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Summary 
The ADSP-21568 SHARC+ processor family provides an optimized architecture that supports high system 
bandwidth and advanced peripherals. This application note discusses the key architectural features of the 
processor that contribute to the overall system bandwidth, plus various available bandwidth optimization 
techniques. 

Applicable Processors 
Most of the theoretical content of this application note is the same as in ADSP-SC5xx/215xx SHARC+ Processor 
System Optimization Techniques (EE-401)[6]. This EE-461 application note includes the figures, tables, and data 
specific to the ADSP-21568 processor. 

Customer Takeaways 
This application note provides the following customer information: 

• Optimization techniques to improve ADSP-21568 system throughput
• Identifies measured MMR latencies in core cycles
• Provides insight into different L1 and L2 memory throughput methods

ADSP-21568 Processor Architecture 
This section describes the ADSP-21568 processor key architectural features that play a crucial role in system 
bandwidth and performance. For detailed information, refer to the ADSP-21568 SHARC+ Processor Hardware 
Reference[1]. 

The overall architecture of the ADSP-21568 processor consists of three main system components: system bus 
targets, system bus controllers, and system crossbars. Figure 1 and Figure 2 show how these components are 
interconnected to form the complete system. 

System Bus Targets 
As shown in Figure 1 (top), system bus targets (S) include on-chip and off-chip memory devices/controllers, such as 
L1 SRAM, L2 SRAM, memory-mapped peripherals (for example, SPI FLASH), and the System Memory Mapped 
Registers (MMRs). Each system bus target has its own latency characteristics, operating in a specific clock domain. 
For example, L1 SRAM runs at CCLK, L2 SRAM runs at SYSCLK, and so forth. 
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Figure 1: System Cross Bar (SCB) Block Diagram 

 

 

 
System Bus Controllers 
The bottom of Figure 1 shows the system bus controllers. The controllers include peripheral Direct Memory Access 
(DMA) channels such as the Serial Port (SPORT) and Serial Peripheral Interface (SPI). Also included are the 
Memory-to-Memory DMA channels (MDMA) and the core. Note that each peripheral runs at a different clock 
speed and thus has individual bandwidth requirements. For example, high speed peripherals require higher 
bandwidth than slower peripherals such as the SPORT or UART. 

System Crossbars 
The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. As shown in 
Figure 2, the SCB interconnect is built from multiple SCBs in a hierarchical model connecting system bus controllers 
to system bus targets. They provide concurrent data transfer between multiple bus controllers and multiple bus 
targets, providing flexibility and full-duplex operation. The SCBs also provide a programmable arbitration model for 
bandwidth and latency management. The SCBs run on different clock domains (SCLK0, SYSCLK, SPI clock) that 
introduce their own latencies to the system. 
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Figure 2: SCB Controllers Groups 
 

 

System Latencies, Throughput, and Optimization Techniques 
The following sections describe distinct aspects related to latencies and throughput of system bus controllers, 
system bus targets, and the system cross bars. The EE note also discusses various optimization techniques to 
reduce system latencies and improve throughput. 

Understanding the System Controllers 

DMA Parameters 
Each DMA channel has two buses: one that connects to the SCB, which in turn is connected to the SCB target (for 
example, memories), and another bus that connects to either a peripheral or another DMA channel. The 
SCB/memory bus width can vary among 8, 16, 32, or 64 bits and is defined by the DMA_STAT.MBWID bit field. The 
peripheral bus width can vary among 8, 16, 32, 64, or 128 bits and is defined by the DMA_STAT.PBWID bit field. 
For ADS-21568 processors, the memory and peripheral bus widths for most of the DMA channels is 32 bits 
(4 bytes). However, for some channels, it is 64 bits (8 bytes). 

The DMA parameter DMA_CFG.PSIZE determines the width of the peripheral bus in use. It can be configured to 1, 
2, 4, or 8 bytes. However, it cannot be greater than the maximum possible bus width defined by the 
DMA_STAT.PBWID bit field. This restriction exists because burst transactions are not supported on the peripheral 
bus. 
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The DMA parameter DMA_CFG.MSIZE determines the actual size of the SCB bus in use. It also determines the 
minimum number of bytes that are transferred from/to memory corresponding to a single DMA request/grant. It 
can be configured to 1, 2, 4, 8, 16, or 32 bytes. When the MSIZE value is greater than DMA_STAT.MBWID, the SCB 
performs burst transfers to transfer the data equal to the MSIZE value. 

Note: It is important to choose the appropriate MSIZE value, both from a functionality and a 
performance perspective. 

When choosing the MSIZE value, consider the following needs: 
• The start address of the work unit must align to the MSIZE value. When the start address does not align, it 

generates a DMA error interrupt. 
• From a performance perspective, use the highest possible MSIZE value (32 bytes) for better average 

throughput. This results in a higher likelihood of uninterrupted sequential accesses to the target 
(memory), which is the most efficient for typical memory designs. 

Memory to Memory DMA (MDMA) 
The processor supports multiple MDMA streams (MDMA0/1/2/3) to transfer data from one memory to another 
(L1/L2/memory-mapped peripherals (for example, SPI FLASH). Different MDMA streams can transfer the data at 
different bandwidths, as they run at different clock speeds and support different data bus widths. Table 1 shows 
the various MDMA streams and the corresponding maximum theoretical bandwidth supported by the ADSP-21568 
processor. For detailed information on the clock speed, refer to the ADSP-21568 SHARC+ Processor Data Sheet[2]. 

Table 1: DMA Streams and Maximum Theoretical Bandwidth 
 

MDMA 
Stream 
No 

 
MDMA 
Type 

Maximum 
CCLK/SYSCLK/SCLKx 
Speed (MHz) 

MDMA 
Source 
Channel 

MDMA 
Destination 
Channel 

Clock 
Domain 

Bus 
Width 
(bits) 

Maximum 
Bandwidth 
(MB/s) 

0 Enhanced Bandwidth or  8 9  32 2000 
 Medium Speed MDMA       
 (MSMDMA)       

1 Enhanced Bandwidth or  18 19  32 2000 
 Medium Speed MDMA 

(MSMDMA) 
CCLK-1000 

SYSCLK-500 

SCLKx-125 

  
 

SYSCLK 

  

2 Enhanced Bandwidth or 
Medium Speed MDMA 

39 40 32 2000 

 (MSMDMA)       

3 Maximum Bandwidth or  43 44  64 4000 
 High Speed MDMA       
 (HSMDMA)       

 
Table 2 shows the various memory targets and the corresponding maximum theoretical bandwidth supported by 
the ADSP-21568 processor. 
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Table 2: Memory Targets and Maximum Theoretical Bandwidth 
 

Memory Type 
(L1/L2/L3) 

Maximum 
CCLK/SYSCLK/SCLKx/ 
Frequency (MHz) 

Clock 
Domain 

Bus Width 
(Bits) 

Data Rate 
Clock Rate 

Maximum Theoretical 
Bandwidth (MB/s) 

L1 CCLK-1000 
SYSCLK-500 
SCLKx-125 

CCLK 32 1 4000 

L2 SYSCLK 64 1 4000 

 
The actual (measured) MDMA throughput is always less than or equal to the minimum of the maximum theoretical 
throughput supported by one of the three: MDMA, source memory, or destination memory. For example, the 
measured throughput of MDMA0 between L1 and L2 is less than or equal to 2000 MB/s, which is limited by the 
maximum bandwidth of MDMA0. Figure 3 shows the actual throughput measured on the bench for various MDMA 
streams with different combinations of source and destination memories. 

The measurements were taken using the following parameters: 
• MSIZE = 32 bytes 
• DMA count = 16384 bytes at CCLK = 1000 MHz 
• SYSCLK = 500 MHz 

The code MDMA_Throughput supplied with Source Files for EE-412: ADSP-2156x SHARC+ Processors System 
Optimization Techniques[3] can be used to measure MDMA throughput.



Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025 

 SHARC+ Processor System Optimization  

Page 6 of 22 

 

 

Figure 3: Measured MDMA Throughput on ADSP-21568 Processor 

 

Optimizing Non-32-Byte-Aligned MDMA Transfers 
In many cases, the start address and count of a MDMA transfer cannot be aligned to a 32-byte address boundary. 
In such cases, the MSIZE value needs to be configured to be less than 32 bytes. This configuration can affect the 
MDMA performance. One option to get better throughput for such cases is to split the single MDMA transfer into 
more than one transfer using a descriptor-based DMA. The first and last (when needed) MDMA transfers can use 
MSIZE < 32 bytes for non-32-byte aligned address and count values. The second transfer can use MSIZE = 32 bytes 
for 32-byte-aligned address and count values. 

The MDMA service available with CrossCore Embedded Studio (CCES) provides an additional API called 
adi_mdma_Copy1DAuto. It is compatible with the standard 1D-transfer API adi_mdma_Copy1D that is used for 
single-shot 1D transfers. As shown in Table 3, the MDMA performance of adi_mdma_Copy1DAuto is 
approximately 1.5 to 2.6 times better than adi_mdma_Copy1D for non-32-byte aligned start addresses. The 
example code MDMA_1DAuto (see Source Files for EE-461: SHARC+ Processor System Optimization[4]) can be used 
to measure MDMA performance for both APIs for a given use case. 
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Table 3: adi_mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance 
 

 
S. 
No. 

Source 
Memory 
Address 

Destination 
Memory 
Address 

 
DMA 
Count 

 
MSIZE 
(Bytes) 

Copy1D 
MDMA 
Cycles 

Copy1DAuto 
MDMA 
Cycles 

Added 
API 
Overhead 

Effective 
Improvement 
Factor 

1 0x2C0001 0x300000 256 1 2024 1362 524 1.07 

2 0x2C0000 0x300001 256 1 2024 1254 520 1.14 

3 0x2C0001 0x300000 1024 1 6248 2898 510 1.83 

4 0x2C0000 0x300001 1024 1 6248 2790 522 1.89 

5 0x2C0001 0x300000 4096 1 23144 9042 510 2.42 

6 0x2C0000 0x300001 4096 1 23144 8934 522 2.45 
 

Bandwidth Limiting and Monitoring 
MDMAs are equipped with a bandwidth limit and monitor mechanism. The bandwidth limit feature can be used to 
reduce the number of DMA requests being sent by the corresponding controllers to the SCB. 

The DMA_BWLCNT register can be programmed to configure the number of SYSCLK cycles between two DMA 
requests. This configuration can be used to ensure that such DMA channels’ requests do not occur more frequently 
than required. Programming a value of 0x0000 allows the DMA to request as often as possible. A value of 0xFFFF 
represents a special case and causes all requests to stop. 

The maximum throughput (in MB/s) is determined by the DMA_BWLCNT register and the MSIZE value and is 
calculated as follows: 

[1] Bandwidth = min (SYSCLK frequency in MHz*DMA bus width in bytes, 
SYSCLK frequency in MHz*MSIZE in bytes / DMA_BWLCNT) 

The API adi_mdma_BWLimit (see Source Files for EE-461: SHARC+ Processor System Optimization[4])can be used to 
program the DMA_BWLCNT register for a given target bandwidth and MSIZE value. The example code MDMA_BWLimit 
shows how to use this API. Figure 4 shows an example result of this code with the calculated and measured 
bandwidth for different MDMA use cases. 
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Figure 4: MDMA Bandwidth Limit Results 

 

 
The bandwidth monitor feature can be used to check if such channels are starving for resources. The DMA_BMCNT 
register can be programmed to the number of SYSCLK cycles within which the corresponding DMA should finish. 
Each time the DMA_CFG register is written (MMR access only), a work unit ends, or an auto buffer wraps, the DMA 
loads the value in the DMA_BWMCNT register into the DMA_BWMCNT_CUR register. The DMA decrements 
DMA_BWMCNT_CUR every SYSCLK that a work unit is active. When the DMA_BWMCNT_CUR value reaches 
0x00000000 before the work unit finishes, the DMA_STAT.IRQERR bit is set, and the DMA_STAT.ERRC bit is set 
to 0x6. The DMA_BWMCNT_CUR value remains at 0x00000000 until it is reloaded when the work unit completes. 
Unlike other error sources, a bandwidth monitor error does not stop work unit processing. Programming 
0x00000000 disables bandwidth monitor functionality. This feature can also be used to measure the actual 
throughput. 

The API adi_mdma_BWMonitor (see Source Files for EE-461: SHARC+ Processor System Optimization[4]) can be 
used to program the DMA_BWMCNT register for a given target bandwidth and MSIZE value. The example code 
MDMA_BWMonitor shows how to use this API. Figure 5 shows an example result of this code with a calculated 
bandwidth and bandwidth monitor expiration message for a given MDMA use case. The API 
adi_mdma_BWMeasure uses the DMA_BMCNT and DMA_BWMCNT_CUR registers to measure the MDMA bandwidth 
as shown in the example code MDMA_BWLimit. 
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Figure 5: MDMA Bandwidth Monitor Results 
 

 
Extended Memory DMA (EMDMA) 
The ADSP-21568 processor also supports Extended Memory DMA (EMDMA). The EMDMA engine is used to 
transfer data from one memory type to another in a non-sequential manner (such as circular, delay line, and 
scatter/gather). For details about the EMDMA, refer to the ADSP-21568 SHARC+ Processor Hardware Reference[1]. 
The EMDMA on the processor is enhanced to run at the SYSCLK speed instead of the SCLK speed. This 
enhancement results in improved EMDMA throughput. Figure 6 shows throughput measured on the bench for 
EMDMA0/EMDMA1 streams with a different combination of source and destination memories for sequential 
transfers of 4096 32-bit words at CCLK = 1000 MHz and SYSCLK = 500 MHz. 
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Figure 6: Measured EMDMA Processor Throughput 
 

 
Optimizing Non-Sequential EMDMA Transfers with MDMA 
In some cases, the non-sequential transfer modes supported by EMDMA can be replaced by descriptor-based 
MDMA for better performance. 

The example code MDMA_Circular_Buffer (see Source Files for EE-461: SHARC+ Processor System 
Optimization[4]) illustrates how a MDMA descriptor-based mode can be used to emulate a circular buffer memory-
to-memory DMA transfer mode. The example code compares the core cycles measured (see 
Table 4) to write and read 4096 32-bit words to and from the L2 memory in circular buffer mode. 

The example uses a starting address offset of 1024 words for the following cases: 
• EMDMA 
• MDMA with MSIZE = 4 bytes (for 4-byte aligned address and count) 
• MDMA with MSIZE = 32 bytes (for 32-byte aligned address and count) 

As shown in Table 4, the MDMA emulated circular buffer (MSIZE = 4 bytes) is faster than EMDMA. The 
performance is further improved with MSIZE = 32 bytes when the addresses and counts are 32-byte aligned. 
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Table 4: MDMA Emulated Circular Buffer vs. EMDMA 
 

 
Write/Read 

Core Cycles 
EMDMA MDMA3 

MSIZE = 4 bytes 
MDMA3 
MSIZE = 32 bytes 

Write 23312 21212 5524 

Read 23019 21189 5491 

 
Understanding the System Crossbars 
As shown in Figure 2: SCB Controllers Groups on page 3, the SCB interconnect consists of a hierarchical model 
connecting multiple SCB units. Figure 7 shows the block diagram for a single SCB unit. It connects the System Bus 
Controllers (M) to the System Bus Targets (T) by using a Target Interface (TI) and Controller Interface (CI). On each 
SCB unit, each S is connected to a fixed MI. Similarly, each M is connected to a fixed SI. 

Figure 7: Single SCB Block Diagram 
 

 
 

The target interface of the crossbar (where controllers such as DDE are connected) perform two functions, 
arbitration and clock domain conversion. 

Arbitration 
The programmable Quality of Service (QoS) registers are associated with SCBx. For example, the programmable 
QoS registers for SPORT0-3 and MDMA0 can be viewed as residing in SCB1. Whenever a transaction is received at 
SPORT0 half A, the programmed QoS value is associated with that transaction and is arbitrated with the rest of the 
controllers at SCB1. 

Programming the SCB QOS Registers 
Consider a scenario where: 

• At SCB1, controllers 1, 2, and 3 have RQOS values of 6, 4, and 2, respectively. 
• At SCB2, controllers 4, 5, and 6 have RQOS values of 12, 13, and 1, respectively. 
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Figure 8: Arbitration Among Various Controllers 
 

 
As shown in Figure 8, in this example: 

• Controller 1 wins the arbitration at SCB1, and controller 5 wins the arbitration at SCB2. 
• In a perfect competition at SCB0, however, controller 4 and controller 5 had the highest overall RQOS 

values. So, the controllers would have fought for arbitration directly at SCB0. Because of the mini-SCBs, 
however, controller 1, at a much lower RQOS value, wins against controller 4 and makes it all the way to 
SCB0. 

Clock Domain Conversion 
There are multiple Clock Domain Crossings (CDC) in the ADSP-21568 processor fabric: 

• CCLK: SYSCLK is fixed to SYNC n:1 
• SCLK0: SYSCLK is fixed to 1:n 
• SPI CLK: SYSCLK is fixed to m:n 

Understanding the System Targets 

Memory Hierarchy 
As shown in Table 2: Memory Targets and Maximum Theoretical Bandwidth on page 5, ADSP-2156x processors 
have a hierarchical memory model (L1/L2/L3). The following sections discuss the access latencies and achieved 
throughput associated with the different memory levels. 

L1 Memory Throughput 
L1 memory runs at CCLK and is the fastest accessible memory in the hierarchy. SHARC+ L1 memory is accessible 
by both the core and DMA (system). For system (DMA) accesses, L1 memory supports two ports: the S1 port and 
the S2 port. Two different banks of L1 memory can be accessed in parallel with these ports. 

 From a programming perspective, when accessing the L1 memory of the SHARC+ processer, use a multiprocessor 
memory offset of 0x28000000 for all DMA accesses (including HSMDMA). 

The maximum theoretical throughput of L1 memory (for system/DMA accesses) is 1000 * 4 = 4000 MB/s for 
1000 MHz CCLK operation. As shown in Figure 3: Measured MDMA Throughput on ADSP-21568 Processor on 
page 6, the maximum measured L1 throughput using MDMA3 is approximately 3847.6 MB/s. 
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L2 Memory Throughput 
L2 memory access times are longer than L1 because the maximum L2 clock frequency (SYSCLK) is half the CCLK. 
The L2 memory controller contains two ports to connect to the system crossbar. Port 0 is a 64-bit interface 
dedicated to core traffic, while port 1 is a 32-bit interface that connects to the DMA engine (64-bit DMA bus is 
supported for HSMDMA accesses). Each port has a read and a write channel. For details, refer to the ADSP-21568 
SHARC+ Processor Hardware Reference[1]. 

Consider the following important points regarding L2 memory throughput: 
• Because L2 memory runs at the SYSCLK speed, it can provide a maximum theoretical throughput of 

500 MHz * 4 = 2000 MB/s in one direction (for HSMDMA accesses, it has a maximum speed of 
4000 MB/s). Because there are separate read and write channels, the total throughput in both directions 
equals 8000 MB/s. To operate L2 SRAM memory at its optimum throughput, use both the core and DMA 
ports and separate read and write channels in parallel. All of them should access different banks of L2. 

• All accesses to L2 memory are converted to 64-bit accesses (8-byte) by the L2 memory controller. To 
achieve optimum throughput for DMA access to L2 memory, configure the DMA channel MSIZE to 8 bytes 
or larger. 

• L2 memory throughput for sequential and non-sequential accesses is the same. 
• L2 SRAM is parity-protected and organized into eight banks. The parity implementation is in terms of 

32 bits. Therefore, for any writes less than 32-bit wide (one byte and half word) to the parity enabled RAM 
bank, the operation is implemented as a read-followed by a write. It requires two extra read cycles. 
However, all writes to parity-disabled banks and all writes that are 32/64 bit (with addresses aligned to 
32-bit boundaries) do not have a read cycle in between. 

• When performing simultaneous core and DMA accesses to the same L2 memory bank, read and write 
priority control registers can be used to increase DMA throughput. When the core and the DMA engine 
access the same bank, the best access rate that DMA can achieve is one 64-bit access every three SYSCLK 
cycles during the conflict period. This throughput is achieved by programming the read and write priority 
count bits (L2CTL_RPCR.RPC0 and L2CTL_WPCR.WPC0) to zero, while programming the 
L2CTL_RPCR.RPC1 and L2CTL_WPCR.WPC1 bits to one. 

Figure 9 shows the measured MDMA throughput at CCLK = 1000 MHz and SYSCLK = 500 MHz for an example 
where both source and destination buffers are in different L2 memory banks. As an example, for MDMA3, the 
maximum throughput approximates 1951 MB/sec in one direction (3902 MB/s in both directions) for  
MSIZE = 32 bytes and drops significantly for smaller MSIZE values. 
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Figure 9: L2 MDMA Throughput for Different MSIZE and Work Unit Sizes 

 
 
 

XSPI Throughput 

The XSPI flash controller provides access to serial flash devices that support JESD216 and JESD251 standards. The 
XSPI module is comprised of Main command sequencer, PHY block, Internal transmit/receive FIFOs, DAC/STIG 
controller and Register interface. The supported HyperBus™ protocol enables seamless communication with 
HyperFlash™/HyperRAM™devices. An integrated PHY handles the low-level timings of the data, address and control 
signals between the device and controller. For details, refer to the ADSP-21568 SHARC+ Processor Hardware 
Reference[1]. 
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XSPI Read Throughput 
Figure 10: XSPI Read Throughput  

 
 
 

 
Figure 10 illustrates XSPI measured read throughput for both MSIZE 4 and MSIZE 32 using MDMA0, with XSPI 
configured to its maximum frequency of 166 MHz. The throughput trends remain consistent across MSIZE and buffer 
size variations, showing an increase as transfer size increases. 

Data is transferred from XSPI HyperRAM to L1 memory, where for a 64-byte transfer, the throughput is 13.55 MB/s 
for MSIZE 4, rising to 81.84 MB/s for MSIZE 32. The XSPI_MINICTL_DEV_DLY.CSDA_MIN_DLY bit field defines the 
Minimum Chip Select (CSDA_MIN) de-assertion timing, impacting throughput performance. The throughput values 
presented were obtained by setting CSDA_MIN_DLY to 10. 
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XSPI Write Throughput 
Figure 11: XSPI Write Throughput 

 
Figure 11 illustrates XSPI write throughput for MSIZE 4 and MSIZE 32 using MDMA0, with XSPI configured to its 
maximum frequency of 166 MHz. As the transfer size increases, throughput decreases, following a consistent trend 
across different MSIZE and buffer size configurations. Data is transferred from L1 memory to XSPI HyperRAM, where for 
a 64-byte transfer, throughput is 16.35 MB/s for MSIZE 4, increasing to 97.11 MB/s for MSIZE 32. The 
XSPI_MINICTL_DEV_DLY.CSDA_MIN_DLY bit field defines the Minimum Chip Select (CSDA_MIN) de-assertion timing, 
which influences throughput performance. The throughput values shown were obtained by setting CSDA_MIN_DLY to 
10. For a transfer size of 64 bytes, data is moved in 32-byte bursts, meaning the transfer occurs in two bursts with a 
delay between them. Similarly, for a 256-byte transfer, the data is split into eight bursts, with seven delays occurring 
between them. In general, for a transfer size of (N × 32) bytes, there will be N bursts and (N - 1) delays. Since these 
delays are included in the throughput calculation, the overall throughput decreases as the transfer size increases. 
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XSPI Prefetch Buffer 
The throughput for read can be further improved by using Prefetch buffer(PFB). Write throughput will not have 
effect with PFB. PFB reduces latency and improves throughput. It optimizes memory accesses by prefetching 
additional data assuming that same data may be accessed in future. Whenever controller access additional data 
later, if it is already in the prefetch buffer, it is sent to the controller without having to access from the memory 
device thereby improving the effective throughput and reducing latencies. 
Figure 12: XSPI Read Throughput for 4Bytes MSIZE 

 
Figure 12 shows the read throughput for XSPI. XSPI is configured to a max frequency of 166MHz. The data is 
transferred between XSPI HyperRAM to L1memory using MDMA0 with MSIZE4 for various transfer sizes. As transfer 
size increases, the throughput increases. With prefetch buffer enabled, throughput for a 16,384-byte transfer 
significantly improves, rising from 13.6 MB/s to 192.09 MB/s. 
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Figure 13: XSPI Read Throughput for 4Bytes MSIZE 

 
Figure 13 shows the read throughput for XSPI. XSPI is configured to a max frequency of 166MHz. The data is 
transferred between XSPI HyperRAM to L1memory using MDMA0 with MSIZE32 for various transfer sizes. As 
transfer size increases, the throughput increases. With prefetch buffer enabled, throughput for a 16,384-byte 
transfer significantly improves, rising from 84.64 MB/s to 192.12 MB/s. With the prefetch buffer enabled, 
throughput remains approximately similar across different MSIZE settings for a given transfer size, ensuring stable 
performance regardless of memory segment configuration. 
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     System MMR Latencies 
Table 5 shows the measured MMR latency in core cycles for different peripherals on the ADSP-21568 processor. 
The measurement was taken with CCLK = 1000 MHz, SYSCLK = 500 MHz, and SCLK = 125 MHz. These numbers can 
be used to approximate the MMR access latency of the SHARC+ core for different peripherals. 

Table 5: MMR Access Latency Processors in Approximate CCLK Cycles 
 

 
S. No. 

 
Register 

 
Peripheral 

Write Latency 
(Core Cycles) 

Read Latency 
(Core Cycles) 

1 FIR0_INIDX FIR 40 39 

2 IIR0_INIDX IIR 94 96 

3 MEC0_PERR_IMASK0 MEC 56 56 

4 CRC0_DCNT 
CRC 

56 56 

5 CRC1_DCNT 40 39 

6 EMDMA0_INDX1 
EMDMA 

56 56 

7 EMDMA1_INDX1 56 54 

8 TAPC_SDBGKEY0 TAPC 64 64 

9 L2CTL0_RPCR L2CTL 58 58 

10 SEC0_RAISE SEC 57 58 

11 TRU0_SSR0 TRU 58 58 

12 SPU0_SECUREP10 SPU 58 56 

13 RCU0_MSG RCU 58 56 

14 CDU0_CLKINSEL CDU 58 56 

15 DPM0_PER_DIS0 DPM 56 54 

16 PKTE0_SA_ADDR PKTE 64 64 

17 TRNG0_OUTPUT0 TRNG 64 64 

18 PKA0_APTR PKA 56 56 

19 PKIC0_ACK PKIC 128 136 

20 SPORT1_DIV_A SPORT 88 88 

21 PINT1_ASSIGN PINT 58 56 

22 OTPC_PMC_MODE0 OTPC 92 96 

23 DMA0_XCNT DMA 92 88 

24 PORTB_DATA_SET PORT 88 88 

25 WDOG1_WIN WDOG 86 88 

26 DMA1_XCNT DMA 90 88 

27 SPORT0_DIV_A SPORT 92 96 

28 UART0_CLK UART 86 88 

29 UART1_CLK UART 90 88 

30 PINT0_ASSIGN PINT 92 88 

31 WDOG0_WIN WDOG 92 88 
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S. No. 

 
Register 

 
Peripheral 

Write Latency 
(Core Cycles) 

Read Latency 
(Core Cycles) 

32 SPI1_CLK SPI 58 56 

33 PORTA_DATA_SET PORTA 86 88 

34 PADS0_PORTA_PDE PADS 79 80 

35 CNT0_CNTR CNT 182 184 

36 TIMER0_TMR0_WID TIMER 94 96 

37 SPI0_CLK SPI 90 96 

38 PCG0_PW1 PCG 92 96 

39 SPDIF0_TX_UBUFF_A0 SPDIF 94 96 

40 ASRC1_MUTE ASRC 60 60 

41 DAI1_IMSK_FE DAI 92 96 

42 SPDIF1_TX_UBUFF_A0 SPDIF 92 96 

43 DAI0_IMSK_FE DAI 94 96 

44 ASRC0_MUTE ASRC 100 96 

45 SMPU2_RADDR0 SMPU 88 88 

46 TWI0_CLKDIV TWI 126 136 

47 TWI1_CLKDIV TWI 130 136 

 
Note: The MMR latency numbers are measured with the sync instruction after the write. This 

ensures that the write has taken affect. The SHARC+ core supports posted writes, which 
means that the core does not necessarily wait until the actual write is complete. This helps in 
avoiding unnecessary core stalls. 

The MMR access latencies can vary based on the following factors: 
• Clock ratios–all MMR accesses are through SCB0, which is in the SYSCLK domain, while peripherals are in 

the SCLK0/1, SYSCLK, and DCLK domains. 
• Number of concurrent system MMR accesses–although a single write incurs half the system latency when 

compared to back-to-back writes, the latency observed on the core will be shorter. Similarly, the system 
latency incurred by a read followed by a write, or vice versa, will be different than a latency observed on 
the core. 

• Memory type (L1/L2)–where the code is executed. 
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System Optimization Techniques 
Table 6 summarizes the optimization techniques discussed in this application note, while also listing a few 
additional tips for bandwidth optimization. 

Table 6: System Optimization Techniques Checklist 
 

 Optimization Tip Description 
 Analyze the overall bandwidth requirements and use the bandwidth limit feature for memory pipe DMA channels 

to regulate the overall DMA traffic. 

 Program the DMA channel MSIZE parameters to optimal values to maximize throughput and avoid any potential 
underflow/overflow conditions. 

 When required/possible, split single MDMA of a smaller MSIZE value into multiple descriptor-based MDMA 
transfers to maximize the usage of a larger MSIZE values for better performance. 

 Use MDMA instead of EMDMA for sequential data transfers to improve performance. When possible, emulate 
EMDMA non-sequential transfer modes with MDMA. 

 Program the SCB RQOS and WQOS registers to allocate priorities to various controllers as per system 
requirements. 

 Use optimization techniques at the SCB target end, such as: 
• Multiple L2/L1 sub-banks to avoid access conflicts 
• Instruction/data caches 

 Maintain the optimum clock ratios across different clock domains. 

 Because MMR latencies affect the interrupt service latency, ADSP-21568 processors offer the Trigger Routing 
Unit (TRU) for bandwidth optimization and system synchronization. The TRU allows synchronizing system events 
without processor core intervention. It maps the trigger controllers (trigger generators) to trigger targets 
(triggers receivers), thereby offloading processing from the core. 

 
Note: For a detailed discussion on this topic, refer to application note Utilizing the Trigger Routing 

Unit for System Level Synchronization (EE-360)[5]. 
 

Although the EE-360 note was written for the ADSP-215xx processor, the concepts can also be 
used for the ADSP-21568 processor. 
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