FEATURES
- Ultralow Power: \(I_{CC} = 6\mu A \) Typ
- Short-Circuit/Thermal Protected
- \(V_{IN} \) Range: 2.7V to 5V
- Output Current: \(10mA \) (\(V_{IN} \geq 2.7V \))
 \(20mA \) (\(V_{IN} \geq 3V \))
- No Inductors
- Ultrasmall Application Circuit (0.045in\(^2\))
- 800kHz Switching Frequency
- Available in 5-Pin SOT-23

DESCRIPTION
The LTC®1517-5 is a micropower charge pump DC/DC converter that produces a regulated 5V output. The input voltage range is 2.7V to 5V. Extremely low operating current (typically 6\(\mu\)A with no load) and low external parts count (one 0.1\(\mu\)F flying capacitor and two small bypass capacitors at \(V_{IN} \) and \(V_{OUT} \)) make the part ideally suited for small, light load battery-powered applications. The total printed circuit board area of the application circuit shown below is only 0.045in\(^2\).

The part operates as a Burst ModeTM switched-capacitor voltage doubler to produce a regulated output. The part has thermal shutdown capability and can survive a continuous short circuit from \(V_{OUT} \) to GND. The device is available in a 5-pin SOT-23 package.

APPLICATIONS
- Cellular Telephones
- Battery-Operated Equipment
- Local Power Supplies
- Handheld Instruments
- PCMCIA Supplies

TYPICAL APPLICATION

![Typical Output Voltage vs Output Current](image_url)

Output Current (mA)

Output Voltage (V)

Typical Output Voltage vs Output Current

\(T_A = 25^\circ C \)

\(C_1 = 0.1\mu F \)

\(C_{OUT} = 6.8\mu F \)

\(V_{IN} = 2.7V \)

\(V_{IN} = 3V \)

\(V_{IN} = 3.3V \)
Absolute Maximum Ratings

(Note 1)

- \(V_{IN} \) to GND .. –0.3V to 6V
- \(V_{OUT} \) to GND .. –0.3V to 6V
- \(V_{OUT} \) Short-Circuit Duration Indefinite
- Operating Temperature Range:
 - Commercial .. 0°C to 70°C
 - Extended (Note 2) –40°C to 85°C
- Storage Temperature Range –65°C to 150°C
- Lead Temperature (Soldering, 10 sec) 300°C

Order Part Number

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1517CS5-5</td>
</tr>
<tr>
<td>LTC1517ES5-5</td>
</tr>
</tbody>
</table>

S5 Part Marking

LTCX

LTTF

Consult factory for Industrial and Military grade parts and for -3 and -3.3 version availability.

Electrical Characteristics

\(V_{IN} = 2.7V \) to 5V, \(C1 = 0.1\mu F \), \(C_{IN} = 3.3\mu F \), \(C_{OUT} = 6.8\mu F \), \(T_{MIN} \) to \(T_{MAX} \), unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>Operating Input Voltage</td>
<td></td>
<td>2.7</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage</td>
<td>(2.7V \leq V_{IN} \leq 5V, I_{OUT} \leq 10mA)</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>V</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Input Supply Current</td>
<td>(2.7V \leq V_{IN} \leq 5V, I_{OUT} = 0)</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Ripple</td>
<td>(V_{IN} = 3V, I_{OUT} = 20mA, C_{OUT} = 6.8\mu F)</td>
<td>75</td>
<td>mVp-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{OSC})</td>
<td>Oscillator Frequency</td>
<td>800</td>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{ON})</td>
<td>(V_{OUT}) Turn-On Time</td>
<td>(V_{IN} = 3V)</td>
<td>1</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The \(\cdot \) denotes specifications that apply over the full operating temperature range.

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: Extended grade parts are 100% tested at \(T_{A} = 25°C \). Performance at –40°C and 85°C is assured by design, characterization and correlation with statistical process controls.
TYPICAL PERFORMANCE CHARACTERISTICS

Output Voltage vs Input Voltage

Efficiency vs Input Voltage

Output Ripple vs Input Voltage

No Load Input Current vs Input Voltage

Efficiency vs Output Current

Load Transient Response
PIN FUNCTIONS

VIN (Pin 1): Charge Pump Input Voltage. May be between 2.7V and 5V. VIN should be bypassed with a ≥3.3μF low ESR capacitor as close as possible to the pin for best performance.

GND (Pin 2): Ground. Should be tied to a ground plane for best performance.

VOUT (Pin 3): Regulated Output Voltage. VOUT should be bypassed with a ≥3.3μF low ESR capacitor as close as possible to the pin for best performance.

C1+ (Pin 4): Charge Pump Flying Capacitor Positive Terminal.

C1− (Pin 5): Charge Pump Flying Capacitor Negative Terminal.

SIMPLIFIED BLOCK DIAGRAM

- **VIN**: Charge Pump Input Voltage
- **GND**: Ground
- **VOUT**: Regulated Output Voltage
- **C1−**: Charge Pump Flying Capacitor Negative Terminal
- **C1+**: Charge Pump Flying Capacitor Positive Terminal
- **CIN**: Input Capacitor
- **COUT**: Output Capacitor
- **OSC**: 800kHz Oscillator
- **SHDN**: Thermal Shutdown
- **REF**: 1.25V Reference

4
APPLICATIONS INFORMATION

Operation
The LTC1517-5 uses a switched-capacitor charge pump to boost \(V_{IN} \) to a 5V±4% regulated output. The part achieves regulation by sensing the output voltage through an internal resistor divider and enabling the charge pump when the divided output droops below the comparator’s lower trip point (set by \(V_{REF} \)). When the charge pump is enabled, a 2-phase nonoverlapping clock controls the internal charge pump switches. Flying capacitor \(C_1 \) is charged to \(V_{IN} \) on phase one of the clock. On phase two of the clock, \(C_1 \) is stacked in series with \(V_{IN} \) and connected to \(V_{OUT} \) through an internal switch. This sequence of charging and discharging the flying capacitor occurs at a free running frequency of 800kHz (typ) and continues until the divided output voltage reaches the upper trip point of the comparator. Once the output is back in regulation, the charge pump is disabled. This method of bursting the charge pump on and off enables the LTC1517-5 to achieve high efficiency at extremely low output loads.

Capacitor Selection
For best performance, it is recommended that low ESR capacitors be used for both \(C_{IN} \) and \(C_{OUT} \) to reduce noise and ripple. The \(C_{IN} \) and \(C_{OUT} \) capacitors should be either ceramic or tantalum and should be 3.3\(\mu F \) or greater. Ceramic capacitors will provide the smallest size and lowest ESR for a given capacitance. If the input source impedance is very low (<0.5\(\Omega \)), \(C_{IN} \) may not be needed. Ceramic capacitors are recommended for the flying capacitor \(C_1 \) with values of 0.1\(\mu F \) or 0.22\(\mu F \). Smaller value flying capacitors may be used in low \(I_{OUT} \) applications.

Output Ripple
Normal LTC1517-5 operation produces voltage ripple on the \(V_{OUT} \) pin. Output voltage ripple is required for the part to regulate. Low frequency ripple exists due to the hysteresis in the sense comparator and propagation delays in the charge pump enable/disable circuits. High frequency ripple is also present mainly from the ESR (equivalent series resistance) in the output capacitor. Typical output ripple with \(V_{IN} = 3V \) under maximum load is 100mV peak-to-peak with a low ESR (<0.5\(\Omega \)) 3.3\(\mu F \) output capacitor (minimum recommended \(C_{OUT} \)). For applications requiring \(V_{IN} \) to exceed 3.3V or for applications requiring <100mV of peak-to-peak ripple, a 6.8\(\mu F \) to 10\(\mu F \) \(C_{OUT} \) capacitor is recommended. Slight further decreases in output ripple can be achieved by using \(C_{OUT} \) capacitors larger than 10\(\mu F \).

Short-Circuit/Thermal Protection
During short-circuit conditions, the LTC1517-5 will draw between 50mA and 200mA from \(V_{IN} \), causing a rise in junction temperature. On-chip thermal shutdown circuitry disables the charge pump once the junction temperature exceeds approximately 160°C. The charge pump is reenabled once the junction temperature drops to approximately 145°C. The LTC1517-5 will cycle in and out of thermal shutdown indefinitely without latchup or damage until the \(V_{OUT} \) short is removed.
LTC1517-5

Low Noise Boosted 5V Supply

![Diagram of Low Noise Boosted 5V Supply](image)

Generating 5V and a Negative Supply

![Diagram of Generating 5V and a Negative Supply](image)

CENTRAL SEMICONDUCTOR CMPSH-35 DUAL SCHOTTKY
OPTIONAL CIRCUITRY FOR MAINTAINING –VOUT WITH LOW VOUT LOADS
Q1, Q2: 2N3904
PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

S5 Package
5-Lead Plastic SOT-23
(LTC DWG # 05-08-1633)

NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DIMENSIONS ARE INCLUSIVE OF PLATING
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
4. MOLD FLASH SHALL NOT EXCEED 0.254mm
5. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)
RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1514-X</td>
<td>Step-Up/Step-Down Switched-Capacitor DC/DC Converter with Low Battery Comparator</td>
<td>3.3V or 5V Output Up to 50mA</td>
</tr>
<tr>
<td>LTC1515 Series</td>
<td>Step-Up/Step-Down Switched-Capacitor DC/DC Converter with Reset</td>
<td>Fixed or Adjustable Output Up to 50mA</td>
</tr>
<tr>
<td>LTC1516</td>
<td>Micropower Regulated 5V Charge Pump DC/DC Converter</td>
<td>20mA for (V_{\text{IN}} \geq 2V), 50mA for (V_{\text{IN}} \geq 3V)</td>
</tr>
<tr>
<td>LTC1522</td>
<td>Micropower Regulated 5V Charge Pump DC/DC Converter</td>
<td>Same as LTC1517-5 with Shutdown, Available in MSOP</td>
</tr>
</tbody>
</table>