LTC1560-1
1MHz/500kHz
Continuous Time, Low Noise, Lowpass Elliptic Filter

FEATURES

- 5th Order, 1MHz Elliptic Filter in SO-8 Package
- Pin Selectable 1MHz/500kHz Cutoff Frequency
- Signal-to-Noise Ratio (SNR): 75dB
- Signal-to-Noise Ratio with –63dB THD: 69dB
- Passband Ripple (fCUTOFF = 1MHz): ±0.3dB
- Stopband Attenuation Better Than 60dB
- No External Components Required

APPLICATIONS

- Antialiasing Filters
- Smoothing or Reconstruction Filters
- Communication Filters

DESCRIPTION

The LTC®1560-1 is a 5th order, continuous-time, lowpass filter. The elliptic transfer function of the LTC1560-1 was carefully chosen to reach a compromise between selectivity, for antialiasing applications, and transient response. The filter cutoff frequency, fCUTOFF, is pin selectable to either 500kHz (Pin 5 to V+) or 1MHz (Pin 5 to V–). When programmed for 1MHz, the passband ripple is typically ±0.2dB up to 0.55fCUTOFF and ±0.3dB to 0.9fCUTOFF. The transition band gain is –24dB at 1.4fCUTOFF and –51dB at 2fCUTOFF. Stopband attenuation is 63dB at 2.43fCUTOFF and above, remaining at least 60dB to 10MHz with proper board layout. When the LTC1560-1 is programmed for fCUTOFF = 500kHz, the filter response closely follows the 1MHz case with the exception of passband flatness near the cutoff frequency; the gain at fCUTOFF is –1.3dB.

The LTC1560-1, unlike other high frequency filters, is designed for low noise and low distortion. With a 1VRMS input signal, the signal-to-noise ratio is 69dB and the THD is –63dB. The maximum SNR of 75dB is obtained with a 2.1VRMS input signal. This results in –46dB THD.

The LTC1560-1 operates with ±5V supplies, has a power saving mode and is available in an SO-8 surface mount package.

Other cutoff frequencies from 450kHz to 1.5MHz can be obtained. Demo board DC135A is available for the LTC1560-1. For more information please contact LTC Marketing.

LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

1MHz/500kHz Elliptic Lowpass Filter

[Diagram of 1MHz/500kHz Elliptic Lowpass Filter]

Frequency Response

[Graph showing Frequency Response]
ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V⁺ to V⁻) 12V
Power Dissipation 400mW
Burn-In Voltage ±5.5V
Operating Temperature Range
LTC1560-1C ... 0°C to 70°C
LTC1560-1I –40°C to 85°C
Maximum Junction Temperature 150°C
Storage Temperature Range –65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
<th>LTC1560-1CS8</th>
<th>LTC1560-1IS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDER PART NUMBER</td>
<td>15601</td>
<td>15601I</td>
</tr>
</tbody>
</table>

POWER SUPPLY CURRENT (Iₚ)

| Power Supply Current (Iₚ) | 22 | 29 | mA |

INPUT RESISTANCE (Rᵢᵢ)

| Input Resistance (Rᵢᵢ) | 6 | 8 | 10 | kΩ |

ELECTRICAL CHARACTERISTICS

Vₛ = ±5V, Tₐ = 25°C, Pin 5 = –5V (fₐₜₜₒₜₒᵤₜ = 1MHz), Pin 7 = 0V unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Supply Voltage Range</td>
<td></td>
<td>±4.5</td>
<td>±5.0</td>
<td>±5.5</td>
<td>V</td>
</tr>
<tr>
<td>Passband Gain (fₐₜₜₒₜₒᵤₜ = 1MHz)</td>
<td>Vᵢᵢᵢ = 0.5VRMS, fᵢᵢᵢ = 20kHz</td>
<td>-0.3</td>
<td>0.17</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 100kHz</td>
<td>-0.35</td>
<td>0.08</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 300kHz</td>
<td>-0.8</td>
<td>0.05</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 550kHz (Gain Relative to 100kHz)</td>
<td>-3.0</td>
<td>0.3</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 850kHz (Gain Relative to 100kHz)</td>
<td>-5.0</td>
<td>0.6</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 950kHz (Gain Relative to 100kHz)</td>
<td>-5.0</td>
<td>1.0</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Transition Band Gain (Note 1)</td>
<td>Vᵢᵢᵢ = 0.5VRMS, fᵢᵢᵢ = 1.4MHz</td>
<td>-24</td>
<td>-18</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 1.9MHz</td>
<td>-42</td>
<td>-42</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 2.0MHz</td>
<td>-51</td>
<td>-51</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Stopband Gain (fₐₜₜₒₜₒᵤₜ = 1MHz) (Note 2)</td>
<td>fᵢᵢᵢ = 2.44MHz</td>
<td>-70</td>
<td>-65</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 3.0MHz</td>
<td>-68</td>
<td>-68</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 6.0MHz</td>
<td>-66.1</td>
<td>-66.1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Passband Gain (fₐₜₜₒₜₒᵤₜ = 500kHz)</td>
<td>fᵢᵢᵢ = 100kHz, Pin 5 = 5V</td>
<td>-4</td>
<td>0.14</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = fₐₜₜₒₜₒᵤₜ = 500kHz</td>
<td>-1.6</td>
<td>0.5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 1.4MHz</td>
<td>-45</td>
<td>0.3</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>Rᵢₕ = 5k</td>
<td>±2.20</td>
<td>±3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rᵢₕ = 5k</td>
<td>±1.75</td>
<td>±1.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output DC Offset (Vₒₜₒ_s)</td>
<td></td>
<td>±250</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current (Iₚ)</td>
<td></td>
<td>22</td>
<td>29</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power Supply Current in Shutdown Mode</td>
<td>Pin 7 at 5V</td>
<td>1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Output Noise</td>
<td>Vᵢᵢᵢ (Pin 2) Tied to Ground, fₐₜₜₒₜₒᵤₜ = 1MHz, BW = 2MHz</td>
<td>350</td>
<td>322</td>
<td>μVₐᵢᵢᵢ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vᵢᵢᵢ (Pin 2) Tied to Ground, fₐₜₜₒₜₒᵤₜ = 0.5MHz, BW = 1MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion (THD)</td>
<td>Vᵢᵢᵢ = 1VRMS, fᵢᵢᵢ = 200kHz, fₐₜₜₒₜₒᵤₜ = 1MHz, BW = 1MHz</td>
<td>-63</td>
<td>-63</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 300kHz, fₐₜₜₒₜₒᵤₜ = 1MHz, BW = 1MHz</td>
<td>-62</td>
<td>-62</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fᵢᵢᵢ = 500kHz, fₐₜₜₒₜₒᵤₜ = 0.5MHz, BW = 1MHz</td>
<td>-63</td>
<td>-63</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input Resistance (Rᵢᵢᵢ)</td>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

The ● denotes specifications which apply over the full operating temperature range.

Note 1: To properly measure high frequency characteristics of the filter, a noninverting output buffer is recommended as shown on the demo board connection diagram, Figure 2. A small resistor (e.g. 100Ω) can also be used instead of the buffer to isolate any high capacitive load (Gₗ > 10pF) from the filter output.

Note 2: The stopband gain at 2.44MHz is guaranteed by design.
TYPICAL PERFORMANCE CHARACTERISTICS

Frequency Response

- Frequency: 0.1 MHz to 2.0 MHz
- Gain: 0 dB to -90 dB
- Cutoff: 1 MHz

Passband Gain

- Frequency: 0.1 MHz to 2.0 MHz
- Gain: -40 dB to 0 dB
- Cutoff: 500 kHz

Group Delay

- Frequency: 0.1 MHz to 2.0 MHz
- Group Delay: 0 to 1.50 ms
- Cutoff: 500 kHz

Phase vs Frequency

- Frequency: 50 kHz to 500 kHz
- Phase: -45° to 180°
- Cutoff: 500 kHz and 1 MHz
TYPICAL PERFORMANCE CHARACTERISTICS

Transient Response

- F_{cutoff} = 0.5 MHz
- VIN = 5Vp-p
- f_n = 50 kHz

Output Noise vs Frequency

- F_{cutoff} = 0.5 MHz
- Total Output Noise = 198μVRMS

Dynamic Range

- F_{cutoff} = 500 kHz OR 1 MHz
- f_n = 45 kHz

THD + Noise vs Input Frequency

- F_{cutoff} = 500 kHz
- VIN = 1V RMS
 - THD = 74 dB
- VIN = 0.6V RMS
 - S/N = 69.5 dB

THD + Noise vs Input Frequency

- F_{cutoff} = 1 MHz
- VIN = 1V RMS
 - THD = 72 dB
- VIN = 0.6V RMS
 - S/N = 68 dB
PIN FUNCTIONS

GND (Pins 1, 3): Analog Ground Pins. The quality of the analog ground can affect the filter performance. For dual supply operation the analog ground pin should be connected to an analog ground plane surrounding the package. The analog ground plane should be connected to a digital ground plane (if any) at a single point. For single supply operation, the analog ground pin should be biased at one-half the power supply across the device (see Figure 1) and the analog ground plane should then be connected to V– (Pin 4).

VIN (Pin 2): The filter input is internally connected to the inverting input of a high frequency op amp through an 8k resistor.

V−, V+ (Pins 4, 6): Power Supply Pins. The negative and positive power supply (Pins 4 and 6 respectively) should be decoupled with a 0.1μF capacitor in parallel with a 0.01μF. Both capacitors should be types designed for decoupling video frequencies and they should be placed as close as possible to the power supply pins of the filter. Parallel routing of high frequency signal paths should be avoided; they will couple into the device’s power supply pins and cause gain inaccuracy and stopband degradation. The power supplies can be applied in any order, that is, the positive supply can be applied before the negative supply and vice versa. Switching power supplies are not recommended.

0.5fC/fC (Pin 5): By tying Pin 5 high the filter cutoff frequency is internally programmed for 500kHz. By tying Pin 5 low the cutoff frequency will switch to 1MHz. Pin 5 should not be left floating. The logic threshold of Pin 5 is approximately 0.4 times the total power supply across the device.

SHDN (Pin 7): Shutdown. Under normal operating conditions, Pin 7 should be shorted either to the analog ground (Pin 1) or to V– (Pin 4). If Pin 7 is pulled high to V+, the filter operation will stop and the IC will be placed in a power saving mode. The power supply current will then be reduced to 1mA. For a ±5V supply, the logic threshold of Pin 7 is 2.5V. Pin 7 is internally connected to the analog ground pin via a 50k resistor.

VOUT (Pin 8): The filter output pin can sink or source 1mA. The total harmonic distortion of the filter will degrade when driving coaxial cables or loads less than 10k without an output buffer.

Figure 1. Connections for Single Supply Operation

LTC1560-1
The performance of the LTC1560-1 can be easily evaluated by using demo board 135A which can be obtained through LTC marketing. Figure 2 shows the circuit connection of the LTC1560-1 in demo board 135A. The filter cutoff frequency can be switched via S2 and the power savings mode can also be activated via S1. The output of the filter is buffered by U2, an LT®1360 op amp. The buffering can be bypassed by using jumper JP1. Figure 3 shows the demo board layout.
Augmenting the LTC1560-1 for Improved Delay Flatness

2-Level Eye Diagram of the Equalized Filter

1MHz Lowpass Filter Cascaded with a 30kHz 3rd Order Highpass Filter

Gain vs Frequency
TYPICAL APPLICATION

A Simple Highpass/Lowpass Filter

Measured Frequency Response

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1360/LT1361/ LT1362</td>
<td>50MHz, 800V/μs Op Amp(s)</td>
<td>Single/Dual/Quad C-Load™ Op Amps</td>
</tr>
<tr>
<td>LTC1562</td>
<td>Active RC Quad Universal Filter</td>
<td>Very Low Noise, Low Distortion</td>
</tr>
</tbody>
</table>

C-Load is a trademark of Linear Technology Corporation