LTC1050

Precision Zero-Drift Operational Amplifier with Internal Capacitors

FEATURES
- No External Components Required
- Noise Tested and Guaranteed
- Low Aliasing Errors
- Maximum Offset Voltage: 5µV
- Maximum Offset Voltage Drift: 0.05µV/°C
- Low Noise: 1.6µV_{P-P} (0.1Hz to 10Hz)
- Minimum Voltage Gain: 130dB
- Minimum PSRR: 125dB
- Minimum CMRR: 120dB
- Low Supply Current: 1mA
- Single Supply Operation: 4.75V to 16V
- Input Common Mode Range Includes Ground
- Output Swings to Ground
- Typical Overload Recovery Time: 3ms

APPLICATIONS
- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition
- DC Accurate RC Active Filters

DESCRIPTION

The LTC®-1050 is a high performance, low cost zero-drift operational amplifier. The unique achievement of the LTC1050 is that it integrates on-chip the two sample-and-hold capacitors usually required externally by other chopper amplifiers. Further, the LTC1050 offers better combined overall DC and AC performance than is available from other chopper stabilized amplifiers with or without internal sample-and-hold capacitors.

The LTC1050 has an offset voltage of 0.5µV, drift of 0.01µV/°C, DC to 10Hz, input noise voltage of 1.6µV_{P-P} and a typical voltage gain of 160dB. The slew rate of 4V/µs and a gain bandwidth product of 2.5MHz are achieved with only 1mA of supply current.

Overload recovery times from positive and negative saturation conditions are 1.5ms and 3ms respectively, which represents an improvement of about 100 times over chopper amplifiers using external capacitors. Pin 5 is an optional external clock input, useful for synchronization purposes.

The LTC1050 is available in standard 8-pin metal can, plastic and ceramic dual-in-line packages as well as an SO-8 package. The LTC1050 can be an improved plug-in replacement for most standard op amps.
LTC1050

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^+ to V^-) 18V
Input Voltage ($V^+ + 0.3V$) to ($V^- – 0.3V$)
Output Short-Circuit Duration Indefinite
Storage Temperature Range −65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

Operating Temperature Range

LTC1050AC/C −40°C to 85°C
LTC1050H −40°C to 125°C
LTC1050AM/M (OBSOLETE) −55°C to 125°C

PACKAGE/ORDER INFORMATION

OBSOLETE PACKAGE

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25°C$, $V_S = ±5V$.
ELECTRICAL CHARACTERISTICS

The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at \(T_A = 25^\circ C \). \(V_S = \pm 5V \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC1050AM</th>
<th>LTC1050AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Noise Current</td>
<td>(f = 10\text{Hz}) (Note 4)</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>(V_{CM} = V^-) to 2.7V</td>
<td>● 114 140</td>
<td>114 140</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>(V_S = \pm 2.375V) to (\pm 8V)</td>
<td>● 125 140</td>
<td>125 140</td>
</tr>
<tr>
<td>Large-Signal Voltage Gain</td>
<td>(R_L = 10k, V_{OUT} = \pm 4V)</td>
<td>● 130 160</td>
<td>130 160</td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>(R_L = 10k)</td>
<td>● (\pm 4.7) (\pm 4.85)</td>
<td>(\pm 4.7) (\pm 4.85)</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>(R_L = 10k, C_L = 50pF)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Supply Current</td>
<td>No Load</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Internal Sampling Frequency</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at \(T_A = 25^\circ C \). \(V_S = \pm 5V \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LTC1050M/H</th>
<th>LTC1050C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 3)</td>
<td>(\pm 0.5) (\pm 5)</td>
<td>(\pm 0.5) (\pm 5)</td>
</tr>
<tr>
<td>Average Input Offset Drift</td>
<td>(Note 3)</td>
<td>● (\pm 0.01) (\pm 0.05)</td>
<td>(\pm 0.01) (\pm 0.05)</td>
</tr>
<tr>
<td>Long Term Offset Voltage Drift</td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>(Note 5)</td>
<td>● (\pm 20) (\pm 100) (\pm 300)</td>
<td>(\pm 20) (\pm 125) (\pm 200)</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(Note 5)</td>
<td>● (\pm 10) (\pm 50) (\pm 2000)</td>
<td>(\pm 10) (\pm 75) (\pm 150)</td>
</tr>
<tr>
<td>Input Noise Voltage</td>
<td>(R_S = 100\Omega, 0.1\text{Hz}) to 10Hz (Note 6)</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Input Noise Current</td>
<td>(f = 10\text{Hz}) (Note 4)</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>(V_{CM} = V^-) to 2.7V</td>
<td>● 114 130</td>
<td>114 130</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>(V_S = \pm 2.375V) to (\pm 8V), LTC1050M/C</td>
<td>● 120 140</td>
<td>120 140</td>
</tr>
<tr>
<td>Large-Signal Voltage Gain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>(R_L = 10k)</td>
<td>● (\pm 4.7) (\pm 4.85) (\pm 4.95)</td>
<td>(\pm 4.7) (\pm 4.85) (\pm 4.95)</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>(R_L = 10k, C_L = 50pF)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Supply Current</td>
<td>No Load</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Internal Sampling Frequency</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: Connecting any terminal to voltages greater than \(V^+ \) or less than \(V^- \) may cause destructive latchup. It is recommended that no sources operating from external supplies be applied prior to power-up of the LTC1050.

Note 3: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. \(V_{OS} \) is measured to a limit determined by test equipment capability.

Note 4: Current Noise is calculated from the formula: \(I_n = \sqrt{2q \cdot I_b} \) where \(q = 1.6 \cdot 10^{-19} \text{Coulomb} \).

Note 5: At \(T_A \leq 0^\circ C \) these parameters are guaranteed by design and not tested.

Note 6: Every lot of LTC1050AM and LTC1050AC is 100% tested for Broadband Noise at 1kHz and sample tested for Input Noise Voltage at 0.1Hz to 10Hz.
TYPICAL PERFORMANCE CHARACTERISTICS

Offset Voltage vs Sampling Frequency

- $V_S = \pm 5V$
- Offset Voltage vs Sampling Frequency f_S (kHz)

10Hz-P-P Noise vs Sampling Frequency

- $V_S = \pm 5V$
- 10Hz-P-P Noise vs Sampling Frequency f_S (Hz)

Common Mode Input Range vs Supply Voltage

- $V_{CM} = V^-$
- Common Mode Range vs Supply Voltage

Sampling Frequency vs Supply Voltage

- $T_A = 25^\circ C$
- Sampling Frequency vs Supply Voltage V^+ to V^- (V)

** Sampling Frequency vs Temperature**

- $V_S = \pm 5V$
- Sampling Frequency vs Temperature T_A (°C)

Overload Recovery

- $A_V = -100$
- Input and output waveforms with overload recovery

Total Supply Voltage, V^+ to V^- (V)

- **Supply Current vs Supply Voltage**
 - $T_A = 25^\circ C$
 - Supply Current vs Supply Voltage V^+ to V^- (V)

- **Supply Current vs Temperature**
 - $V_S = \pm 5V$
 - Supply Current vs Temperature T_A (°C)

- **Short-Circuit Output Current vs Supply Voltage**
 - I_{SOURCE} $V_{OUT} = V^+$
 - Short-Circuit Output Current vs Supply Voltage V^+ to V^- (V)
TYPICAL PERFORMANCE CHARACTERISTICS

Gain/Phase vs Frequency

- **FREQUENCY (Hz)**: 100, 1k, 10k, 100k, 1M, 10M
- **VOLTAGE GAIN (dB)**: 0, 20, 60, 100, 120
- **PHASE SHIFT (DEGREES)**: -2, 0, 80, 100
- **Conditions:** $V_S = \pm 5V$, $T_A = 25^\circ C$, $C_L = 100pF$, $R_L \geq 1k$

Small-Signal Transient Response

- **Conditions:** $A_V = 1$, $R_L = 10k$, $C_L = 100pF$, $V_S = \pm 5V$

Large-Signal Transient Response

- **Conditions:** $A_V = 1$, $R_L = 10k$, $C_L = 100pF$, $V_S = \pm 5V$

LTC1050 DC to 1Hz Noise

- **Noise Level:** 0.5uV
- **Time:** 10 SEC

LTC1050 DC to 10Hz Noise

- **Noise Level:** 1uV
- **Time:** 1 SEC
Applications Information

Achieving Picoampere/Microvolt Performance

Picoampere

In order to realize the picoampere level of accuracy of the LTC1050, proper care must be exercised. Leakage currents in circuitry external to the amplifier can significantly degrade performance. High quality insulation should be used (e.g., Teflon, Kel-F); cleaning of all insulating surfaces to remove fluxes and other residues will probably be necessary—particularly for high temperature performance. Surface coating may be necessary to provide a moisture barrier in high humidity environments.

Board leakage can be minimized by encircling the input connections with a guard ring operated at a potential close to that of the inputs: in inverting configurations the guard ring should be tied to ground; in noninverting connections to the inverting input (see Figure 1). Guarding both sides of the printed circuit board is required. Bulk leakage reduction depends on the guard ring width.

Microvolts

Thermocouple effect must be considered if the LTC1050’s ultralow drift is to be fully utilized. Any connection of dissimilar metals forms a thermoelectric junction producing an electric potential which varies with temperature (Seebeck effect). As temperature sensors, thermocouples exploit this phenomenon to produce useful information. In low drift amplifier circuits the effect is a primary source of error.

Connectors, switches, relay contacts, sockets, resistors, solder and even copper wire are all candidates for thermal EMF generation. Junctions of copper wire from different manufacturers can generate thermal EMFs of 200nV/°C—4 times the maximum drift specification of the LTC1050. The copper/kovar junction, formed when wire or printed circuit traces contact a package lead, has a thermal EMF of approximately 35µV/°C—700 times the maximum drift specification of the LTC1050.

Minimizing thermal EMF-induced errors is possible if judicious attention is given to circuit board layout and component selection. It is good practice to minimize the number of junctions in the amplifier’s input signal path. Avoid connectors, sockets, switches and relays where possible. In instances where this is not possible, attempt to balance the number and type of junctions so that differential cancellation occurs. Doing this may involve deliberately introducing junctions to offset unavoidable junctions.
Figure 2 is an example of the introduction of an unnecessary resistor to promote differential thermal balance. Maintaining compensating junctions in close physical proximity will keep them at the same temperature and reduce thermal EMF errors.

When connectors, switches, relays and/or sockets are necessary they should be selected for low thermal EMF activity. The same techniques of thermally balancing and coupling the matching junctions are effective in reducing the thermal EMF errors of these components.

Resistors are another source of thermal EMF errors. Table 1 shows the thermal EMF generated for different resistors. The temperature gradient across the resistor is important, not the ambient temperature. There are two junctions formed at each end of the resistor and if these junctions are at the same temperature, their thermal EMFs will cancel each other. The thermal EMF numbers are approximate and vary with resistor value. High values give higher thermal EMF.

Table 1. Resistor Thermal EMF

<table>
<thead>
<tr>
<th>RESISTOR TYPE</th>
<th>THERMAL EMF/°C GRADIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin Oxide</td>
<td>~mV/°C</td>
</tr>
<tr>
<td>Carbon Composition</td>
<td>~450μV/°C</td>
</tr>
<tr>
<td>Metal Film</td>
<td>~20μV/°C</td>
</tr>
<tr>
<td>Wire Wound</td>
<td>~2μV/°C</td>
</tr>
<tr>
<td>Evenohm</td>
<td>~2μV/°C</td>
</tr>
<tr>
<td>Manganin</td>
<td>~2μV/°C</td>
</tr>
</tbody>
</table>

PACKAGING-INDUCED OFFSET VOLTAGE

Package-induced thermal EMF effects are another important source of errors. It arises at the copper/kovar junctions formed when wire or printed circuit traces contact a package lead. Like all the previously mentioned thermal EMF effects, it is outside the LTC1050’s offset nulling loop and cannot be cancelled. The input offset voltage specification of the LTC1050 is actually set by the package-induced warm-up drift rather than by the circuit itself. The thermal time constant ranges from 0.5 to 3 minutes, depending upon package type.

OPTIONAL EXTERNAL CLOCK

An external clock is not required for the LTC1050 to operate. The internal clock circuit of the LTC1050 sets the nominal sampling frequency at around 2.5kHz. This frequency is chosen such that it is high enough to remove the amplifier 1/f noise, yet still low enough to allow internal circuits to settle. The oscillator of the internal clock circuit has a frequency 4 times the sampling frequency and its output is brought out to Pin 5 through a 2k resistor. When the LTC1050 operates without using an external clock, Pin 5 should be left floating and capacitive loading on this pin should be avoided. If the oscillator signal on Pin 5 is used to drive other external circuits, a buffer with low input capacitance is required to minimize loading on this pin. Figure 3 illustrates the internal sampling frequency versus capacitive loading at Pin 5.
When an external clock is used, it is directly applied to Pin 5. The internal oscillator signal on Pin 5 has very low drive capability and can be overdriven by any external signal. When the LTC1050 operates on ±5V power supplies, the external clock level is TTL compatible.

Using an external clock can affect performance of the LTC1050. Effects of external clock frequency on input offset voltage and input noise voltage are shown in the Typical Performance Characteristics section. The sampling frequency is the external clock frequency divided by 4. Input bias currents at temperatures below 100°C are dominated by the charge injection of input switches and they are basically proportional to the sampling frequency. At higher temperatures, input bias currents are mainly due to leakage currents of the input protection devices and are insensitive to the sampling frequency.

LOW SUPPLY OPERATION

The minimum supply for proper operation of the LTC1050 is typically below 4V (±2V). In single supply applications, PSRR is guaranteed down to 4.7V (±2.35V) to ensure proper operation down to the minimum TTL specified voltage of 4.75V.

PIN COMPATIBILITY

The LTC1050 is pin compatible with the 8-pin versions of 7650, 7652 and other chopper-stabilized amplifiers. The 7650 and 7652 require the use of two external capacitors connected to Pin 1 and Pin 8 that are not needed for the LTC1050. Pin 1 and Pin 8 of the LTC1050 are not connected internally while Pin 5 is an optional external clock input pin. The LTC1050 can be a direct plug-in for the 7650 and 7652 even if the two capacitors are left on the circuit board.

In applications operating from below 16V total power supply, (±8V), the LTC1050 can replace many industry standard operational amplifiers such as the 741, LM101, LM108, OP07, etc. For devices like the 741 and LM101, the removal of any connection to Pin 5 is all that is needed.

TYPICAL APPLICATIONS

Strain Gauge Signal Conditioner with Bridge Excitation

*OPTIONAL REFERENCE OUT TO MONITORING 10-BIT A/D CONVERTER
**AT GAIN = 1000, 10Hz PEAK-TO-PEAK NOISE IS <0.5LSB FOR 10-BIT RESOLUTION
Single Supply Thermocouple Amplifier

Air Flow Detector

Battery-Operated Temperature Monitor with 10-Bit Serial Output A/D

0°C – 100°C TEMPERATURE RANGE

0°C – 500°C TEMPERATURE RANGE

2°C MAX ERROR

*THERMOCOUPLE LINEARIZATION CODE AVAILABLE FROM LTC
LTC1050

TYPICAL APPLICATIONS

Fast Precision Inverter

Full Power Bandwidth = 2MHz
Slew Rate ≥ 40V/µs
Settling Time = 5µs to 0.01% (10V Step)
Offset Voltage = 5µV
Offset Drift = 50nV/°C

±100mA Output Drive

Full Power Bandwidth = 10kHz
VOS = 5µV
VOS/ΔT = 50nV/°C
Gain = 10

Ground Referred Precision Current Sources

0 ≤ IOUT ≤ 25mA*
0.2V ≤ VOUT ≤ (V*) – 2V
*Maximum current limited by power dissipation of 2N2222

0 ≤ IOUT ≤ 25mA*
(V*) + 2V ≤ VOUT ≤ –1.8V
*Maximum current limited by power dissipation of 2N2907
TYPICAL APPLICATIONS

Precision Voltage Controlled Current Source
with Ground Referred Input and Output

Sample-and-Hold Amplifier

Ultraprecision Voltage Inverter

For $V^+ = \pm 5V$, $(V^-) + 1.8V < V_{IN} < V^+
V_{OUT} = -V_{IN} - 20ppm
MUTCHING BETWEEN C1 AND C2 NOT REQUIRED
Instrumentation Amplifier with Low Offset and Input Bias Current

OFFSET VOLTAGE $\leq \pm 10\mu V$
INPUT BIAS CURRENT = 15pA
CMRR = 100dB FOR GAIN = 100
INPUT REFERRED NOISE = 5μVpp FOR C = 0.1μF
= 20μVpp FOR C = 0.01μF

Instrumentation Amplifier with 100V Common Mode Input Voltage

OUTPUT OFFSET ≤ 5mV
FOR 0.1% RESISTORS, CMRR = 54dB

Single Supply Instrumentation Amplifier

OUTPUT OFFSET ≤ 5mV
FOR 0.1% RESISTORS, CMRR = 54dB
TYPICAL APPLICATIONS

Photodiode Amplifier

![Photodiode Amplifier Circuit Diagram]

6 Decade Log Amplifier

![6 Decade Log Amplifier Circuit Diagram]

VOUT = -LOG (VIN) - 2V

ERROR REFERRED TO INPUT <1% FOR INPUT CURRENT RANGE 1nA ~ 1mA

*TEL LAB TYPE Q81
†CORRECTS FOR NONLINEARITIES

DC Accurate, 10Hz, 7th Order Lowpass Bessel Filter

![DC Accurate, 10Hz, 7th Order Lowpass Bessel Filter Circuit Diagram]

- WIDEBAND NOISE 52µVRMS
- LINEAR PHASE
- VIN ≤ ±6V
- CLOCK TO CUTOFF FREQUENCY RATIO = 200:1
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)

Lead diameter is uncontrolled between the reference plane and 0.045" below the reference plane

For solder dip lead finish, lead diameter is 0.016 – 0.024 (0.406 – 0.610)

J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)

Note: Lead dimensions apply to solder dip/plate or tin plate leads

OBSOLETE PACKAGES

H Package
- OBSOLETE PACKAGES
- H Package
- 8-Lead TO-5 Metal Can (.200 Inch PCD)
- (Reference LTC DWG # 05-08-1320)

J8 Package
- OBSOLETE PACKAGES
- J8 Package
- 8-Lead CERDIP (Narrow .300 Inch, Hermetic)
- (Reference LTC DWG # 05-08-1110)
Typical Applications

DC Accurate 10th Order Max Flat Lowpass Filter

- $f_{\text{Cutoff}} = 0.9 \frac{f_{\text{CLK}}}{100}$
- $RC = 0.2244 \frac{f_{\text{Cutoff}}}{100}$
- 60dB/Oct. Slope
- Passband Error <0.1dB for $0 \leq f \leq 0.67f_{\text{Cutoff}}$
- THD = 0.04%, Wideband Noise = 120μVRMS
- $f_{\text{CLK}} = 100kHz$

DC Accurate, Noninverting 2nd Order Lowpass Filter

Gain of 1, 10Hz 3rd Order Bessel DC Accurate Lowpass Filter

Q = 0.707, $f_0 = 20Hz$. FOR $f_0 = 10Hz$, THE RESISTOR (R1, R2) VALUES SHOULD BE DOUBLED

Component Values

<table>
<thead>
<tr>
<th>DC Gain</th>
<th>R3</th>
<th>R4</th>
<th>R1</th>
<th>R2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>32.4k</td>
<td>18.7k</td>
<td>0.47μF</td>
<td>0.22μF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10k</td>
<td>10k</td>
<td>11.8k</td>
<td>24.3k</td>
<td>0.47μF</td>
<td>0.47μF</td>
</tr>
<tr>
<td>4</td>
<td>10.5k</td>
<td>31.6k</td>
<td>18.7k</td>
<td>34.8k</td>
<td>0.47μF</td>
<td>0.47μF</td>
</tr>
<tr>
<td>6</td>
<td>10.2k</td>
<td>51.1k</td>
<td>14k</td>
<td>46.4k</td>
<td>0.22μF</td>
<td>0.47μF</td>
</tr>
<tr>
<td>8</td>
<td>10.2k</td>
<td>71.5k</td>
<td>11.8k</td>
<td>54.9k</td>
<td>0.22μF</td>
<td>0.47μF</td>
</tr>
<tr>
<td>10</td>
<td>10.1k</td>
<td>90.9k</td>
<td>10.5k</td>
<td>61.9k</td>
<td>0.22μF</td>
<td>0.47μF</td>
</tr>
</tbody>
</table>

Related Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1051</td>
<td>Dual Zero-Drift Op Amp’s</td>
<td>Dual Version of the LTC1050</td>
</tr>
<tr>
<td>LTC2050</td>
<td>Zero-Drift Op Amp</td>
<td>SOT-23 Package</td>
</tr>
<tr>
<td>LTC2051</td>
<td>Zero-Drift Op Amp’s</td>
<td>Dual Version of the LTC2050 in an MS8 Package</td>
</tr>
<tr>
<td>LTC2053</td>
<td>Zero-Drift Instrumentation Amp</td>
<td>110dB CMRR, MS8 Package, Gain Programmable</td>
</tr>
</tbody>
</table>