set the zero-scale value. For user convenience, the zero and span optionally can be factory configured to meet custom needs (Model 3B37-CUSTOM) or can be externally programmed (Model 3B37-X-00) via user-supplied resistors inserted in the optional AC1310 plug-on ranging card. Zero suppression can exceed 100% of the input range. This enables suppression of a zero-scale input value any times larger than the total span for precise expanded-scale measurements of a selection portion of an input signal. The differential input circuit on the field side is fully floating, eliminating the need for any input grounding. Signal isolation by transformer coupling uses a proprietary modulation technique for linear, stable and reliable performance. A demodulator on the computer side of the signal transformer recovers the original signal, which is then filtered and buffered to provide a low-noise, low-impedance output voltage, this output also drives a voltage-to-current (V/I) converter to provide a simultaneous current output for interfacing versatility.

Figure 2
3B37 Models Available

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Type</th>
<th>Input Range</th>
<th>Output Ranges¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B37-X-00</td>
<td>Type J, K, T, E, R, S, or B</td>
<td>Externally Programmable ²</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-J-01</td>
<td>Type J</td>
<td>-100°C to +100°C (-148°F to +1400°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-K-02</td>
<td>Type K</td>
<td>-100°C to +1350°C (-148°F to +2462°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-T-03</td>
<td>Type T</td>
<td>-100°C to +400°C (-148°F to +752°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-E-04</td>
<td>Type E</td>
<td>0°C to +900°C (+32°F to +1652°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-R-05</td>
<td>Type R</td>
<td>0°C to +1750°C (+32°F to +3182°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-S-05</td>
<td>Type S</td>
<td>0°C to +1750°C (+32°F to +3182°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
<tr>
<td>3B37-B-06</td>
<td>Type B</td>
<td>0°C to +1800°C (+32°F to +3272°F)</td>
<td>0 V to +10 V & 0 mA to 20 mA</td>
</tr>
</tbody>
</table>

Custom Input/Output ranges are available. Refer to configuration guide.

¹ Output current range may be user programmed to 4 mA to 20 mA using jumper supplied.
² Requires AC1310 ranging card.

3B37 Specifications

(typical @ +25°C and ±15 V dc, and +24 V dc Power)

<table>
<thead>
<tr>
<th>Description</th>
<th>Model 3B37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Ranges</td>
<td></td>
</tr>
<tr>
<td>Standard Ranges</td>
<td>Refer to Model Table</td>
</tr>
<tr>
<td>Custom Ranges</td>
<td>±5 mV to ±500 mV</td>
</tr>
<tr>
<td>Output Ranges</td>
<td></td>
</tr>
<tr>
<td>Voltage (R<sub>L</sub> > 2 KΩ)</td>
<td>0 V to +10 V; -10 V to +10 V</td>
</tr>
<tr>
<td>Current (R<sub>L</sub> = 0 to 850Ω)¹</td>
<td>4 mA to 20 mA or 0 mA to 20 mA</td>
</tr>
<tr>
<td>Maximum Current Output Span</td>
<td>0 mA to 31 mA</td>
</tr>
<tr>
<td>Accuracy²</td>
<td></td>
</tr>
<tr>
<td>Initial @ +25°C</td>
<td>±0.1% Span + CJC Sensor Error</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>±0.01% Span</td>
</tr>
<tr>
<td>Stability vs. Temperature</td>
<td></td>
</tr>
<tr>
<td>Voltage Output</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>±0.02°C/°C</td>
</tr>
<tr>
<td>Span</td>
<td>±25 ppm of Reading/°C</td>
</tr>
<tr>
<td>Current Output³</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>±25 ppm of Span/°C</td>
</tr>
<tr>
<td>Span</td>
<td>±25 ppm of Reading/°C</td>
</tr>
<tr>
<td>Zero and Span Adjustment Range⁴</td>
<td>±5% of Span</td>
</tr>
<tr>
<td>Cold Junction Compensation (CJC)⁵</td>
<td></td>
</tr>
<tr>
<td>Initial Accuracy @ +25°C</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>Accuracy vs. Temperature, +5°C to +45°C</td>
<td>±0.5°C (±0.0125°C/°C)</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+15 nA</td>
</tr>
</tbody>
</table>

Rev. 0 | Page 3 of 8
Input Resistance
15 MΩ

Noise
Input, 0.1 Hz to 10 Hz Bandwidth
0.2 µV rms
Output, 100 kHz Bandwidth
50 µV rms

Bandwidth, -3 dB
3 Hz

Output Rise Time, 10% to 90% Span
200 ms

Open Input Response
Upscale

Open Input Detection Time
10 seconds

Common-Mode Voltage (CMV)
Input-to-Output, Continuous
±1500 V peak, maximum
Transient
ANSI/IEEE C37.90.1-1989

Common Mode Rejection (CMR)
1 kΩ Source Imbalance, 50/60 Hz
160 dB
Normal Mode Rejection, 50/60 Hz
60 dB

Input Protection
Continuous
220 V rms maximum
Transient
ANSI/IEEE C37.90.1-1989

Voltage Output Protection
Continuous Short to Ground

Current Output Protection
130 V rms, continuous

Power Supply Voltages

±15 V dc Supplies
Rated Operation
±(11.5 V dc to 16.5 V dc)
Current
±12 mA
Sensitivity
±0.01% span/V

+24 V dc Loop Supply
Rated Operation
+12 V dc to +30 V dc
Current
+27 mA @ Iout = 20 mA
Sensitivity
±0.0002% span/V

Mechanical Dimensions
3.15” x 3.395” x 0.775”
(80.0 mm x 86.2 mm x 19.7 mm)

Environmental
Temperature Range
Rated Performance
-25°C to +85°C
Storage
-55°C to +85°C
Relative Humidity, 24 hours
0 to 95% @ +60°C noncondensing
RFI Susceptibility
±0.5% Span error @ 400 MHz, 5 Watt, 3 ft

1 For a 0 mA to 20 mA range, a typical minimum output current is 10 µA.
2 Includes the combined effects of repeatability, hysteresis, and nonlinearity.
3 With respect to the voltage output.
4 A wide range of custom zero suppression and span is available with the 3B30-00 and 3B31-00 models, using the AC1310 ranging card.
5 When used with the CJC temperature sensor provided on the 3B Series backplane.
6 +24 V dc loop power is required for driving the current output at loads up to 850Ω. If a current output load of 400Ω or less is applied, +15 V dc is sufficient for loop power. If only voltage output is used, loop power is not required.
PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

Table 1. Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/c</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>n/c</td>
</tr>
</tbody>
</table>

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
OUTLINE DIMENSIONS

Figure 5. Outline Dimensions