FEATURES

- Micropower Operation
- Single 5V or ±15V Supply Operation
- Low Charge Injection
- Low R_{ON}
- Low Leakage
- Guaranteed Break Before Make
- Latch Resistant Design
- TTL/CMOS Compatible
- Improved Second Source for DG201A/DG202

KEY SPECIFICATIONS

- Supply Current $I^+ = 40\mu A$, $I^- = 5\mu A$ Max
- Charge Injection
 - ±15V Supplies ±25pC Max
 - Single 5V Supply 2pC Typ
- R_{ON} .. 65Ω Typ
- Signal Range ±15V

DESCRIPTION

The LTC®201A, LTC202, and LTC203 are micropower, quad CMOS analog switches which typically dissipate only 250μW from ±15V supplies and 40μW from a single 5V supply. The switches have 65Ω typical on resistance and a very high off resistance. A break-before-make characteristic, inherent in these switches, prevents the shorting of two channels. With a supply voltage of ±15V, the signal range is ±15V. These switches have special charge compensation circuitry which greatly reduces charge injection to a maximum of ±25pC (±15V supplies).

The LTC201A, LTC202, and LTC203 are designed for applications such as programmable gain amplifiers, analog multiplexers, sample-and-hold circuits, precision charge switching and remote switching. These three devices are differentiated by the type of switch action, as shown in the logic table.

TYPICAL APPLICATION

Micropower 100Hz to 1MHz V-to-F Converter

LTC and LT are registered trademarks of Linear Technology Corporation.
ABSOLUTE MAXIMUM RATINGS
(Note 1)

Voltages Referenced to V–

V+ ... 44V
GND ... 25V

Digital Inputs, S, D (Note 2) –2V to (V+ + 2V) or
20mA, Whichever Occurs First

Current

Any Input Except S or D 30mA
Continuous S or D 20mA
Peak S or D (Pulsed at 1ms,
10% Duty Cycle Max) 70mA
ESD Susceptibility (Note 3) 4kV
Power Dissipation (Plastic) 500mW
Power Dissipation (Ceramic) 900mW

Operating Temperature Range

LTC201AC/LTC202C/LTC203C 0°C to 70°C
LTC201AM/LTC202M/LTC203M –55°C to 125°C

Storage Temperature Range –65°C to 150°C

Lead Temperature (Soldering, 10 sec) 300°C

LOGIC TABLE

<table>
<thead>
<tr>
<th>INX</th>
<th>LTC201A IN1 TO IN4</th>
<th>LTC202 IN1 TO IN4</th>
<th>LTC203 IN1, IN4 IN2, IN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply
over full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 15V, V– = –15V, GND = 0V.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC201A/LTC202/LTC203M</th>
<th>LTC201AC/LTC202C/LTC203C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Signal Range</td>
<td>●</td>
<td>±15</td>
<td>±15</td>
</tr>
<tr>
<td>RON</td>
<td>V+ = ±10V</td>
<td>T_MIN</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>I_D = 1mA</td>
<td>25°C</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_MAX</td>
<td>160</td>
</tr>
<tr>
<td>ΔRON vs V_S</td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ΔRON vs Temperature</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>RON Match</td>
<td>V_S = 0V, I_D = 1mA</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Off Input Leakage I_S (OFF)</td>
<td>V_S = ±14V, V_D = ±14V</td>
<td>Switch Off</td>
<td>0.01</td>
</tr>
</tbody>
</table>

OBSOLET PACKAGE
Consider the N16 or SO-16 Package for Alternate Source.

Consult LTC Marketing for parts specified with wider operating temperature ranges.
DIGITAL AND DC ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V^+ = 15V$, $V^- = -15V$, GND = 0V.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC201AM/LTC202M/ LTC203M</th>
<th>LTC201AC/LTC202C/ LTC203C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Off Output Leakage I_D (OFF)</td>
<td>$V_D = \pm 14V, V_S = \pm 14V$</td>
<td>●</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Switch Off</td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td>On Channel Leakage I_D (ON)</td>
<td>$V_D = V_S = \pm 14V$</td>
<td>●</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Switch On</td>
<td></td>
<td>±200</td>
</tr>
<tr>
<td>Input High Voltage V_{INH}</td>
<td></td>
<td>●</td>
<td>2.4</td>
</tr>
<tr>
<td>Input Low Voltage V_{INL}</td>
<td></td>
<td>●</td>
<td>0.8</td>
</tr>
<tr>
<td>Input High or Low Current I_{INH}</td>
<td>$V_{IN} = 15V, 0V$</td>
<td>●</td>
<td>±1</td>
</tr>
<tr>
<td>I_{INL}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_S (OFF)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>C_D (OFF)</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>C_D, C_S (ON)</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>I^+</td>
<td>All Logic Inputs Tied Together</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>$V_{IN} = 0V$ or 4.0V</td>
<td></td>
<td>●</td>
<td>60</td>
</tr>
<tr>
<td>I^-</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>●</td>
<td>10</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

$V^+ = 15V$, $V^- = -15V$, GND = 0V unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC201AM/LTC202M/ LTC203M</th>
<th>LTC201AC/LTC202C/ LTC203C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>I_{ON}</td>
<td>$V_S = 2V, R_L = 1k\Omega, C_L = 35pF$</td>
<td>290</td>
<td>400</td>
</tr>
<tr>
<td>I_{OFF}</td>
<td></td>
<td>210</td>
<td>300</td>
</tr>
<tr>
<td>I_{OPEN}</td>
<td></td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>Off Isolation</td>
<td>$V_S = 2V_{P,P}, R_L = 1k\Omega, f = 100kHz$</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Charge Injection O_{INJ}</td>
<td>$R_S = 0\Omega, C_L = 1000pF; V_S = 0V$</td>
<td>5</td>
<td>±25</td>
</tr>
<tr>
<td>Total Harmonic Distortion THD</td>
<td>$V_S = 2V_{P,P}, R_L = 10k\Omega$</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
AC Electrical Characteristics

$V^+ = 5V$, $V^- = GND = 0V$ unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC201AM/LTC202M/ LTC203M</th>
<th>LTC201AC/LTC202C/ LTC203C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V$_{IN}$ = 0V OR 4.0V</td>
<td>MIN TYP MAX</td>
<td>MIN TYP MAX</td>
</tr>
<tr>
<td></td>
<td>I$^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>µA</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>I$^+$</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>µA</td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 1:
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2:
Signals on S, D, or IN exceeding V^+ or V^- will be clamped by internal diodes. Limit forward diode current to maximum current rating.

Note 3:
In-circuit ESD on the switch pins (S or D) exceeds 4kV (see test circuit).

Note 4:
Leakage current with a single 5V supply is guaranteed by correlation with the ±15V leakage current.
TYPICAL PERFORMANCE CHARACTERISTICS

1. **R_{ON} vs V_S Over Supply Voltage**
 - $T_A = 25^\circ C$
 - $I_D = 1mA$
 - $V_{SUPPLY} = 5V, 0V$

2. **R_{ON} vs V_S Over Temperature**
 - $V^+ = 15V$
 - $V^- = 0V$
 - $T_A = 25^\circ C$
 - $V^+ = 15V$
 - $V^- = -15V$

3. **Q_{INJ} vs V_S Over Supply Voltage**
 - $T_A = 25^\circ C$
 - $C_L = 1000pF$
 - $V^+ = 5V$
 - $V^- = -5V$
 - $V^+ = 6V$
 - $V^- = 0V$

4. **Positive Supply Current vs Logic Input Voltage**
 - $V^+ = 15V$
 - $V^- = -15V$
 - $T_A = 25^\circ C$
 - All logic inputs tied together

5. **Supply Current vs Logic Input Voltage**
 - $V^+ = 5V$
 - $V^- = 0V$
 - $T_A = 25^\circ C$
 - All logic inputs tied together
Switching Time Test Circuit

Switch output waveform shown for $V_S = $ constant with logic input waveform as shown. Note that V_S may be + or – as per switching time test circuit. V_O is the steady state output switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Charge Injection Test Circuit

ΔV_O is the measured voltage error due to charge injection. The error voltage in coulombs is $\Delta Q = C_L \cdot \Delta V_O$.
APPLICATIONS INFORMATION

OIRR-Off Isolation Test Circuit

- **Signal Generator**
- **CH1 A**
- **Analyzer CH1 B**
- **C**
- **15V**
- **V**
- **IN**
- **V**
- **D**
- **GND**
- **V**
- **OUT = 2VIN**

CCRR-Channel to Channel Crosstalk Test Circuit

- **Signal Generator**
- **IN1**
- **IN2**
- **IN3**
- **IN4**
- **V**
- **GND**
- **V**
- **OUT = 2VIN**

In-Circuit ESD Test Circuit

- **ESD Tester**
- **1.5kΩ**
- **±4kV/100pF**
- **POWER APPLIED OR OPEN CIRCUIT**
- **C = 0.001µF/0.1µF CHIP CAPACITORS**
- **ANY SOURCE OR DRAIN PIN**

Micropower, 4.5V to 15V Input, Voltage Doubler Using the LTC203

<table>
<thead>
<tr>
<th>VIN</th>
<th>IQ</th>
<th>VOUT, NO LOAD</th>
<th>ROUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5V</td>
<td>20µA</td>
<td>8.988V(12mV Error)</td>
<td>1.2k</td>
</tr>
<tr>
<td>15V</td>
<td>130µA</td>
<td>29.96V(40mV Error)</td>
<td>600Ω</td>
</tr>
</tbody>
</table>
Micropower, ±4.5V to ±15V, Voltage Inverter Using the LTC203

<table>
<thead>
<tr>
<th>V_{IN}</th>
<th>I_0</th>
<th>V_{OUT}, NO LOAD</th>
<th>R_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5V</td>
<td>15μA</td>
<td>−4.494V (6mV Error)</td>
<td>1.1kΩ</td>
</tr>
<tr>
<td>15V</td>
<td>125μA</td>
<td>−14.975V (25mV Error)</td>
<td>520Ω</td>
</tr>
</tbody>
</table>

Quad 12-Bit Sample-and-Hold

<table>
<thead>
<tr>
<th></th>
<th>LT1014</th>
<th>LT1079</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE-TO-HOLD OFFSET</td>
<td>0.6mV</td>
<td>0.6mV</td>
</tr>
<tr>
<td>APERTURE TIME</td>
<td>300ns</td>
<td>300ns</td>
</tr>
<tr>
<td>ACQUISITION TIME TO 0.01% (0 TO 2V STEP)</td>
<td>14μs</td>
<td>27μs</td>
</tr>
<tr>
<td>SLEW RATE (0 TO 5V STEP)</td>
<td>0.4V/μs</td>
<td>0.07V/μs</td>
</tr>
<tr>
<td>DROOP RATE</td>
<td>0.8mV/ms</td>
<td>0.6mV/ms</td>
</tr>
<tr>
<td>SUPPLY CURRENT</td>
<td>1.6mA</td>
<td>180μA</td>
</tr>
</tbody>
</table>
Ultra Low Noise, Low Drift Chopper Amplifier

Noise in a 0.1 to 10Hz Bandwidth

- NOISE: 40nVp-p 0.1Hz TO 10Hz
- V_{os}: 1µV
- DRIFT: 0.05µV/°C
- GAIN: $\frac{R_2}{R_1} + 1$
- A_{vOL}: > 10^8
- I_B: 25nA

NOISE: 40nVp-p 0.1Hz TO 10Hz

VOS: 1µV

DRIFT: 0.05µV/°C

GAIN: $\frac{R_2}{R_1} + 1$

A_{vOL}: > 10^8

I_B: 25nA
Micropower Thermocouple Temperature to Frequency Converter

NOTES:
* POLYSTYRENE
** IRC/TRW MTR/5+/120ppm
360µA OPERATING CURRENT
4.75V TO 10V SUPPLY VOLTAGE
FOR 4mV FULL SCALE "GENERAL PURPOSE"
V → F DELETE LT1025 AND THERMOCOUPLE
AND DRIVE POINT "A"
Precision Current Sensing in Supply Rails

SHUNT CAN BE IN POSITIVE OR NEGATIVE SUPPLY LEAD

Precision Voltage Divide by 2 Circuit

VOUT = VIN/2
PACKAGE DESCRIPTION

J Package
16-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS

OBSOLETE PACKAGE
N Package
16-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)

NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
PACKAGE DESCRIPTION

S Package
16-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)

NOTE:
1. DIMENSIONS IN INCHES
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC221/LTC222</td>
<td>Micropower, Low Charge Injection, Quad CMOS Analog Switches</td>
<td>Parallel Controlled with Data Latches</td>
</tr>
<tr>
<td>LTC1380/LTC1393</td>
<td>8-Channel/4-Channel Differential Analog Multiplexer with SMBus Interface</td>
<td>3V to ±15V, $R_{ON} = 35\Omega$ Single-Ended/70Ω Differential</td>
</tr>
<tr>
<td>LTC1390/LTC1391</td>
<td>8-Channel, Analog Multiplexer with Serial Interface</td>
<td>3V to ±15V, $R_{ON} = 45\Omega$, Low Charge Injection</td>
</tr>
<tr>
<td>LT1675/LT1675-1</td>
<td>250MHz, Triple and Single RGB Multiplexer</td>
<td>100MHz Pixel Switching, 1100V/µs Slew Rate</td>
</tr>
</tbody>
</table>