FEATURES

- 2.7V to 38V VIN Range
- IO = 18µA Operating; 4µA in Shutdown
- 12V to 5V Efficiency = 81%
- Multimode Operation (2:1, 1:1, 1:2) with Automatic Mode Switching
- Low Noise, Constant Frequency Operation
- Pin Selectable Burst Mode® Operation
- VOUT: Fixed 3.3V, 5V or Adjustable (2.5V to 5V)
- IOUT Up to 250mA
- Overtemperature and Short-Circuit Protection
- Operating Junction Temperature: 150°C Maximum
- Thermally Enhanced 12-Pin MSOP and Low Profile 12-Pin (3mm × 4mm) DFN Packages

APPLICATIONS

- Automotive ECU/CAN Transceiver Supplies
- Industrial Housekeeping Supplies
- Low Power 12V to 5V Conversion

DESCRIPTION

The LTC®3245 is a switched capacitor buck-boost DC/DC converter that produces a regulated output (3.3V, 5V or adjustable) from a 2.7V to 38V input. The device uses switched capacitor fractional conversion to maintain regulation over a wide range of input voltage. Internal circuitry automatically selects the conversion ratio to optimize efficiency as input voltage and load conditions vary. No inductors are required.

The unique constant frequency architecture provides a lower noise output than conventional charge pump regulators. To optimize efficiency at the expense of slightly higher output ripple, the device has pin selectable Burst Mode operation.

Low operating current (20µA with no load, 4µA in shutdown) and low external parts count (three small ceramic capacitors) make the LTC3245 ideally suited for low power, space constrained automotive/industrial applications. The device is short-circuit and overtemperature protected, and is available in thermally enhanced 12-pin MSOP and low profile 3mm × 4mm 12-pin DFN packages.

5VOUT Efficiency vs Output Current

Efficient Regulated 5V Output
LTC3245

ABSOLUTE MAXIMUM RATINGS

(Notes 1)

- **V_{IN}, $Sel1$, $Sel2$, $BURST$** $-0.3V$ to $38V$
- **V_{OUT}, $OUTS/ADJ$, $PGOOD$** $-0.3V$ to $6V$
- **I_{PGOOD}** ... $2mA$
- **V_{OUT} Short-Circuit Duration** Indefinite

Operating Junction Temperature Range (Notes 2, 3)

- (E/I-Grade) ... $-40^\circ C$ to $125^\circ C$
- (H-Grade) ... $-40^\circ C$ to $150^\circ C$
- (MP-Grade) .. $-55^\circ C$ to $150^\circ C$

Storage Temperature Range $-65^\circ C$ to $150^\circ C$

Lead Temperature (Soldering, 10 sec)

- (MSE Only) ... $300^\circ C$

PIN CONFIGURATION

![PIN CONFIGURATION Diagram]

ORDER INFORMATION

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC3245EDE#PBF</td>
<td>LTC3245EDE#TRPBF</td>
<td>3245</td>
<td>12-Lead (3mm × 4mm) Plastic DFN</td>
<td>$-40^\circ C$ to $125^\circ C$</td>
</tr>
<tr>
<td>LTC3245IDE#PBF</td>
<td>LTC3245IDE#TRPBF</td>
<td>3245</td>
<td>12-Lead (3mm × 4mm) Plastic DFN</td>
<td>$-40^\circ C$ to $125^\circ C$</td>
</tr>
<tr>
<td>LTC3245EMSE#PBF</td>
<td>LTC3245EMSE#TRPBF</td>
<td>3245</td>
<td>12-Lead Plastic MSOP</td>
<td>$-40^\circ C$ to $125^\circ C$</td>
</tr>
<tr>
<td>LTC3245HMSE#PBF</td>
<td>LTC3245HMSE#TRPBF</td>
<td>3245</td>
<td>12-Lead Plastic MSOP</td>
<td>$-40^\circ C$ to $150^\circ C$</td>
</tr>
<tr>
<td>LTC3245MPMSE#PBF</td>
<td>LTC3245MPMSE#TRPBF</td>
<td>3245</td>
<td>12-Lead Plastic MSOP</td>
<td>$-55^\circ C$ to $150^\circ C$</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at $T_A = 25^\circ C$, (Note 2). $V_{IN} = 12V$, $V_{OUT} = 5V$, $C_{FLY} = 1\mu F$ unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating Input Voltage Range</td>
<td></td>
<td>2.7</td>
<td>38</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>V_{IN} Undervoltage Lockout Threshold</td>
<td>V_{IN} Rising</td>
<td>2.4</td>
<td>2.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{IN} Falling</td>
<td>2.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

For more information www.linear.com/LTC3245
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at \(T_A = 25°C \), (Note 2). \(V_{IN} = 12V \), \(V_{OUT} = 5V \), \(C_{FLY} = 1\mu F \) unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{VIN})</td>
<td>Quiescent Current</td>
<td>(V_{IN}) SEL1 = SEL2 = 0V</td>
<td>Shutdown, (V_{OUT} = 0V)</td>
<td>4</td>
<td>8</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Enabled, BURST = 0V</td>
<td>CP Enabled, Output in Regulation</td>
<td>18</td>
<td>35</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Enabled, BURST = (V_{IN})</td>
<td>CP Enabled, Output in Regulation</td>
<td>20</td>
<td>40</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(V_{OOUT, BM})</td>
<td>Fixed 5V Burst Mode Output Regulation</td>
<td>(V_{OOUT, BM}) (V_{OUT} %) of Final Regulation Voltage</td>
<td>●</td>
<td>4.8</td>
<td>5.2</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OOUT, LN})</td>
<td>Fixed 5V Low Noise Output Regulation</td>
<td>(V_{OOUT, LN}) (V_{OUT} %) of Final Regulation Voltage</td>
<td>●</td>
<td>4.8</td>
<td>5.2</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OOUT, 3BM})</td>
<td>Fixed 3.3V Burst Mode Output Regulation</td>
<td>(V_{OOUT, 3BM}) (V_{OUT} %) of Final Regulation Voltage</td>
<td>●</td>
<td>3.17</td>
<td>3.43</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OOUT, 3LN})</td>
<td>Fixed 3.3V Low Noise Output Regulation</td>
<td>(V_{OOUT, 3LN}) (V_{OUT} %) of Final Regulation Voltage</td>
<td>●</td>
<td>3.17</td>
<td>3.43</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{ADJ})</td>
<td>OUTS/ADJ Reference Voltage (Note 4)</td>
<td>SEL2 = 0V, SEL1 = (V_{IN}) (I_{OUT} = 0mA)</td>
<td>●</td>
<td>1.176</td>
<td>1.200</td>
<td>1.224</td>
</tr>
<tr>
<td>(R_{OCL})</td>
<td>Load Regulation (Referred to ADJ)</td>
<td>SEL2 = 0V, SEL1 = (V_{IN})</td>
<td></td>
<td>0.2</td>
<td></td>
<td>(mV/mA)</td>
</tr>
<tr>
<td>(V_{PG, RISE})</td>
<td>PGOOD Rising Threshold</td>
<td>(V_{OOUT} %) of Final Regulation Voltage</td>
<td></td>
<td>95</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>(V_{PG, FALL})</td>
<td>PGOOD Falling Threshold</td>
<td>(V_{OOUT} %) of Final Regulation Voltage</td>
<td></td>
<td>88</td>
<td>91</td>
<td>%</td>
</tr>
<tr>
<td>(V_{PG, LOW})</td>
<td>PGOOD Output Low Voltage</td>
<td>(V_{PGOOD} = 0.2mA)</td>
<td></td>
<td>0.1</td>
<td>0.4</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{PG, HIGH})</td>
<td>PGOOD Output High Leakage</td>
<td>(V_{PGOOD} = 5V)</td>
<td></td>
<td>–1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(V_{LOW})</td>
<td>BURST, SEL1, SEL2 Input Voltage</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.9</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{HIGH})</td>
<td>BURST, SEL1, SEL2 input Voltage</td>
<td></td>
<td></td>
<td>1.2</td>
<td>2</td>
<td>(V)</td>
</tr>
<tr>
<td>(I_{LOW})</td>
<td>BURST, SEL1, SEL2 Input Current</td>
<td>(V_{PIN} = 0V)</td>
<td></td>
<td>–1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(I_{HIGH})</td>
<td>BURST, SEL1, SEL2 Input Current</td>
<td>(V_{PIN} = 38V)</td>
<td></td>
<td>0.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(I_{SHORT, CKT})</td>
<td>(I_{OUT}) Short-Circuit Current</td>
<td>(V_{OUT} = GND)</td>
<td></td>
<td>900</td>
<td></td>
<td>(mA)</td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>Charge Pump Output Impedance</td>
<td>2:1 Step-Down Mode</td>
<td>3</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:1 Step-Down Mode</td>
<td>3.5</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:2 Step-Up Mode ((V_{IN} = 3.3V))</td>
<td>14</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(f_{OSC})</td>
<td>Oscillator Frequency</td>
<td></td>
<td></td>
<td>●</td>
<td>450</td>
<td>500</td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. This IC has overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperatures will exceed 150°C when overtemperature is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Note 2: The LTC3245E is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LTC3245I is guaranteed over the –40°C to 125°C operating junction temperature range. The LTC3245H is guaranteed over the –40°C to 150°C operating junction temperature range and the LTC3245MP is tested and guaranteed over the full –55°C to 150°C operating junction temperature range. High junction temperatures degrade operating lifetimes; operating lifetime is derated for junction temperatures greater than 150°C. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors.

Note 3: The junction temperature \(T_J, \text{ in °C} \) is calculated from the ambient temperature \(T_A, \text{ in °C} \) and power dissipation \(P_D, \text{ in Watts} \) according to the formula:

\[
T_J = T_A + (P_D \times \theta_{JA})
\]

where \(\theta_{JA} \) (in °C/W) is the package thermal impedance.

Note 4: \(V_{OUT} \) programming range is from 2.5V to 5V. See the Programming the Output Voltage section for more detail.

Note 5: The maximum operating junction temperature of 150°C must be followed. Certain combinations of input voltage and output current will cause the junction temperature to exceed 150°C and must be avoided. See Thermal Management section for information on calculating maximum operating conditions.
Typical Performance Characteristics

For more information www.linear.com/LTC3245
TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = 25^\circ$C, unless otherwise noted.

5V Fixed Output Voltage vs Falling Input Voltage (Burst Mode Operation)

3.3V Fixed Output Voltage vs Falling Input Voltage (Burst Mode Operation)

ADJ Regulation Voltage vs Temperature

5V Output Impedance vs Temperature (Boost Mode)

3.3V Output Impedance vs Temperature (Boost Mode)

Output Current vs Input Voltage (VOUT 5% Below Regulation)

5V Burst Mode OPERATION

5V LOW NOISE

3.3V Burst Mode OPERATION

3.3V LOW NOISE

Operating Mode Transition Voltage vs Input Voltage
TYPICAL PERFORMANCE CHARACTERISTICS

\(T_A = 25^\circ C, \) unless otherwise noted.

5V Output Transient Response

- Burst Mode Operation
- AC 50mV/DIV
- LOW NOISE AC 50mV/DIV
- I\text{OUT} 5mA

\(V_{IN} = 12V \)
\(V_{OUT} = 5V \)

3.3V Output Transient Response

- Burst Mode Operation
- AC 50mV/DIV
- LOW NOISE AC 50mV/DIV
- I\text{OUT} 5mA

\(V_{IN} = 12V \)
\(V_{OUT} = 3.3V \)
PIN FUNCTIONS

VIN (Pins 1, 2, 3): Power Input Pins. Input voltage for both charge pump and IC control circuitry. The VIN pin operates from 2.7V to 38V. All VIN pins should be connected together at pins.

BURST (Pin 4): Burst Mode Logic Input. A logic high on the BURST pin operates the charge pump in low noise constant frequency. A logic low will operate the charge pump in Burst Mode operation for higher efficiency at low output currents. The BURST pin has a 1μA (typical) pull-down current to ground and can tolerate 38V inputs allowing it to be pin-strapped to VIN.

SEL1 (Pin 5): Logic Input Pin. See Table 1 for SEL1/SEL2 operating logic. The SEL1 pin has a 1μA (typical) pull-down current to ground and can tolerate 38V inputs allowing it to be pin-strapped to VIN.

SEL2 (Pin 6): Logic Input Pin. See Table 1 for SEL1/SEL2 operating logic. The SEL2 pin has a 1μA (typical) pull-down current to ground and can tolerate 38V inputs allowing it to be pin-strapped to VIN.

Table 1: VOUT Operating Modes

<table>
<thead>
<tr>
<th>SEL2</th>
<th>SEL1</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>LOW</td>
<td>Shutdown</td>
</tr>
<tr>
<td>LOW</td>
<td>HIGH</td>
<td>Adjustable VOUT</td>
</tr>
<tr>
<td>HIGH</td>
<td>LOW</td>
<td>Fixed 5V</td>
</tr>
<tr>
<td>HIGH</td>
<td>HIGH</td>
<td>Fixed 3.3V</td>
</tr>
</tbody>
</table>

OUTS/ADJ (Pin 7): VOUT Sense / Adjust Input Pin. This pin acts as VOUT sense (OUTS) for 5V or 3.3V fixed outputs and adjust (ADJ) for adjustable output through external feedback. The ADJ pin serves to 1.2V when the device is enabled in adjustable mode. (OUTS / ADJ are selected by SEL1 and SEL2 pins; See Table 1)

PGOOD (Pin 8): Power Good Open Drain Logic Output. The PGOOD pin goes high impedance when VOUT is about 6% of its final operating voltage. PGOOD is intended to be pulled up to OUT or other low voltage supply with an external resistor.

C+ (Pin 9): Flying Capacitor Positive Connection.

VOUT (Pin 10): Charge Pump Output Voltage. If VIN drops below its UVLO threshold, the connection from VIN becomes high impedance with no reverse leakage from VOUT to VIN. VOUT regulation only takes place above the UVLO threshold. VOUT can be programmed to regulate from 2.5V to 5V.

C– (Pin 11): Flying Capacitor Negative Connection.

GND (Pin 12, Exposed Pad Pin 13): Ground. The exposed package pad is ground and must be soldered to the PC board ground plane for proper functionality and for rated thermal performance.
LTC3245

SIMPLIFIED BLOCK DIAGRAM

For more information www.linear.com/LTC3245
APPLICATIONS INFORMATION

General Operation

The LTC3245 uses switched capacitor based DC/DC conversion to provide the efficiency advantages associated with inductor based circuits as well as the cost and simplicity advantages of a linear regulator. The LTC3245’s unique constant frequency architecture provides a low noise regulated output as well as lower input noise than conventional switch capacitor charge pump regulators. The LTC3245 uses an internal switch network and fractional conversion ratios to achieve high efficiency and regulation over widely varying VIN and output load conditions.

Internal control circuitry selects the appropriate conversion ratio based on VIN and load conditions. The device has three possible conversion modes: 2:1 step-down mode, 1:1 step-down mode and 1:2 step-up mode. Only one external flying capacitor is needed to operate in all three modes. 2:1 mode is chosen when VIN is greater than two times the desired VOUT. 1:1 mode is chosen when VIN falls between two times VOUT and VOUT. 1:2 mode is chosen when VIN falls below the desired VOUT. An internal load current sense circuit controls the switch point of the conversion ratio as needed to maintain output regulation over all load conditions.

Regulation is achieved by sensing the output voltage and regulating the amount of charge transferred per cycle. This method of regulation provides much lower input and output ripple than that of conventional switched capacitor charge pumps. The constant frequency charge transfer also makes additional output or input filtering much less demanding than conventional switched capacitor charge pumps.

The LTC3245 has a Burst Mode operation pin that allows the user to trade output ripple for better efficiency/low quiescent current. The device has two SEL pins that select the output regulation (fixed 5V, fixed 3.3V or adjustable) as well as shutdown. The device includes soft-start function to limit in-rush current at startup. The device is also short-circuit and overtemperature protected.

VOUT Regulation and Mode Selection

As shown in the Simplified Block Diagram, the device uses a control loop to adjust the strength of the charge pump to match the current required at the output. The error signal of this loop is stored directly on the output charge storage capacitor. As the load on VOUT increases, VOUT will drop slightly increasing the amount of charge transferred until the output current matches the output load. This method of regulation applies regardless of the conversion ratio.

The optimal conversion ratio is chosen based on VIN, VOUT and output load conditions. Two internal comparators are used to select the default conversion ratio. Each comparator has an adjustable offset built in that increases (decreases) in proportion to the increasing (decreasing) output load current. In this manner, the conversion ratio switch point is optimized to provide peak efficiency over all supply and load conditions while maintaining regulation. Each comparator also has built-in hysteresis to reduce the tendency of oscillating between modes when a transition point is reached.

Low Noise vs Burst Mode Operation

Burst Mode operation is selected by driving the BURST pin low. In Burst Mode operation the LTC3245 delivers a minimum amount of charge each cycle forcing VOUT above regulation at light output loads. When the LTC3245 detects that VOUT is above regulation the device stops charge transfer and goes into a low current sleep state. During this sleep state, the output load is supplied by the output capacitor. The device will remain in the sleep state until the output drops enough to require another burst of charge. Burst Mode operation allows the LTC3245 to achieve high efficiency even at light loads. If the output load exceeds the minimum charge transferred per cycle, then the device will operate continuously to maintain regulation.

Unlike traditional charge pumps who’s burst current is dependant on many factors (i.e., supply, switch strength, capacitor selection, etc.), the LTC3245 burst current is regulated which helps to keep burst output ripple voltage relatively constant and is typically 50mV for COUT = 10μF.

Driving the BURST pin high puts the LTC3245 in low noise operation. In low noise operation the minimum amount of charge delivered each cycle and sleep hysteresis are reduced compared to Burst Mode operation. This results in lower burst output ripple (typically 20mV for COUT = 10μF) and will transition to constant frequency operation at lighter loads.
Short-Circuit/Thermal Protection

The LTC3245 has built-in short-circuit current limiting as well as overtemperature protection. During short-circuit conditions the device will automatically limit the output current.

The LTC3245 has thermal protection that will shut down the device if the junction temperature exceeds the overtemperature threshold (typically 175°C). Thermal shutdown is included to protect the IC in cases of excessively high ambient temperatures, or in cases of excessive power dissipation inside the IC. The charge transfer will re-activate once the junction temperature drops back to approximately 165°C.

When the thermal protection is active, the junction temperature is beyond the specified operating range. Thermal protection is intended for momentary overload conditions outside normal operation. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Soft-Start Operation

To prevent excessive current flow at VIN during start-up, the LTC3245 has built-in soft-start circuitry. Soft-start is achieved by increasing the amount of current available to the output charge storage capacitor linearly over a period of approximately 500μs. Soft-start is enabled whenever the device is brought out of shutdown, and is disabled shortly after regulation is achieved.

Programming the Output Voltage (OUTS/ADJ Pin)

The LTC3245 output voltage programming is very flexible offering a fixed 3.3V output, fixed 5V output as well as adjustable output that is programmed through an external resistor divider. The desired output regulation method is selected through the SET pins.

For a fixed output simply short OUTS (OUTS/ADJ pin) to VOUT as shown in Figure 1. Fixed 3.3V operation is enabled by driving SEL1 and SEL2 pins high, while fixed 5V operating is selected by driving SEL2 high with SEL1 low.

Driving both SEL1 and SEL2 low shuts down the device causing VOUT to go high impedance.

Adjustable output programming is accomplished by connecting ADJ (OUTS/ADJ pin) to a resistor divider between VOUT and GND as shown in Figure 2. Adjustable operation is enabled by driving SEL1 high and SEL2 low. Driving both SEL1 and SEL2 low shuts down the device causing VOUT to go high impedance.

Using adjustable operation the output (VOUT) can be programmed to regulate from 2.5V to 5V. The limited programming range provides the required VOUT operating voltage without overstressing the VOUT pin.

The desired adjustable output voltage is programmed by solving the following equation for RA and RB:

\[
\frac{R_A}{R_B} = \frac{V_{OUT}}{1.2V} - 1
\]

Select a value for RB in the range of 1k to 1M and solve for RA. Note that the resistor divider current adds to the total no load operating current. Thus a larger value for RB will result in lower operating current.
APPLICATIONS INFORMATION

2:1 Step-Down Charge Pump Operation

When the input supply is greater than about two times the output voltage, the LTC3245 will operate in 2:1 step-down mode. Charge transfer happens in two phases. On the first phase the flying capacitor \(C_{FLY} \) is connected between \(V_{IN} \) and \(V_{OUT} \). On this phase \(C_{FLY} \) is charged up and current is delivered to \(V_{OUT} \). On the second phase the flying capacitor \(C_{FLY} \) is connected between \(V_{OUT} \) and GND. The charge stored on \(C_{FLY} \) during the first phase is transferred to \(V_{OUT} \) on the second phase. When in 2:1 step-down mode the input current will be approximately half of the total output current. The efficiency \(\eta \) and chip power dissipation \(P_D \) in 2:1 are approximately:

\[
\eta = \frac{P_{OUT}}{P_{IN}} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot \frac{1}{2} I_{OUT}} = \frac{2V_{OUT}}{V_{IN}}
\]

\[
P_D = \left(\frac{V_{IN}}{2} - V_{OUT} \right) I_{OUT}
\]

1:1 Step-Down Charge Pump Operation

When the input supply is less than about two times the output voltage but more than the programmed output voltage, the LTC3245 will operate in 1:1 step-down mode. This method of regulation is very similar to a linear regulator. Charge is delivered directly from \(V_{IN} \) to \(V_{OUT} \) through most of the oscillator period. The charge transfer is briefly interrupted at the end of the period. The interruption in charge transfer improves stability and transient response. When in 1:1 step-down mode the input current will be approximately equal to the total output current. Thus efficiency \(\eta \) and chip power dissipation \(P_D \) in 1:1 are approximately:

\[
\eta = \frac{P_{OUT}}{P_{IN}} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot I_{OUT}} = \frac{V_{OUT}}{V_{IN}}
\]

\[
P_D = (2V_{IN} - V_{OUT}) I_{OUT}
\]

1:2 Step-Up Charge Pump Operation

When the input supply is less than the output voltage the LTC3245 will operate in 1:2 step-up mode. Charge transfer happens in two phases. On the first phase the flying capacitor \(C_{FLY} \) is connected between \(V_{IN} \) and GND. On this phase \(C_{FLY} \) is charged up. On the second phase the flying capacitor \(C_{FLY} \) is connected between \(V_{IN} \) and \(V_{OUT} \) and the charge stored on \(C_{FLY} \) during the first phase is transferred to \(V_{OUT} \). When in 1:2 step-up mode the input current will be approximately twice the total output current. Thus efficiency \(\eta \) and chip power dissipation \(P_D \) in 1:2 are approximately:

\[
\eta = \frac{P_{OUT}}{P_{IN}} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot 2I_{OUT}} = \frac{V_{OUT}}{2V_{IN}}
\]

\[
P_D = (2V_{IN} - V_{OUT}) I_{OUT}
\]

Due to the limited drive in 1:2 step-up mode the device always operates in Burst Mode operation when operating at this conversion ratio. This is done to delay the onset of dropout at the expense of more output ripple.

PGOOD Output Operation

The LTC3245 includes an open-drain power good (PGOOD) output pin. If the chip is in shutdown or under UVLO conditions \((V_{IN} < 2.2V \text{ typical}) \), PGOOD is low impedance to ground. PGOOD becomes high impedance when \(V_{OUT} \) rises to 95% (typical) of its regulation voltage. PGOOD stays high impedance until \(V_{OUT} \) is shut down or drops below the PGOOD threshold (91% typical) due to an overload condition. A pull-up resistor can be inserted between PGOOD and a low voltage positive logic supply (such as \(V_{OUT} \)) to signal a valid power good condition. The use of a large pull-up resistor on PGOOD and a capacitor placed between PGOOD and GND can be used to delay the PGOOD signal if desired.

\(V_{OUT} \) Ripple and Capacitor Selection

The type and value of capacitors used with the LTC3245 determine several important parameters such as regulator control loop stability, output ripple and charge pump...
strength. The value of C_{OUT} directly controls the amount of output ripple for a given load current when operating in constant frequency mode. Increasing the size of C_{OUT} will reduce the output ripple.

To reduce output noise and ripple, it is suggested that a low ESR (equivalent series resistance $< 0.1\Omega$) ceramic capacitor (10μF or greater) be used for C_{OUT}. Tantalum and aluminum capacitors can be used in parallel with a ceramic capacitor to increase the total capacitance but are not recommended to be used alone because of their high ESR.

Both the style and value of C_{OUT} can significantly affect the stability of the LTC3245. As shown in the Block Diagram, the device uses a control loop to adjust the strength of the charge pump to match the current required at the output. The error signal of this loop is stored directly on the output charge storage capacitor. The charge storage capacitor also serves to form the dominant pole for the control loop. To prevent ringing or instability it is important for the output capacitor to maintain at least 4μF of capacitance over all conditions (see Ceramic Capacitor Selection Guidelines).

Likewise excessive ESR on the output capacitor will tend to degrade the loop stability of the LTC3245. The closed loop output resistance of the device is designed to be 0.3Ω for a 5V output and 0.2Ω for a 3.3V output. For a 250mA load current change, the output voltage will change by about 1.5%V. If the output capacitor has more ESR than the closed loop impedance, the closed loop frequency response will cease to roll off in a simple 1-pole fashion and poor load transient response or instability could result. Ceramic capacitors typically have exceptional ESR performance, and combined with a tight board layout, should yield excellent stability and load transient performance.

V_{IN} Capacitor Selection

The constant frequency architecture used by the LTC3245 makes input noise filtering much less demanding than with conventional regulated charge pumps. Depending on the mode of operation the input current of the LTC3245 can vary from I_{OUT} to 0mA on a cycle-by-cycle basis. Low ESR will reduce the voltage steps caused by changing input current, while the absolute capacitor value will determine the level of ripple. The total amount and type of capacitance necessary for input bypassing is very dependent on the applied source impedance as well as existing bypassing already on the V_{IN} node. For optimal input noise and ripple reduction, it is recommended that a low ESR ceramic capacitor be used for C_{IN} bypassing. An electrolytic or tantalum capacitor may be used in parallel with the ceramic capacitor on C_{IN} to increase the total capacitance, but due to the higher ESR it is not recommended that an electrolytic or tantalum capacitor be used alone for input bypassing. The LTC3245 will operate with capacitors less than 1μF but depending on the source impedance input noise can feed through to the output causing degraded performance. For best performance 1μF or greater total capacitance is suggested for C_{IN}.

Flying Capacitor Selection

Warning: A polarized capacitor such as tantalum or aluminum should never be used for the flying capacitors since the voltage can reverse upon start-up of the LTC3245. Ceramic capacitors should always be used for the flying capacitors. The flying capacitors control the strength of the charge pump. In order to achieve the rated output current, it is necessary for the flying capacitor to have at least 0.4μF of capacitance over operating temperature with a bias voltage equal to the programmed V_{OUT} (see Ceramic Capacitor Selection Guidelines). If only 100mA or less of output current is required for the application, the flying capacitor minimum can be reduced to 0.15μF. The voltage rating of the ceramic capacitor should be $V_{OUT} + 1V$ or greater.

Ceramic Capacitor Selection Guidelines

Capacitors of different materials lose their capacitance with higher temperature and voltage at different rates. For example, a ceramic capacitor made of X5R or X7R material will retain most of its capacitance from −40°C to 85°C, whereas a Z5U or Y5V style capacitor will lose considerable capacitance over that range (60% to 80% loss typical). Z5U and Y5V capacitors may also have a very strong voltage coefficient, causing them to lose an additional 60% or more of their capacitance when the rated voltage is applied. Therefore, when comparing different capacitors, it is often more appropriate to compare the amount of achievable capacitance for a given case size.
APPLICATIONS INFORMATION

rather than discussing the specified capacitance value. For example, over rated voltage and temperature conditions, a 4.7μF, 10V, Y5V ceramic capacitor in an 0805 case may not provide any more capacitance than a 1μF, 10V, X5R or X7R available in the same 0805 case. In fact, over bias and temperature range, the 1μF, 10V, X5R or X7R will provide more capacitance than the 4.7μF, 10V, Y5V. The capacitor manufacturer’s data sheet should be consulted to determine what value of capacitor is needed to ensure minimum capacitance values are met over operating temperature and bias voltage. Below is a list of ceramic capacitor manufacturers and how to contact them:

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVX</td>
<td>www.avxcorp.com</td>
</tr>
<tr>
<td>Kemet</td>
<td>www.kemet.com</td>
</tr>
<tr>
<td>Murata</td>
<td>www.murata.com</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>www.t-yuden.com</td>
</tr>
<tr>
<td>TDK</td>
<td>www.tdk.com</td>
</tr>
</tbody>
</table>

Layout Considerations

Due to the high switching frequency and transient currents produced by the LTC3245, careful board layout is necessary for optimal performance. A true ground plane and short connections to all capacitors will optimize performance, reduce noise and ensure proper regulation over all conditions.

When using the LTC3245 with an external resistor divider it is important to minimize any stray capacitance to the ADJ (OUTS/ADJ pin) node. Stray capacitance from ADJ to C+ or C− can degrade performance significantly and should be minimized and/or shielded if necessary.

Thermal Management

The on chip power dissipation in the LTC3245 will cause the junction to ambient temperature to rise at rate of 40°C/W or more. To reduce the maximum junction temperature, a good thermal connection to the PC board is recommended. Connecting the die paddle (Pin 13) with multiple vias to a large ground plane under the device can reduce the thermal resistance of the package and PC board considerably. Poor board layout and failure to connect the die paddle (Pin 13) to a large ground plane can result in thermal junction to ambient impedance well in excess of 40°C/W.

Because of the wide input operating range it is possible to exceed the specified operating junction temperature and even reach thermal shutdown. Figure 3 shows the available output current vs temperature to ensure the 150°C operating junction temperature is not exceed for input voltages less than 20V.

Figure 3 assumes worst-case operating conditions. Under some operating conditions the part can supply more current than shown without exceeding the 150°C operating junction temperature. When operating outside the constraints of Figure 3 it is the responsibility of the user to calculate worst-case operating conditions (temperature and power) to make sure the LTC3245’s specified operating junction temperature is not exceeded for extended periods of time. The 2:1 Step-Down, 1:1 Step-Down, and 1:2 Step-Up Charge Pump Operation sections provide equations for calculating power dissipation (PD) in each mode.
LTC3245

TYPICAL APPLICATIONS

Regulated 5V Low Noise Output

![Circuit Diagram for Regulated 5V Low Noise Output](image)

- **Vin**
- **VOUT**
- **PGOOD**
- **GND**
- **1µF**
- **10µF**
- **100k**
- **BURST**
- **SEL2**
- **SEL1**

Description:
- VOUT = 5V
- IOUT up to 250mA

High Efficiency 3.3V Microcontroller Supply from 9V Alkaline (with Power-On Reset Delay)

![Circuit Diagram for High Efficiency 3.3V Microcontroller Supply](image)

- **Vin**
- **VOUT**
- **PGOOD**
- **GND**
- **1µF**
- **10µF**
- **510k**
- **1µF**
- **POR**
- **GND**
- **MIcrocontroller**

Description:
- VDD
- VOUT = 3.3V

Wide Input Range Low Noise 3.6V Supply

![Circuit Diagram for Wide Input Range Low Noise 3.6V Supply](image)

- **Vin**
- **VOUT**
- **PGOOD**
- **GND**
- **1µF**
- **10µF**
- **499k**
- **249k**

Description:
- VIN = 2.7V to 38V
- VOUT = 3.6V

For more information www.linear.com/LTC3245
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

MSE Package
12-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG # 05-08-1666 Rev G)

NOTE:
1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL
 NOT EXCEED 0.254mm (.010") PER SIDE.
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DE/UE Package
12-Lead Plastic DFN (4mm × 3mm)
(Reference LTC DWG # 05-08-1695 Rev D)

Revised 11/21/2005

NOTE:
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION (WGDE) IN JEDEC PACKAGE OUTLINE M0-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
Revision History

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7/13</td>
<td>Added MP-grade in MSOP package to Order Information table</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Note 2 to add MP-grade</td>
<td>3</td>
</tr>
</tbody>
</table>
TYPICAL APPLICATION

Wide V_{IN} 5V Supply with Battery Backup

![Diagram](image)

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1751-3.3/ LTC1751-5</td>
<td>100mA, 800kHz Regulated Doubler</td>
<td>V_{IN}: 2V to 5V, $V_{OUT(MAX)} = 3.3V/5V$, $I_O = 20\mu A$, $I_{SD} < 2\mu A$, MS8 Package</td>
</tr>
<tr>
<td>LTC1983-3/ LTC1983-5</td>
<td>100mA, 900kHz Regulated Inverter</td>
<td>V_{IN}: 3.3V to 5.5V, $V_{OUT(MAX)} = -3V/-5V$, $I_O = 25\mu A$, $I_{SD} < 2\mu A$, ThinSOT™ Package</td>
</tr>
<tr>
<td>LTC3200-5</td>
<td>100mA, 2MHz Low Noise, Doubler/White LED Driver</td>
<td>V_{IN}: 2.7V to 4.5V, $V_{OUT(MAX)} = 5V$, $I_O = 3.5mA$, $I_{SD} < 1\mu A$, ThinSOT Package</td>
</tr>
<tr>
<td>LTC3202</td>
<td>125mA, 1.5MHz Low Noise, Fractional White LED Driver</td>
<td>V_{IN}: 2.7V to 4.5V, $V_{OUT(MAX)} = 5.5V$, $I_O = 2.5mA$, $I_{SD} < 1\mu A$, DFN, MS Packages</td>
</tr>
<tr>
<td>LTC3204-3.3/ LTC3204B-3.3/ LTC3204-5/ LTC3204B-5</td>
<td>Low Noise, Regulated Charge Pumps in (2mm × 2mm) DFN Package</td>
<td>V_{IN}: 1.8V to 4.5V (LTC3204B-3.3), 2.7V to 5.5V (LTC3204B-5), $I_O = 48\mu A$, B Version without Burst Mode Operation, 6-Lead (2mm × 2mm) DFN Package</td>
</tr>
<tr>
<td>LTC3440</td>
<td>600mA (I_{OUT}) 2MHz Synchronous Buck-Boost DC/DC Converter</td>
<td>95% Efficiency, V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 2.5V$, $I_O = 25\mu A$, $I_{SD} < 1\mu A$, 10-Lead MS Package</td>
</tr>
<tr>
<td>LTC3441</td>
<td>High Current Micropower 1MHz Synchronous Buck-Boost DC/DC Converter</td>
<td>95% Efficiency, V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 2.5V$, $I_O = 25\mu A$, $I_{SD} < 1\mu A$, DFN Package</td>
</tr>
<tr>
<td>LTC3443</td>
<td>High Current Micropower 600kHz Synchronous Buck-Boost DC/DC Converter</td>
<td>96% Efficiency, V_{IN}: 2.4V to 5.5V, $V_{OUT(MIN)} = 2.4V$, $I_O = 28\mu A$, $I_{SD} < 1\mu A$, DFN Package</td>
</tr>
<tr>
<td>LTC3240-3.3/ LTC3240-2.5</td>
<td>3.3V/2.5V Step-Up/Step-Down Charge Pump DC/DC Converter</td>
<td>V_{IN}: 1.8V to 5.5V, $V_{OUT(MAX)} = 3.3V / 2.5V$, $I_O = 65\mu A$, $I_{SD} < 1\mu A$, (2mm × 2mm) DFN Package</td>
</tr>
<tr>
<td>LTC3260</td>
<td>Low Noise Dual Supply Inverting Charge Pump</td>
<td>V_{IN} Range: 4.5V to 32V, $I_O = 100\mu A$, 100mA Charge Pump, 50mA Positive LDO, 50mA Negative LDO</td>
</tr>
<tr>
<td>LTC3261</td>
<td>High Voltage Low I_O Inverting Charge Pump</td>
<td>V_{IN} Range: 4.5V to 32V, $I_O = 60\mu A$, 100mA Charge Pump</td>
</tr>
</tbody>
</table>