LTC2489
16-Bit 2-/4-Channel ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface

FEATURES
- Up to 2 Differential or 4 Single-Ended Inputs
- Easy Drive™ Technology Enables Rail-to-Rail Inputs with Zero Differential Input Current
- Directly Digitizes High Impedance Sensors with Full Accuracy
- 2-Wire I2C Interface with 9 Addresses Plus One Global Address for Synchronization
- 600nV RMS Noise (0.02LSB Transition Noise)
- GND to VCC Input/Reference Common Mode Range
- Simultaneous 50Hz/60Hz Rejection
- 2ppm INL, No Missing Codes
- 1ppm Offset and 15ppm Full-Scale Error
- No Latency: Digital Filter Settles in a Single Cycle, Even After a New Channel is Selected
- Single Supply, 2.7V to 5.5V Operation (0.8mW)
- Internal Oscillator
- Tiny 4mm × 3mm DFN Package

APPLICATIONS
- Direct Sensor Digitizer
- Direct Temperature Measurement
- Instrumentation
- Industrial Process Control

DESCRIPTION
The LTC®2489 is a 4-channel (2-channel differential), 16-bit, No Latency ΔΣ™ ADC with Easy Drive technology and a 2-wire, I2C interface. The patented sampling scheme eliminates dynamic input current errors and the shortcomings of on-chip buffering through automatic cancellation of differential input current. This allows large external source impedances and rail-to-rail input signals to be directly digitized while maintaining exceptional DC accuracy.

The LTC2489 includes an integrated oscillator. This device can be configured to measure an external signal from combinations of 4 analog input channels operating in single-ended or differential modes. It automatically rejects line frequencies of 50Hz and 60Hz simultaneously.

The LTC2489 allows a wide, common mode input range (0V to VCC), independent of the reference voltage. Any combination of single-ended or differential inputs can be selected and the first conversion, after a new channel is selected, is valid. Access to the multiplexer output enables optional external amplifiers to be shared between all analog inputs and auto calibration continuously removes their associated offset and drift.

+FS Error vs Rsource at IN+ and IN−

Data Acquisition System with Temperature Compensation

For more information www.linear.com/LTC2489
LTC2489

Absolute Maximum Ratings

(Notes 1, 2)

Supply Voltage (V_{CC}) .. $-0.3V$ to $6V$

Analog Input Voltage

(CHO to CH3, COM) $-0.3V$ to ($V_{CC} + 0.3V$)

REF+, REF− $-0.3V$ to ($V_{CC} + 0.3V$)

Digital Input Voltage $-0.3V$ to ($V_{CC} + 0.3V$)

Digital Output Voltage $-0.3V$ to ($V_{CC} + 0.3V$)

Operating Temperature Range

LTC2489C $0°C$ to $70°C$

LTC2489I $-40°C$ to $85°C$

Storage Temperature Range $-65°C$ to $150°C$

Pin Configuration

DE PACKAGE

14-LEAD (4mm × 3mm) PLASTIC DFN

$T_{J,MAX} = 125°C, \theta JA = 37°C/W$

EXPOSED PAD (PIN 15) IS GND, MUST BE SOLDERED TO PCB

Order Information

<table>
<thead>
<tr>
<th>Lead Free Finish</th>
<th>Tape and Reel</th>
<th>Part Marking</th>
<th>Package Description</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC2489CDE#PBF</td>
<td>LTC2489CDE#TRPBF</td>
<td>2489</td>
<td>14-Lead (4mm × 3mm) Plastic DFN</td>
<td>$0°C$ to $70°C$</td>
</tr>
<tr>
<td>LTC2489IDE#PBF</td>
<td>LTC2489IDE#TRPBF</td>
<td>2489</td>
<td>14-Lead (4mm × 3mm) Plastic DFN</td>
<td>$-40°C$ to $85°C$</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ$C. (Notes 3, 4)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (No Missing Codes)</td>
<td>$0.1V \leq V_{REF} \leq V_{CC}, -FS \leq V_{IN} \leq +FS$ (Note 5)</td>
<td>16</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Integral Nonlinearity</td>
<td>$5V \leq V_{CC} \leq 5.5V, V_{REF} = 5V, V_{IN(CM)} = 2.5V$ (Note 6)</td>
<td>●</td>
<td>2</td>
<td>20</td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Offset Error</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, GND \leq IN^+ = IN^- \leq V_{CC}$ (Note 13)</td>
<td>●</td>
<td>0.5</td>
<td>2.5</td>
<td>µV</td>
</tr>
<tr>
<td>Offset Error Drift</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, GND \leq IN^+ = IN^- \leq V_{CC}$</td>
<td>10</td>
<td></td>
<td></td>
<td>nV/°C</td>
</tr>
<tr>
<td>Positive Full-Scale Error</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, IN^+ = 0.75V_{REF}, IN^- = 0.25V_{REF}$</td>
<td>●</td>
<td>32</td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Positive Full-Scale Error Drift</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, IN^+ = 0.75V_{REF}, IN^- = 0.25V_{REF}$</td>
<td>0.1</td>
<td></td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Negative Full-Scale Error</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, IN^+ = 0.25V_{REF}, IN^- = 0.75V_{REF}$</td>
<td>●</td>
<td>32</td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Negative Full-Scale Error Drift</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, IN^+ = 0.75V_{REF}, IN^- = 0.25V_{REF}$</td>
<td>0.1</td>
<td></td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Total Unadjusted Error</td>
<td>$5V \leq V_{CC} \leq 5.5V, V_{REF} = 2.5V, V_{IN(CM)} = 1.25V$</td>
<td>15</td>
<td></td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td></td>
<td>$5V \leq V_{CC} \leq 5.5V, V_{REF} = 5V, V_{IN(CM)} = 2.5V$</td>
<td>15</td>
<td></td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td></td>
<td>$2.7V \leq V_{CC} \leq 5.5V, V_{REF} = 2.5V, V_{IN(CM)} = 1.25V$</td>
<td>15</td>
<td></td>
<td></td>
<td>ppm of V_{REF}</td>
</tr>
<tr>
<td>Output Noise</td>
<td>$2.7V < V_{CC} < 5.5V, 2.5V \leq V_{REF} \leq V_{CC}$, GND = IN$^+$ = IN$^-$ = VCC (Note 12)</td>
<td>0.6</td>
<td></td>
<td></td>
<td>µV$_{RMS}$</td>
</tr>
</tbody>
</table>

CONVERTER CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ$C. (Note 3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Common Mode Rejection DC</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, GND \leq IN^+ = IN^- \leq V_{CC}$ (Note 5)</td>
<td>●</td>
<td>140</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Normal Mode Rejection 50Hz/60Hz ±2%</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, GND \leq IN^+ = IN^- \leq V_{CC}$ (Notes 5, 9)</td>
<td>●</td>
<td>87</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Reference Common Mode Rejection DC</td>
<td>$2.5V \leq V_{REF} \leq V_{CC}, GND \leq IN^+ = IN^- \leq V_{CC}$ (Note 5)</td>
<td>●</td>
<td>120</td>
<td>140</td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection DC</td>
<td>$V_{REF} = 2.5V, IN^+ = IN^- = GND$</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection, 50Hz ±2%</td>
<td>$V_{REF} = 2.5V, IN^+ = IN^- = GND$ (Notes 7, 9)</td>
<td></td>
<td>120</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection, 60Hz ±2%</td>
<td>$V_{REF} = 2.5V, IN^+ = IN^- = GND$ (Notes 8, 9)</td>
<td></td>
<td>120</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

ANALOG INPUT AND REFERENCE

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ$C. (Note 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN$^+$</td>
<td>Absolute/Common Mode IN$^+$ Voltage (IN$^+$ Corresponds to the Selected Positive Input Channel)</td>
<td>GND – 0.3V</td>
<td>$V_{CC} + 0.3V$</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IN$^-$</td>
<td>Absolute/Common Mode IN$^-$ Voltage (IN$^-$ Corresponds to the Selected Negative Input Channel or COM)</td>
<td>GND – 0.3V</td>
<td>$V_{CC} + 0.3V$</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Range (IN$^+ – IN^-$)</td>
<td>Differential/Single-Ended</td>
<td>●</td>
<td>–FS</td>
<td>+FS</td>
<td>V</td>
</tr>
<tr>
<td>FS</td>
<td>Full Scale of the Input (IN$^+ – IN^-$)</td>
<td>Differential/Single-Ended</td>
<td>●</td>
<td>0.5V_{REF}</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit of the Output Code</td>
<td>FS/2</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF$^+$</td>
<td>Absolute/Common Mode REF$^+$ Voltage</td>
<td></td>
<td></td>
<td>0.1</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>REF$^-$</td>
<td>Absolute/Common Mode REF$^-$ Voltage</td>
<td></td>
<td></td>
<td></td>
<td>GND</td>
<td>$REF^+ – 0.1V$</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Reference Voltage Range (REF$^+ – REF^-$)</td>
<td></td>
<td></td>
<td>0.1</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>CS(IN$^+$)</td>
<td>IN$^+$ Sampling Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>pF</td>
</tr>
<tr>
<td>CS(IN$^-$)</td>
<td>IN$^-$ Sampling Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>pF</td>
</tr>
<tr>
<td>CS(V$_{REF}$)</td>
<td>V_{REF} Sampling Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>pF</td>
</tr>
</tbody>
</table>
LTC2489

ANALOG INPUT AND REFERENCE
The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. (Note 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DC_LEAK(IN^+)}$</td>
<td>DC Leakage Current I^+</td>
<td>Sleep Mode, $I^+ = GND$</td>
<td>●</td>
<td>1</td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td>$I_{DC_LEAK(IN^-)}$</td>
<td>DC Leakage Current I^-</td>
<td>Sleep Mode, $I^- = GND$</td>
<td>●</td>
<td>1</td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td>$I_{DC_LEAK(REF^+)}$</td>
<td>DC Leakage Current REF^+</td>
<td>Sleep Mode, $REF^+ = VCC$</td>
<td>●</td>
<td>1</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>$I_{DC_LEAK(REF^-)}$</td>
<td>DC Leakage Current REF^-</td>
<td>Sleep Mode, $REF^- = GND$</td>
<td>●</td>
<td>1</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{OPEN}</td>
<td>MUX Break-Before-Make</td>
<td>$V_{IN} = 2V_{P-P}$ DC to 1.8MHz</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$QIRR$</td>
<td>MUX Off Isolation</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

$^\circ C$ INPUTS AND DIGITAL OUTPUTS
The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. (Note 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>High Level Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low Level Input Voltage</td>
<td></td>
<td></td>
<td>0.15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IHA}</td>
<td>High Level Input Voltage for Address Pins CA0, CA1 and Pin FO</td>
<td></td>
<td></td>
<td>0.95V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ILA}</td>
<td>Low Level Input Voltage for Address Pins CA0, CA1</td>
<td></td>
<td></td>
<td>0.05V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{INH}</td>
<td>Resistance from CA0, CA1 to VCC to Set Chip Address Bit to 1</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{INL}</td>
<td>Resistance from CA0, CA1 to GND to Set Chip Address Bit to 0</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{INF}</td>
<td>Resistance from CA0, CA1 to GND or VCC to Set Chip Address Bit to Float</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>I_I</td>
<td>Digital Input Current</td>
<td>●</td>
<td>10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Hysteresis of Schmidt Trigger Inputs</td>
<td>(Note 5)</td>
<td></td>
<td>0.05V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{DL}</td>
<td>Low Level Output Voltage (SDA)</td>
<td>$I = 3mA$</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>t_{OF}</td>
<td>Output Fall Time $V_{IH(MIN)}$ to $V_{IL(MAX)}$</td>
<td>Bus Load C_B 10pF to 400pF (Note 14)</td>
<td></td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input Leakage</td>
<td>$0.1V_{CC} \leq V_{IN} \leq V_{CC}$</td>
<td></td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>C_{CAX}</td>
<td>External Capacitative Load on Chip Address Pins (CA0, CA1) for Valid Float</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

POWER REQUIREMENTS
The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. (Note 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply Voltage</td>
<td></td>
<td>2.7</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply Current</td>
<td>Conversion Current (Note 11) Sleep Mode (Note 11)</td>
<td>160</td>
<td></td>
<td>275</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>μA</td>
</tr>
</tbody>
</table>

For more information www.linear.com/LTC2489
DIGITAL INPUTS AND DIGITAL OUTPUTS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. (Note 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{EOSC}</td>
<td>External Oscillator Frequency Range</td>
<td>(Note 16)</td>
<td>●</td>
<td>10</td>
<td>1000</td>
<td>kHz</td>
</tr>
<tr>
<td>t_{HEO}</td>
<td>External Oscillator High Period</td>
<td></td>
<td>●</td>
<td>0.125</td>
<td>50</td>
<td>µs</td>
</tr>
<tr>
<td>t_{LEO}</td>
<td>External Oscillator Low Period</td>
<td></td>
<td>●</td>
<td>0.125</td>
<td>50</td>
<td>µs</td>
</tr>
<tr>
<td>t_{CONV}</td>
<td>Conversion Time</td>
<td>Internal Oscillator External Oscillator (Note 10)</td>
<td>●</td>
<td>144.1</td>
<td>146.9</td>
<td>149.9</td>
</tr>
</tbody>
</table>

I²C TIMING CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. (Note 3, 15)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SCL}</td>
<td>SCL Clock Frequency</td>
<td></td>
<td>●</td>
<td>0</td>
<td>400</td>
<td>kHz</td>
</tr>
<tr>
<td>$t_{HD(STA)}$</td>
<td>Hold Time (Repeated) Start Condition</td>
<td></td>
<td>●</td>
<td>0.6</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t_{LOW}</td>
<td>Low Period of the SCL Pin</td>
<td></td>
<td>●</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{HIGH}</td>
<td>High Period of the SCL Pin</td>
<td></td>
<td>●</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{SU(STA)}$</td>
<td>Set-Up Time for a Repeated Start Condition</td>
<td></td>
<td>●</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{HD(DAT)}$</td>
<td>Data Hold Time</td>
<td></td>
<td>●</td>
<td>0</td>
<td>0.9</td>
<td>µs</td>
</tr>
<tr>
<td>$t_{SU(DAT)}$</td>
<td>Data Set-Up Time</td>
<td></td>
<td>●</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time for SDA Signals</td>
<td>(Note 14)</td>
<td>●</td>
<td>20 + 0.1C_B</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time for SDA Signals</td>
<td>(Note 14)</td>
<td>●</td>
<td>20 + 0.1C_B</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{SU(STO)}$</td>
<td>Set-Up Time for Stop Condition</td>
<td></td>
<td>●</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All voltage values are with respect to GND.

Note 3: $V_{CC} = 2.7V$ to 5.5V unless otherwise specified.

\[V_{REF(-)} = V_{REF+}/2, F_S = 0.9V_{REF} \]

\[V_{IN} = (V_{IN+} + V_{IN-})/2, V_{(IN+ - IN-)} = (IN+ - IN-)/2 \]

where $IN+$ and $IN-$ are the selected input channels.

Note 4: Use internal conversion clock or external conversion clock source with $f_{EOSC} = 307.2kHz$ unless otherwise specified.

Note 5: Guaranteed by design, not subject to test.

Note 6: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.

Note 7: $f_{EOSC} = 256kHz ±2\%$ (external oscillator).

Note 8: $f_{EOSC} = 307.2kHz ±2\%$ (external oscillator).

Note 9: Simultaneous 50Hz/60Hz (internal oscillator) or $f_{EOSC} = 280kHz ±2\%$ (external oscillator).

Note 10: The external oscillator is connected to the F_O pin. The external oscillator frequency, f_{EOSC}, is expressed in kHz.

Note 11: The converter uses its internal oscillator.

Note 12: The output noise includes the contribution of the internal calibration operations.

Note 13: Guaranteed by design and test correlation.

Note 14: $C_B = $ capacitance of one bus line in pF (10pF ≤ C_B ≤ 400pF).

Note 15: All values refer to $V_{IH(MIN)}$ and $V_{IL(MAX)}$ levels.

Note 16: Refer to Applications Information section for performance versus data rate graphs.

For more information www.linear.com/LTC2489
Typical Performance Characteristics

Offset Error vs \(V_{\text{REF}} \)

- \(V_{\text{CC}} = 5\text{V} \)
- \(\text{REF} = \text{GND} \)
- \(V_{\text{IN}} = 0\text{V} \)
- \(V_{\text{IN(CM)}} = \text{GND} \)
- \(T_A = 25^\circ\text{C} \)
- \(f_o = \text{GND} \)

On-Chip Oscillator Frequency vs Temperature

- \(V_{\text{CC}} = 4.1\text{V DC} \pm 0.7\text{V} \)
- \(V_{\text{REF}} = 2.5\text{V} \)
- \(V_{\text{IN}} = 0\text{V} \)
- \(V_{\text{IN(CM)}} = \text{GND} \)
- \(f_o = \text{GND} \)
- \(T_A = 25^\circ\text{C} \)

PSRR vs Frequency at \(V_{\text{CC}} \)

- \(V_{\text{CC}} = 4.1\text{V DC} \pm 0.7\text{V} \)
- \(V_{\text{REF}} = 2.5\text{V} \)
- \(V_{\text{IN}} = 0\text{V} \)
- \(V_{\text{IN(CM)}} = \text{GND} \)
- \(f_o = \text{GND} \)
- \(T_A = 25^\circ\text{C} \)

Conversion Current vs Temperature

- \(f_o = \text{GND} \)
- \(V_{\text{CC}} = 5\text{V} \)
- \(V_{\text{CC}} = 2.7\text{V} \)

Sleep Mode Current vs Temperature

- \(f_o = \text{GND} \)
- \(V_{\text{CC}} = 5\text{V} \)
- \(V_{\text{CC}} = 2.7\text{V} \)

Conversion Current vs Output Data Rate

- \(V_{\text{REF}} = V_{\text{CC}} \)
- \(\text{IN}^+ = \text{GND} \)
- \(\text{IN}^- = \text{GND} \)
- \(T_A = 25^\circ\text{C} \)
PIN FUNCTIONS

f₀ (Pin 1): Frequency Control Pin. Digital input that controls the internal conversion clock rate. When f₀ is connected to GND, the converter uses its internal oscillator running at 307.2kHz. The conversion clock may also be overridden by driving the f₀ pin with an external clock in order to change the output rate and the digital filter rejection null.

CA0, CA1 (Pins 2, 3): Chip Address Control Pins. These pins are configured as a three-state (LOW, HIGH, Floating) address control bits for the device’s I²C address.

SCL (Pin 4): Serial Clock Pin of the I²C Interface. The LTC2489 can only act as a slave and the SCL pin only accepts an external serial clock. Data is shifted into the SDA pin on the rising edges of the SCL clock and output through the SDA pin on the falling edges of the SCL clock.

SDA (Pin 5): Bidirectional Serial Data Line of the I²C Interface. In the transmitter mode (Read), the conversion result is output through the SDA pin, while in the receiver mode (Write), the device channel select bits are input through the SDA pin. The pin is high impedance during the data input mode and is an open drain output (requires an appropriate pull-up device to VCC) during the data output mode.

GND (Pin 6): Ground. Connect this pin to a common ground plane through a low impedance connection.

COM (Pin 7): The Common Negative Input (IN−) for All Single-Ended Multiplexer Configurations. The voltage on CH0-CH3 and COM pins can have any value between GND − 0.3V to VCC + 0.3V. Within these limits, the two selected inputs (IN+ and IN−) provide a bipolar input range (VIN = IN+ − IN−) from −0.5 • VREF to 0.5 • VREF. Outside this input range, the converter produces unique over-range and under-range output codes.

CH0 to CH3 (Pin 8-Pin 11): Analog Inputs. May be programmed for single-ended or differential mode.

VCC (Pin 12): Positive Supply Voltage. Bypass to GND with a 10µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor as close to the part as possible.

REF+, REF− (Pin 13, Pin 14): Differential Reference Input. The voltage on these pins can have any value between GND and VCC as long as the reference positive input, REF+, remains more positive than the reference negative input, REF−, by at least 0.1V. The differential voltage (VREF = REF+ − REF−) sets the full-scale range for all input channels.

Exposed Pad (Pin 15): Ground. This pin is ground and must be soldered to the PCB ground plane. For prototyping purposes, this pin may remain floating.

For more information www.linear.com/LTC2489
For more information www.linear.com/LTC2489
APPLICATIONS INFORMATION

CONVERTER OPERATION

Converter Operation Cycle

The LTC2489 is a multichannel, low power, delta-sigma analog-to-digital converter with a 2-wire, I2C interface. Its operation is made up of four states (see Figure 1). The converter operating cycle begins with the conversion, followed by the sleep state and ends with the data input/output cycle.

Initially, at power-up, the LTC2489 performs a conversion. Once the conversion is complete, the device enters the sleep state. In the sleep state, power consumption is reduced by two orders of magnitude. The part remains in the sleep state as long it is not addressed for a read/write operation. The conversion result is held indefinitely in a static shift register while the part is in the sleep state.

The device will not acknowledge an external request during the conversion state. After a conversion is finished, the device is ready to accept a read/write request. Once the LTC2489 is addressed for a read operation, the device begins outputting the conversion result under the control of the serial clock (SCL). There is no latency in the conversion result. The data output is 24 bits long and contains a 16-bit plus sign conversion result. Data is updated on the falling edges of SCL allowing the user to reliably latch data on the rising edge of SCL. A new conversion is initiated by a stop condition following a valid write operation or an incomplete read operation. The conversion automatically begins at the conclusion of a complete read cycle (all 24 bits read out of the device).

Ease of Use

The LTC2489 data output has no latency, filter settling delay, or redundant data associated with the conversion cycle. There is a one-to-one correspondence between the conversion and the output data. Therefore, multiplexing multiple analog inputs is straightforward. Each conversion, immediately following a newly selected input is valid and accurate to the full specifications of the device.

The LTC2489 automatically performs offset and full-scale calibration every conversion cycle independent of the input channel selected. This calibration is transparent to the user and has no effect on the operation cycle described above. The advantage of continuous calibration is extreme stability of offset and full-scale readings with respect to time, supply voltage variation, input channel, and temperature drift.

Easy Drive Input Current Cancellation

The LTC2489 combines a high precision, delta-sigma ADC with an automatic, differential, input current cancellation front end. A proprietary front end passive sampling network transparently removes the differential input current. This enables external RC networks and high impedance sensors to directly interface to the LTC2489 without external amplifiers. The remaining common mode input current is eliminated by either balancing the differential input impedances or setting the common mode input equal to the common mode reference (see the Automatic Differential Input Current Cancellation section). This unique architecture does not require on-chip buffers, thereby enabling signals to swing beyond ground and VCC. Moreover, the cancellation does not interfere with the transparent offset
and full-scale auto-calibration and the absolute accuracy (full scale + offset + linearity + drift) is maintained even with external RC networks.

Power-Up Sequence

The LTC2489 automatically enters an internal reset state when the power supply voltage, VCC, drops below approximately 2.0V. This feature guarantees the integrity of the conversion result and input channel selection.

When VCC rises above this threshold, the converter creates an internal power-on-reset (POR) signal with a duration of approximately 4ms. The POR signal clears all internal registers. The conversion immediately following a POR cycle is performed on the input channels IN+ = CH0 and IN− = CH1. The first conversion following a POR cycle is accurate within the specification of the device if the power supply voltage is restored to (2.7V to 5.5V) before the end of the POR interval. A new input channel can be programmed into the device during this first data input/output cycle.

Reference Voltage Range

This converter accepts a truly differential, external reference voltage. The absolute/common mode voltage range for the REF+ and REF− pins covers the entire operating range of the device (GND to VCC). For correct converter operation, VREF must be positive (REF+ > REF−).

The LTC2489 differential reference input range is 0.1V to VCC. For the simplest operation, REF+ can be shorted to VCC and REF− can be shorted to GND. The converter output noise is determined by the thermal noise of the front end circuits. Since the transition noise is well below 1LSB (0.02LSB), a decrease in reference voltage will proportionally improve the converter resolution and improve INL.

Input Voltage Range

The LTC2489 input measurement range is −0.5•VREF to +0.5•VREF in both differential and single-ended configurations as shown in Figure 27. Highest linearity is achieved with Fully Differential drive and a constant common-mode voltage (Figure 27b). Other drive schemes may incur an INL error of approximately 50ppm. This error can be calibrated out using a three point calibration and a second-order curve fit.

I2C INTERFACE

The LTC2489 communicates through an I2C interface. The I2C interface is a 2-wire open-drain interface supporting multiple devices and multiple masters on a single bus. The connected devices can only pull the data line (SDA) low and can never drive it high. SDA is required to be externally connected to the supply through a pull-up resistor. When the data line is not being driven, it is high. Data on the I2C bus can be transferred at rates up to 100kbits/s in the standard mode and up to 400kbits/s in the fast mode. The VCC power should not be removed from the device when the I2C bus is active to avoid loading the I2C bus lines through the internal ESD protection diodes.

Each device on the I2C bus is recognized by a unique address stored in that device and can operate either as a transmitter or receiver, depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Devices addressed by the master are considered a slave.
The LTC2489 can only be addressed as a slave. Once addressed, it can receive channel selection bits or transmit the last conversion result. The serial clock line, SCL, is always an input to the LTC2489 and the serial data line SDA is bidirectional. The device supports the standard mode and the fast mode for data transfer speeds up to 400kbits/s. Figure 2 shows the definition of the I^2C timing.

The Start and Stop Conditions

A Start (S) condition is generated by transitioning SDA from high to low while SCL is high. The bus is considered to be busy after the Start condition. When the data transfer is finished, a Stop (P) condition is generated by transitioning SDA from low to high while SCL is high. The bus is free after a Stop is generated. Start and Stop conditions are always generated by the master.

When the bus is in use, it stays busy if a Repeated Start (Sr) is generated instead of a Stop condition. The repeated Start timing is functionally identical to the Start and is used for writing and reading from the device before the initiation of a new conversion.

Data Transferring

After the Start condition, the I^2C bus is busy and data transfer can begin between the master and the addressed slave. Data is transferred over the bus in groups of nine bits, one byte followed by one acknowledge (ACK) bit. The master releases the SDA line during the ninth SCL clock cycle. The slave device can issue an ACK by pulling SDA low or issue a Not Acknowledge (NAK) by leaving the SDA line high impedance (the external pull-up resistor will hold the line high). Change of data only occurs while the clock line (SCL) is low.

DATA FORMAT

After a Start condition, the master sends a 7-bit address followed by a read/write (R/W) bit. The R/W bit is 1 for a read request and 0 for a write request. If the 7-bit address matches the hard wired, LTC2489's address (one of 9 pin-selectable addresses) the device is selected. When the device is addressed during the conversion state, it will not acknowledge R/W requests and will issue a NAK by leaving the SDA line high. If the conversion is complete, the LTC2489 issues an ACK by pulling the SDA line low.

The LTC2489 has two registers. The output register (24 bits long) contains the last conversion result. The input register (8 bits long) sets the input channel.

DATA OUTPUT FORMAT

The output register contains the last conversion result. After each conversion is completed, the device automatically enters the sleep state where the supply current is reduced to 1µA. When the LTC2489 is addressed for a read operation, it acknowledges (by pulling SDA low) and acts as a transmitter. The master/receiver can read up to three bytes from the LTC2489. After a complete read operation (3 bytes), a new conversion is initiated. The device will NAK subsequent read operations while a conversion is being performed.

The data output stream is 24 bits long and is shifted out on the falling edges of SCL (see Figure 3a). The first bit is the conversion result sign bit (SIG) (see Tables 1 and 2). This bit is high if V IN ≥ 0 and low if V IN < 0 (where V IN corresponds to the selected input signal IN+ – IN–). The second bit is the most significant bit (MSB) of the result. The first two bits (SIG and MSB) can be used to indicate
over and under range conditions (see Table 2). If both bits are HIGH, the differential input voltage is equal to or above +FS. If both bits are set low, the input voltage is below –FS. The function of these bits is summarized in Table 2. The 16 bits following the MSB bit are the conversion result in binary two's complement format. The remaining six bits are always 0.

As long as the voltage on the selected input channels (IN+ and IN–) remains between –0.3V and VCC + 0.3V (absolute maximum operating range) a conversion result is generated for any differential input voltage V_IN from –FS = –0.5 • VREF to +FS = 0.5 • VREF. For differential input voltages greater than +FS, the conversion result is clamped to the value corresponding to +FS. For differential input voltages below –FS, the conversion result is clamped to the value –FS – 1LSB.

Table 2. LTC2489 Status Bits

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Bit 23 SIG</th>
<th>Bit 22 MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN ≥ FS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0V ≤ V_IN < FS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>–FS ≤ V_IN < 0V</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_IN < –FS</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Output Data Format

<table>
<thead>
<tr>
<th>Differential Input Voltage V_IN*</th>
<th>Bit 23 SIG</th>
<th>Bit 22 MSB</th>
<th>Bit 21</th>
<th>Bit 20</th>
<th>Bit 19</th>
<th>…</th>
<th>Bit 6 LSB</th>
<th>Bits 5-0 Always 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN* ≥ FS**</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>FS** – 1LSB</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>…</td>
<td>1</td>
<td>000000</td>
</tr>
<tr>
<td>0.5 • FS**</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>0.5 • FS** – 1LSB</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>…</td>
<td>1</td>
<td>000000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>–1LSB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>…</td>
<td>1</td>
<td>000000</td>
</tr>
<tr>
<td>–0.5 • FS**</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>–0.5 • FS** – 1LSB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>…</td>
<td>1</td>
<td>000000</td>
</tr>
<tr>
<td>–FS**</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>…</td>
<td>0</td>
<td>000000</td>
</tr>
</tbody>
</table>

Table 2. LTC2489 Status Bits

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Bit 23 SIG</th>
<th>Bit 22 MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN* ≥ FS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0V ≤ V_IN < FS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>–FS ≤ V_IN < 0V</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V_IN < –FS</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*The differential input voltage V_IN = IN+ – IN–. **The full-scale voltage FS = 0.5 • VREF.

INPUT DATA FORMAT

The LTC2489 serial input is 8 bits long and is written into the device in one 8-bit word. SGL, ODD, A2, A1, A0 are used to select the input channel.

After power-up, the device initiates an internal reset cycle which sets the input channel to CH0-CH1 (IN+ = CH0, IN– = CH1). The first conversion automatically begins at power-up using this default input channel. Once the conversion is complete, a new channel may be written into the device.

The first three bits of the input word consist of two preamble bits and one enable bit. These three bits are used to enable the input channel selection. Valid settings for these three bits are 000, 100, and 101. Other combinations should be avoided.

If the first three bits are 000 or 100, the following data is ignored (don’t care) and the previously selected input channel remains valid for the next conversion.

If the first three bits shifted into the device are 101, then the next five bits select the input channel for the next conversion cycle (see Table 3).

The first input bit (SGL) following the 101 sequence determines if the input selection is differential (SGL = 0) or single-ended (SGL = 1). For SGL = 0, two adjacent channels can be selected to form a differential input. For SGL = 1, one of 4 channels is selected as the positive input. The negative input is COM for all single-ended operations.
The remaining four bits (ODD, A2, A1, A0) determine which channel(s) is/are selected and the polarity (for a differential input).

Initiating a New Conversion

When the LTC2489 finishes a conversion, it automatically enters the sleep state. Once in the sleep state, the device is ready for a read operation. After the device acknowledges a read request, the device exits the sleep state and enters the data output state. The data output state concludes and the LTC2489 starts a new conversion once a Stop condition is issued by the master or all 24 bits of data are read out of the device.

During the data read cycle, a Stop command may be issued by the master controller in order to start a new conversion and abort the data transfer. This Stop command must be issued during the ninth clock cycle of a byte read when the bus is free (the ACK/NAK cycle).
LTC2489 Address

The LTC2489 has two address pins (CA0, CA1). Each may be tied high, low, or left floating enabling one of 9 possible addresses (see Table 4).

In addition to the configurable addresses listed in Table 4, the LTC2489 also contains a global address (1110111) which may be used for synchronizing multiple LTC2489s or other LTC24XX delta-sigma I2C devices, (See Synchronizing Multiple LTC2489s with Global Address Call section).

Operation Sequence

The LTC2489 acts as a transmitter or receiver, as shown in Figure 4. The device may be programmed to select an input channel, differential or single-ended mode, and channel polarity.

Continuous Read

In applications where the input channel does not need to change for each cycle, the conversion can be continuously performed and read without a write cycle (see Figure 5). The input channel remains unchanged from the last value written into the device. If the device has not been written to since power up, the channel selection is set to the default value of CH0 = IN+, CH1 = IN-. At the end of a read operation, a new conversion automatically begins. At the conclusion of the conversion cycle, the next result may be read using the method described above. If the conversion cycle is not concluded and a valid address selects the device, the LTC2489 generates a NAK signal indicating the conversion cycle is in progress.

Continuous Read/Write

Once the conversion cycle is concluded, the LTC2489 can be written to and then read from using the Repeated Start (Sr) command.

Figure 6 shows a cycle which begins with a data Write, a repeated Start, followed by a Read and concluded with a Stop command. The following conversion begins after all 24 bits are read out of the device or after a Stop command. The following conversion will be performed using the newly programmed data.
Applications Information

Discarding a Conversion Result and Initiating a New Conversion with Optional Write

At the conclusion of a conversion cycle, a write cycle can be initiated. Once the write cycle is acknowledged, a Stop command will start a new conversion. If a new input channel is required, this data can be written into the device and a Stop command will initiate the next conversion (see Figure 7).

Synchronizing Multiple LTC2489s with a Global Address Call

In applications where several LTC2489s (or other I²C delta-sigma ADCs from Linear Technology Corporation) are used on the same I²C bus, all converters can be synchronized through the use of a global address call. Prior to issuing the global address call, all converters must have completed a conversion cycle. The master then issues a Start, followed by the global address 1110111, and a write request. All converters will be selected and acknowledge the request. The master then sends a write byte (optional) followed by the Stop command. This will update the channel selection (optional) and simultaneously initiate a start of conversion for all delta-sigma ADCs on the bus (see Figure 8). In order to synchronize multiple converters without changing the channel, a Stop may be issued after acknowledgement of the global write command. Global read commands are not allowed and the converters will NAK a global read request.

Figure 6. Write, Read, Start Conversion

Figure 7. Start a New Conversion Without Reading Old Conversion Result

Figure 8. Synchronize Multiple LTC2489s with a Global Address Call
APPLICATIONS INFORMATION

Driving the Input and Reference

The input and reference pins of the LTC2489 are connected directly to a switched capacitor network. Depending on the relationship between the differential input voltage and the differential reference voltage, these capacitors are switched between these four pins. Each time a capacitor is switched between two of these pins, a small amount of charge is transferred. A simplified equivalent circuit is shown in Figure 9.

When using the LTC2489's internal oscillator, the input capacitor array is switched at 123kHz. The effect of the charge transfer depends on the circuitry driving the input/reference pins. If the total external RC time constant is less than 580ns the errors introduced by the sampling process are negligible since complete settling occurs.

Typically, the reference inputs are driven from a low impedance source. In this case, complete settling occurs even with large external bypass capacitors. The inputs (CH0-CH3, COM), on the other hand, are typically driven from larger source resistances. Source resistances up to 10kΩ may interface directly to the LTC2489 and settle completely; however, the addition of external capacitors at the input terminals in order to filter unwanted noise (antialiasing) results in incomplete settling.

Automatic Differential Input Current Cancellation

In applications where the sensor output impedance is low (up to 10kΩ with no external bypass capacitor or up to 500Ω with 0.001µF bypass), complete settling of the input occurs. In this case, no errors are introduced and direct digitization is possible.

For many applications, the sensor output impedance combined with external input bypass capacitors produces RC time constants much greater than the 580ns required for 1ppm accuracy. For example, a 10kΩ bridge driving a 0.1µF capacitor has a time constant an order of magnitude greater than the required maximum.

The LTC2489 uses a proprietary switching algorithm that forces the average differential input current to zero independent of external settling errors. This allows direct digitization of high impedance sensors without the need for buffers.

The switching algorithm forces the average input current on the positive input (I_{IN}^+) to be equal to the average input current on the negative input (I_{IN}^-). Over the complete conversion cycle, the average differential input current (I_{IN}^+ - I_{IN}^-) is zero. While the differential input current is zero, the common mode input current (I_{IN}^+ + I_{IN}^-)/2 is proportional to the difference between the common mode input voltage (V_{IN(CM)}) and the common mode reference voltage (V_{REF(CM)}).

\[
I_{IN}^+ \quad (AVG) = \frac{V_{IN(CM)} - V_{REF(CM)}}{2}
\]

\[
I_{IN}^- \quad (AVG) = \frac{-V_{IN(CM)} - V_{REF(CM)}}{2}
\]

where:

\[
V_{REF} = V_{REF+} - V_{REF-}
\]

\[
V_{REF(CM)} = \frac{V_{REF+} - V_{REF-}}{2}
\]

\[
R_{EQ} = 2.98M\Omega \text{INTERNAL OSCILLATOR}
\]

\[
R_{EQ} = \left(0.833\times10^{12}\right)/f_{EOSC} \text{EXTERNAL OSCILLATOR}
\]

\[
I_{IN}^+ \quad (AVG) - I_{IN}^- \quad (AVG) = \frac{V_{REF(CM)} - V_{REF(CM)}}{0.5 + R_{EQ}}
\]

\[
I_{REF} \quad (AVG) = \frac{1.5V_{REF} + (V_{REF(CM)} - V_{REF(CM)})}{0.5 + R_{EQ}}
\]

\[
V_{REF} = \frac{V_{IN}^+ - V_{IN}^-}{2}, \text{WHERE IN}^+ \text{ AND IN}^- \text{ ARE THE SELECTED INPUT CHANNELS}
\]

\[
V_{REF(CM)} = \frac{V_{IN}^+ - V_{IN}^-}{2}
\]

\[
V_{REF} = \frac{V_{REF} - V_{REF}}{2}
\]

\[
V_{REF(CM)} = \frac{V_{REF} + V_{REF}}{2}
\]

\[
R_{EQ} = 2.98M\Omega \text{INTERNAL OSCILLATOR}
\]

\[
R_{EQ} = \left(0.833\times10^{12}\right)/f_{EOSC} \text{EXTERNAL OSCILLATOR}
\]
In applications where the input common mode voltage is equal to the reference common mode voltage, as in the case of a balanced bridge, both the differential and common mode input current are zero. The accuracy of the converter is not compromised by settling errors.

In applications where the input common mode voltage is constant but different from the reference common mode voltage, the differential input current remains zero while the common mode input current is proportional to the difference between $V_{\text{IN(CM)}}$ and $V_{\text{REF(CM)}}$. For a reference common mode voltage of 2.5V and an input common mode of 1.5V, the common mode input current is approximately 0.74µA. This common mode input current does not degrade the accuracy if the source impedances tied to IN+ and IN− are matched. Mismatches in source impedance lead to a fixed offset error but do not effect the linearity or full-scale reading. A 1% mismatch in a 1k source resistance leads to a 74µV shift in offset voltage.

In applications where the common mode input voltage varies as a function of the input signal level (single-ended type sensors), the common mode input current varies proportionally with input voltage. For the case of balanced input impedances, the common mode input current effects are rejected by the large CMRR of the LTC2489, leading to little degradation in accuracy. Mismatches in source impedances lead to gain errors proportional to the difference between the common mode input and common mode reference. 1% mismatches in 1k source resistances lead to gain errors on the order of 15ppm. Based on the stability of the internal sampling capacitors and the accuracy of the internal oscillator, a one-time calibration will remove this error.

In addition to the input sampling current, the input ESD protection diodes have a temperature dependent leakage current. This current, nominally 1nA (±10nA max), results in a small offset shift. A 1k source resistance will create a 1µV typical and a 10µV maximum offset voltage.

Reference Current

Similar to the analog inputs, the LTC2489 samples the differential reference pins (REF+ and REF−) transferring small amounts of charge to and from these pins, thus producing a dynamic reference current. If incomplete settling occurs (as a function the reference source resistance and reference bypass capacitance) linearity and gain errors are introduced.

For relatively small values of external reference capacitance ($C_{\text{REF}} < 1nF$), the voltage on the sampling capacitor settles for reference impedances of many kΩ (if $C_{\text{REF}} = 100pF$ up to 10kΩ will not degrade the performance) (see Figures 10 and 11).

In cases where large bypass capacitors are required on the reference inputs ($C_{\text{REF}} > .01µF$), full-scale and linearity errors are proportional to the value of the reference resistance. Every ohm of reference resistance produces a
full-scale error of approximately 0.5ppm (while operating with the internal oscillator) (see Figures 12 and 13). If the input common mode voltage is equal to the reference common mode voltage, a linearity error of approximately 0.67ppm per 100Ω of reference resistance results (see Figure 14). In applications where the input and reference common mode voltages are different, the errors increase. A 1V difference in between common mode input and common mode reference results in a 6.7ppm INL error for every 100Ω of reference resistance.

In addition to the reference sampling charge, the reference ESD protection diodes have a temperature dependent leakage current. This leakage current, nominally 1nA (±10nA max) results in a small, gain error. A 100Ω reference resistance will create a 0.5µV full-scale error.

Normal Mode Rejection and Antialiasing
One of the advantages delta-sigma ADCs offer over conventional ADCs is on-chip digital filtering. Combined with a large oversample ratio, the LTC2489 significantly simplifies antialiasing filter requirements. Additionally, the input current cancellation feature allows external low pass filtering without degrading the DC performance of the device.

The SINC⁴ digital filter provides excellent normal mode rejection at all frequencies except DC and integer multiples of the modulator sampling frequency (fS). The modulator sampling frequency is fS = 15,360Hz while operating with its internal oscillator and fS = fEOsc/20 when operating with an external oscillator of frequency fEOsc.
When using the internal oscillator, the LTC2489 is designed to reject line frequencies. As shown in Figure 15, rejection nulls occur at multiples of frequency f_N, where $f_N = 55$Hz for simultaneous 50Hz/60Hz rejection. Multiples of the modulator sampling rate ($f_S = f_N \times 256$) only reject noise to 15dB (see Figure 16); if noise sources are present at these frequencies antialiasing will reduce their effects.

The user can expect to achieve this level of performance using the internal oscillator, as shown in Figure 17. Measured values of normal mode rejection are shown superimposed over the theoretical values.

Traditional high order delta-sigma modulators suffer from potential instabilities at large input signal levels. The proprietary architecture used for the LTC2489 third order modulator resolves this problem and guarantees stability with input signals 150% of full scale. In many industrial applications, it is not uncommon to have microvolt level signals superimposed over unwanted error sources with several volts if peak-to-peak noise. Figure 18 shows measurement results for the rejection of a 7.5V peak-to-peak noise source (150% of full scale) applied to the LTC2489. This curve shows that the rejection performance is maintained even in extremely noisy environments.

Output Data Rate

When using its internal oscillator, the LTC2489 produces up to 7.5 samples per second (sps) with a notch frequency of 60Hz. The actual output data rate depends upon the length of the sleep and data output cycles which are controlled by the user and can be made insignificantly short. When operating with an external conversion clock (f_O connected to

Figure 15. Input Normal Mode Rejection at DC

Figure 16. Input Normal Mode Rejection at $f_S = 256 \times f_N$

Figure 17. Input Normal Mode Rejection vs Input Frequency with Input Perturbation of 100% (50Hz/60Hz Notch)

Figure 18. Measure Input Normal Mode Rejection vs Input Frequency with Input Perturbation of 150% (60Hz Notch)
to an external oscillator), the LTC2489 output data rate can be increased. The duration of the conversion cycle is $41036/f_{EOSC}$. If $f_{EOSC} = 307.2$kHz, the converter behaves as if the internal oscillator is used.

An increase in f_{EOSC} over the nominal 307.2kHz will translate into a proportional increase in the maximum output data rate (up to a maximum of 100sps). The increase in output rate leads to degradation in offset, full-scale error, and effective resolution as well as a shift in frequency rejection.

A change in f_{EOSC} results in a proportional change in the internal notch position. This leads to reduced differential mode rejection of line frequencies. The common mode rejection of line frequencies remains unchanged, thus fully differential input signals with a high degree of symmetry on both the IN+ and IN- pins will continue to reject line frequency noise.

An increase in f_{EOSC} also increases the effective dynamic input and reference current. External RC networks will continue to have zero differential input current, but the time required for complete settling (580ns for $f_{EOSC} = 307.2$kHz) is reduced, proportionally.

Once the external oscillator frequency is increased above 1MHz (a more than 3X increase in output rate) the effectiveness of internal auto calibration circuits begins to degrade. This results in larger offset errors, full-scale errors, and decreased resolution, as shown in Figures 19 to 26.

Easy Drive ADCs Simplify Measurement of High Impedance Sensors

Delta-Sigma ADCs, with their high accuracy and high noise immunity, are ideal for directly measuring many types of sensors. Nevertheless, input sampling currents can overwhelm high source impedances or low-bandwidth, micropower signal conditioning circuits. The LTC2489 solves this problem by balancing the input currents, thus simplifying or eliminating the need for signal conditioning circuits.

A common application for a delta-sigma ADC is thermistor measurement. Figure 28 shows two examples of thermistor digitization benefiting from the Easy Drive technology. The first circuit (applied to input channels CH0 and CH1) uses balanced reference resistors in order to balance the common mode input/reference voltage and balance the differential input source resistance. If reference resistors R1 and R4 are exactly equal, the input current is zero and no errors result. If these resistors have a 1% tolerance, the maximum error in measured resistance is 1.6Ω due to a shift in common mode voltage; far less than the 1% error of the reference resistors themselves. No amplifier is required, making this an ideal solution in micropower applications.

Easy Drive also enables very low power, low bandwidth amplifiers to drive the input to the LTC2489. As shown in Figure 28, CH2 is driven by the LT1494. The LT1494 has excellent DC specs for an amplifier with 1.5µA supply current (the maximum offset voltage is 150µV and the open loop gain is 100,000). Its 2kHz bandwidth makes it unsuitable for driving conventional delta sigma ADCs. Adding a 1kΩ, 0.1µF filter solves this problem by providing a charge reservoir that supplies the LTC2489 instantaneous current, while the 1k resistor isolates the capacitive load from the LT1494.

Conventional delta sigma ADCs input sampling current lead to DC errors as a result of incomplete settling in the external RC network. The Easy Drive technology cancels the differential input current. By balancing the negative input (CH3) with a 1kΩ, 0.1µF network errors due to the common mode input current are cancelled.
APPLICATIONS INFORMATION

Figure 19. Offset Error vs Output Data Rate and Temperature

Figure 20. +FS Error vs Output Data Rate and Temperature

Figure 21. –FS Error vs Output Data Rate and Temperature

Figure 22. Resolution (Noise_{RMS} \leq 1\text{LSB}) vs Output Data Rate and Temperature

Figure 23. Resolution (INL_{MAX} \leq 1\text{LSB}) vs Output Data Rate and Temperature

Figure 24. Offset Error vs Output Data Rate and Reference Voltage

Figure 25. Resolution (Noise_{RMS} \leq 1\text{LSB}) vs Output Data Rate and Reference Voltage

Figure 26. Resolution (INL_{MAX} \leq 1\text{LSB}) vs Output Data Rate and Reference Voltage
APPLICATIONS INFORMATION

Figure 27. Input Range
DE Package
14-Lead Plastic DFN (4mm × 3mm)
(Reference LTC DWG # 05-08-1708 Rev B)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGFD-3) IN JEDEC
 PACKAGE OUTLINE MO-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
 MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE
 TOP AND BOTTOM OF PACKAGE

For more information www.linear.com/LTC2489
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
</table>
| A | 7/10 | Revised Typical Application drawing
Revised \(V_{IL} \) parameter in \(I^2C \) Inputs and Digital Outputs section
Added text to first paragraph of \(I^2C \) Interface section | 1, 4, 10 |
| B | 11/14| Clarified performance vs \(f_0 \) frequency, reduced external oscillator maximum frequency to 1MHz.
Clarified Input Voltage Range. | 5, 7, 22, 3, 11, 23 |
Figure 28. Easy Drive ADCs Simplify Measurement of High Impedance Sensors