
Engineering to Engineering Note EE-461

and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Technical notes on using Analog Devices products and development tools. Visit our Web resources
EE Application Notes and Processors and DSP or e-mail processor.support@analog.com and
processor.tools.support@analog.com for customer technical support.

SHARC+ Processor System Optimization

Submitted by: Tejaswi Chitneedi Revision 3.0 – August 2025

Summary
The ADSP-21568 SHARC+ processor family provides an optimized architecture that supports high system
bandwidth and advanced peripherals. This application note discusses the key architectural features of the
processor that contribute to the overall system bandwidth, plus various available bandwidth optimization
techniques.

Applicable Processors
Most of the theoretical content of this application note is the same as in ADSP-SC5xx/215xx SHARC+ Processor
System Optimization Techniques (EE-401)[6]. This EE-461 application note includes the figures, tables, and data
specific to the ADSP-21568 processor.

Customer Takeaways
This application note provides the following customer information:

• Optimization techniques to improve ADSP-21568 system throughput
• Identifies measured MMR latencies in core cycles
• Provides insight into different L1 and L2 memory throughput methods

ADSP-21568 Processor Architecture
This section describes the ADSP-21568 processor key architectural features that play a crucial role in system
bandwidth and performance. For detailed information, refer to the ADSP-21568 SHARC+ Processor Hardware
Reference[1].

The overall architecture of the ADSP-21568 processor consists of three main system components: system bus
targets, system bus controllers, and system crossbars. Figure 1 and Figure 2 show how these components are
interconnected to form the complete system.

System Bus Targets
As shown in Figure 1 (top), system bus targets (S) include on-chip and off-chip memory devices/controllers, such as
L1 SRAM, L2 SRAM, memory-mapped peripherals (for example, SPI FLASH), and the System Memory Mapped
Registers (MMRs). Each system bus target has its own latency characteristics, operating in a specific clock domain.
For example, L1 SRAM runs at CCLK, L2 SRAM runs at SYSCLK, and so forth.

Copyright 2025, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or
application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance.
All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development
tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy

https://www.analog.com/en/search.html?query=EE%20Notes&resourceTypes=Application%20Note
https://www.analog.com/en/product-category/processors-dsp.html
mailto:%20processor.support@analog.com
mailto:%20processor.tools.support@analog.com

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 2 of 22

Figure 1: System Cross Bar (SCB) Block Diagram

System Bus Controllers
The bottom of Figure 1 shows the system bus controllers. The controllers include peripheral Direct Memory Access
(DMA) channels such as the Serial Port (SPORT) and Serial Peripheral Interface (SPI). Also included are the
Memory-to-Memory DMA channels (MDMA) and the core. Note that each peripheral runs at a different clock
speed and thus has individual bandwidth requirements. For example, high speed peripherals require higher
bandwidth than slower peripherals such as the SPORT or UART.

System Crossbars
The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. As shown in
Figure 2, the SCB interconnect is built from multiple SCBs in a hierarchical model connecting system bus controllers
to system bus targets. They provide concurrent data transfer between multiple bus controllers and multiple bus
targets, providing flexibility and full-duplex operation. The SCBs also provide a programmable arbitration model for
bandwidth and latency management. The SCBs run on different clock domains (SCLK0, SYSCLK, SPI clock) that
introduce their own latencies to the system.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 3 of 22

Figure 2: SCB Controllers Groups

System Latencies, Throughput, and Optimization Techniques
The following sections describe distinct aspects related to latencies and throughput of system bus controllers,
system bus targets, and the system cross bars. The EE note also discusses various optimization techniques to
reduce system latencies and improve throughput.

Understanding the System Controllers

DMA Parameters
Each DMA channel has two buses: one that connects to the SCB, which in turn is connected to the SCB target (for
example, memories), and another bus that connects to either a peripheral or another DMA channel. The
SCB/memory bus width can vary among 8, 16, 32, or 64 bits and is defined by the DMA_STAT.MBWID bit field. The
peripheral bus width can vary among 8, 16, 32, 64, or 128 bits and is defined by the DMA_STAT.PBWID bit field.
For ADS-21568 processors, the memory and peripheral bus widths for most of the DMA channels is 32 bits
(4 bytes). However, for some channels, it is 64 bits (8 bytes).

The DMA parameter DMA_CFG.PSIZE determines the width of the peripheral bus in use. It can be configured to 1,
2, 4, or 8 bytes. However, it cannot be greater than the maximum possible bus width defined by the
DMA_STAT.PBWID bit field. This restriction exists because burst transactions are not supported on the peripheral
bus.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 4 of 22

The DMA parameter DMA_CFG.MSIZE determines the actual size of the SCB bus in use. It also determines the
minimum number of bytes that are transferred from/to memory corresponding to a single DMA request/grant. It
can be configured to 1, 2, 4, 8, 16, or 32 bytes. When the MSIZE value is greater than DMA_STAT.MBWID, the SCB
performs burst transfers to transfer the data equal to the MSIZE value.

Note: It is important to choose the appropriate MSIZE value, both from a functionality and a
performance perspective.

When choosing the MSIZE value, consider the following needs:
• The start address of the work unit must align to the MSIZE value. When the start address does not align, it

generates a DMA error interrupt.
• From a performance perspective, use the highest possible MSIZE value (32 bytes) for better average

throughput. This results in a higher likelihood of uninterrupted sequential accesses to the target
(memory), which is the most efficient for typical memory designs.

Memory to Memory DMA (MDMA)
The processor supports multiple MDMA streams (MDMA0/1/2/3) to transfer data from one memory to another
(L1/L2/memory-mapped peripherals (for example, SPI FLASH). Different MDMA streams can transfer the data at
different bandwidths, as they run at different clock speeds and support different data bus widths. Table 1 shows
the various MDMA streams and the corresponding maximum theoretical bandwidth supported by the ADSP-21568
processor. For detailed information on the clock speed, refer to the ADSP-21568 SHARC+ Processor Data Sheet[2].

Table 1: DMA Streams and Maximum Theoretical Bandwidth

MDMA
Stream
No

MDMA
Type

Maximum
CCLK/SYSCLK/SCLKx
Speed (MHz)

MDMA
Source
Channel

MDMA
Destination
Channel

Clock
Domain

Bus
Width
(bits)

Maximum
Bandwidth
(MB/s)

0 Enhanced Bandwidth or 8 9 32 2000
 Medium Speed MDMA
 (MSMDMA)

1 Enhanced Bandwidth or 18 19 32 2000
 Medium Speed MDMA

(MSMDMA)
CCLK-1000

SYSCLK-500

SCLKx-125

SYSCLK

2 Enhanced Bandwidth or
Medium Speed MDMA

39 40 32 2000

 (MSMDMA)

3 Maximum Bandwidth or 43 44 64 4000
 High Speed MDMA
 (HSMDMA)

Table 2 shows the various memory targets and the corresponding maximum theoretical bandwidth supported by
the ADSP-21568 processor.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 5 of 22

Table 2: Memory Targets and Maximum Theoretical Bandwidth

Memory Type
(L1/L2/L3)

Maximum
CCLK/SYSCLK/SCLKx/
Frequency (MHz)

Clock
Domain

Bus Width
(Bits)

Data Rate
Clock Rate

Maximum Theoretical
Bandwidth (MB/s)

L1 CCLK-1000
SYSCLK-500
SCLKx-125

CCLK 32 1 4000

L2 SYSCLK 64 1 4000

The actual (measured) MDMA throughput is always less than or equal to the minimum of the maximum theoretical
throughput supported by one of the three: MDMA, source memory, or destination memory. For example, the
measured throughput of MDMA0 between L1 and L2 is less than or equal to 2000 MB/s, which is limited by the
maximum bandwidth of MDMA0. Figure 3 shows the actual throughput measured on the bench for various MDMA
streams with different combinations of source and destination memories.

The measurements were taken using the following parameters:
• MSIZE = 32 bytes
• DMA count = 16384 bytes at CCLK = 1000 MHz
• SYSCLK = 500 MHz

The code MDMA_Throughput supplied with Source Files for EE-412: ADSP-2156x SHARC+ Processors System
Optimization Techniques[3] can be used to measure MDMA throughput.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 6 of 22

Figure 3: Measured MDMA Throughput on ADSP-21568 Processor

Optimizing Non-32-Byte-Aligned MDMA Transfers
In many cases, the start address and count of a MDMA transfer cannot be aligned to a 32-byte address boundary.
In such cases, the MSIZE value needs to be configured to be less than 32 bytes. This configuration can affect the
MDMA performance. One option to get better throughput for such cases is to split the single MDMA transfer into
more than one transfer using a descriptor-based DMA. The first and last (when needed) MDMA transfers can use
MSIZE < 32 bytes for non-32-byte aligned address and count values. The second transfer can use MSIZE = 32 bytes
for 32-byte-aligned address and count values.

The MDMA service available with CrossCore Embedded Studio (CCES) provides an additional API called
adi_mdma_Copy1DAuto. It is compatible with the standard 1D-transfer API adi_mdma_Copy1D that is used for
single-shot 1D transfers. As shown in Table 3, the MDMA performance of adi_mdma_Copy1DAuto is
approximately 1.5 to 2.6 times better than adi_mdma_Copy1D for non-32-byte aligned start addresses. The
example code MDMA_1DAuto (see Source Files for EE-461: SHARC+ Processor System Optimization[4]) can be used
to measure MDMA performance for both APIs for a given use case.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 7 of 22

Table 3: adi_mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance

S.
No.

Source
Memory
Address

Destination
Memory
Address

DMA
Count

MSIZE
(Bytes)

Copy1D
MDMA
Cycles

Copy1DAuto
MDMA
Cycles

Added
API
Overhead

Effective
Improvement
Factor

1 0x2C0001 0x300000 256 1 2024 1362 524 1.07

2 0x2C0000 0x300001 256 1 2024 1254 520 1.14

3 0x2C0001 0x300000 1024 1 6248 2898 510 1.83

4 0x2C0000 0x300001 1024 1 6248 2790 522 1.89

5 0x2C0001 0x300000 4096 1 23144 9042 510 2.42

6 0x2C0000 0x300001 4096 1 23144 8934 522 2.45

Bandwidth Limiting and Monitoring
MDMAs are equipped with a bandwidth limit and monitor mechanism. The bandwidth limit feature can be used to
reduce the number of DMA requests being sent by the corresponding controllers to the SCB.

The DMA_BWLCNT register can be programmed to configure the number of SYSCLK cycles between two DMA
requests. This configuration can be used to ensure that such DMA channels’ requests do not occur more frequently
than required. Programming a value of 0x0000 allows the DMA to request as often as possible. A value of 0xFFFF
represents a special case and causes all requests to stop.

The maximum throughput (in MB/s) is determined by the DMA_BWLCNT register and the MSIZE value and is
calculated as follows:

[1] Bandwidth = min (SYSCLK frequency in MHz*DMA bus width in bytes,
SYSCLK frequency in MHz*MSIZE in bytes / DMA_BWLCNT)

The API adi_mdma_BWLimit (see Source Files for EE-461: SHARC+ Processor System Optimization[4])can be used to
program the DMA_BWLCNT register for a given target bandwidth and MSIZE value. The example code MDMA_BWLimit
shows how to use this API. Figure 4 shows an example result of this code with the calculated and measured
bandwidth for different MDMA use cases.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 8 of 22

Figure 4: MDMA Bandwidth Limit Results

The bandwidth monitor feature can be used to check if such channels are starving for resources. The DMA_BMCNT
register can be programmed to the number of SYSCLK cycles within which the corresponding DMA should finish.
Each time the DMA_CFG register is written (MMR access only), a work unit ends, or an auto buffer wraps, the DMA
loads the value in the DMA_BWMCNT register into the DMA_BWMCNT_CUR register. The DMA decrements
DMA_BWMCNT_CUR every SYSCLK that a work unit is active. When the DMA_BWMCNT_CUR value reaches
0x00000000 before the work unit finishes, the DMA_STAT.IRQERR bit is set, and the DMA_STAT.ERRC bit is set
to 0x6. The DMA_BWMCNT_CUR value remains at 0x00000000 until it is reloaded when the work unit completes.
Unlike other error sources, a bandwidth monitor error does not stop work unit processing. Programming
0x00000000 disables bandwidth monitor functionality. This feature can also be used to measure the actual
throughput.

The API adi_mdma_BWMonitor (see Source Files for EE-461: SHARC+ Processor System Optimization[4]) can be
used to program the DMA_BWMCNT register for a given target bandwidth and MSIZE value. The example code
MDMA_BWMonitor shows how to use this API. Figure 5 shows an example result of this code with a calculated
bandwidth and bandwidth monitor expiration message for a given MDMA use case. The API
adi_mdma_BWMeasure uses the DMA_BMCNT and DMA_BWMCNT_CUR registers to measure the MDMA bandwidth
as shown in the example code MDMA_BWLimit.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 9 of 22

Figure 5: MDMA Bandwidth Monitor Results

Extended Memory DMA (EMDMA)
The ADSP-21568 processor also supports Extended Memory DMA (EMDMA). The EMDMA engine is used to
transfer data from one memory type to another in a non-sequential manner (such as circular, delay line, and
scatter/gather). For details about the EMDMA, refer to the ADSP-21568 SHARC+ Processor Hardware Reference[1].
The EMDMA on the processor is enhanced to run at the SYSCLK speed instead of the SCLK speed. This
enhancement results in improved EMDMA throughput. Figure 6 shows throughput measured on the bench for
EMDMA0/EMDMA1 streams with a different combination of source and destination memories for sequential
transfers of 4096 32-bit words at CCLK = 1000 MHz and SYSCLK = 500 MHz.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 10 of 22

Figure 6: Measured EMDMA Processor Throughput

Optimizing Non-Sequential EMDMA Transfers with MDMA
In some cases, the non-sequential transfer modes supported by EMDMA can be replaced by descriptor-based
MDMA for better performance.

The example code MDMA_Circular_Buffer (see Source Files for EE-461: SHARC+ Processor System
Optimization[4]) illustrates how a MDMA descriptor-based mode can be used to emulate a circular buffer memory-
to-memory DMA transfer mode. The example code compares the core cycles measured (see
Table 4) to write and read 4096 32-bit words to and from the L2 memory in circular buffer mode.

The example uses a starting address offset of 1024 words for the following cases:
• EMDMA
• MDMA with MSIZE = 4 bytes (for 4-byte aligned address and count)
• MDMA with MSIZE = 32 bytes (for 32-byte aligned address and count)

As shown in Table 4, the MDMA emulated circular buffer (MSIZE = 4 bytes) is faster than EMDMA. The
performance is further improved with MSIZE = 32 bytes when the addresses and counts are 32-byte aligned.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 11 of 22

Table 4: MDMA Emulated Circular Buffer vs. EMDMA

Write/Read

Core Cycles
EMDMA MDMA3

MSIZE = 4 bytes
MDMA3
MSIZE = 32 bytes

Write 23312 21212 5524

Read 23019 21189 5491

Understanding the System Crossbars
As shown in Figure 2: SCB Controllers Groups on page 3, the SCB interconnect consists of a hierarchical model
connecting multiple SCB units. Figure 7 shows the block diagram for a single SCB unit. It connects the System Bus
Controllers (M) to the System Bus Targets (T) by using a Target Interface (TI) and Controller Interface (CI). On each
SCB unit, each S is connected to a fixed MI. Similarly, each M is connected to a fixed SI.

Figure 7: Single SCB Block Diagram

The target interface of the crossbar (where controllers such as DDE are connected) perform two functions,
arbitration and clock domain conversion.

Arbitration
The programmable Quality of Service (QoS) registers are associated with SCBx. For example, the programmable
QoS registers for SPORT0-3 and MDMA0 can be viewed as residing in SCB1. Whenever a transaction is received at
SPORT0 half A, the programmed QoS value is associated with that transaction and is arbitrated with the rest of the
controllers at SCB1.

Programming the SCB QOS Registers
Consider a scenario where:

• At SCB1, controllers 1, 2, and 3 have RQOS values of 6, 4, and 2, respectively.
• At SCB2, controllers 4, 5, and 6 have RQOS values of 12, 13, and 1, respectively.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 12 of 22

Figure 8: Arbitration Among Various Controllers

As shown in Figure 8, in this example:

• Controller 1 wins the arbitration at SCB1, and controller 5 wins the arbitration at SCB2.
• In a perfect competition at SCB0, however, controller 4 and controller 5 had the highest overall RQOS

values. So, the controllers would have fought for arbitration directly at SCB0. Because of the mini-SCBs,
however, controller 1, at a much lower RQOS value, wins against controller 4 and makes it all the way to
SCB0.

Clock Domain Conversion
There are multiple Clock Domain Crossings (CDC) in the ADSP-21568 processor fabric:

• CCLK: SYSCLK is fixed to SYNC n:1
• SCLK0: SYSCLK is fixed to 1:n
• SPI CLK: SYSCLK is fixed to m:n

Understanding the System Targets

Memory Hierarchy
As shown in Table 2: Memory Targets and Maximum Theoretical Bandwidth on page 5, ADSP-2156x processors
have a hierarchical memory model (L1/L2/L3). The following sections discuss the access latencies and achieved
throughput associated with the different memory levels.

L1 Memory Throughput
L1 memory runs at CCLK and is the fastest accessible memory in the hierarchy. SHARC+ L1 memory is accessible
by both the core and DMA (system). For system (DMA) accesses, L1 memory supports two ports: the S1 port and
the S2 port. Two different banks of L1 memory can be accessed in parallel with these ports.

 From a programming perspective, when accessing the L1 memory of the SHARC+ processer, use a multiprocessor
memory offset of 0x28000000 for all DMA accesses (including HSMDMA).

The maximum theoretical throughput of L1 memory (for system/DMA accesses) is 1000 * 4 = 4000 MB/s for
1000 MHz CCLK operation. As shown in Figure 3: Measured MDMA Throughput on ADSP-21568 Processor on
page 6, the maximum measured L1 throughput using MDMA3 is approximately 3847.6 MB/s.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 13 of 22

L2 Memory Throughput
L2 memory access times are longer than L1 because the maximum L2 clock frequency (SYSCLK) is half the CCLK.
The L2 memory controller contains two ports to connect to the system crossbar. Port 0 is a 64-bit interface
dedicated to core traffic, while port 1 is a 32-bit interface that connects to the DMA engine (64-bit DMA bus is
supported for HSMDMA accesses). Each port has a read and a write channel. For details, refer to the ADSP-21568
SHARC+ Processor Hardware Reference[1].

Consider the following important points regarding L2 memory throughput:
• Because L2 memory runs at the SYSCLK speed, it can provide a maximum theoretical throughput of

500 MHz * 4 = 2000 MB/s in one direction (for HSMDMA accesses, it has a maximum speed of
4000 MB/s). Because there are separate read and write channels, the total throughput in both directions
equals 8000 MB/s. To operate L2 SRAM memory at its optimum throughput, use both the core and DMA
ports and separate read and write channels in parallel. All of them should access different banks of L2.

• All accesses to L2 memory are converted to 64-bit accesses (8-byte) by the L2 memory controller. To
achieve optimum throughput for DMA access to L2 memory, configure the DMA channel MSIZE to 8 bytes
or larger.

• L2 memory throughput for sequential and non-sequential accesses is the same.
• L2 SRAM is parity-protected and organized into eight banks. The parity implementation is in terms of

32 bits. Therefore, for any writes less than 32-bit wide (one byte and half word) to the parity enabled RAM
bank, the operation is implemented as a read-followed by a write. It requires two extra read cycles.
However, all writes to parity-disabled banks and all writes that are 32/64 bit (with addresses aligned to
32-bit boundaries) do not have a read cycle in between.

• When performing simultaneous core and DMA accesses to the same L2 memory bank, read and write
priority control registers can be used to increase DMA throughput. When the core and the DMA engine
access the same bank, the best access rate that DMA can achieve is one 64-bit access every three SYSCLK
cycles during the conflict period. This throughput is achieved by programming the read and write priority
count bits (L2CTL_RPCR.RPC0 and L2CTL_WPCR.WPC0) to zero, while programming the
L2CTL_RPCR.RPC1 and L2CTL_WPCR.WPC1 bits to one.

Figure 9 shows the measured MDMA throughput at CCLK = 1000 MHz and SYSCLK = 500 MHz for an example
where both source and destination buffers are in different L2 memory banks. As an example, for MDMA3, the
maximum throughput approximates 1951 MB/sec in one direction (3902 MB/s in both directions) for
MSIZE = 32 bytes and drops significantly for smaller MSIZE values.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 14 of 22

Figure 9: L2 MDMA Throughput for Different MSIZE and Work Unit Sizes

XSPI Throughput

The XSPI flash controller provides access to serial flash devices that support JESD216 and JESD251 standards. The
XSPI module is comprised of Main command sequencer, PHY block, Internal transmit/receive FIFOs, DAC/STIG
controller and Register interface. The supported HyperBus™ protocol enables seamless communication with
HyperFlash™/HyperRAM™devices. An integrated PHY handles the low-level timings of the data, address and control
signals between the device and controller. For details, refer to the ADSP-21568 SHARC+ Processor Hardware
Reference[1].

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 15 of 22

XSPI Read Throughput
Figure 10: XSPI Read Throughput

Figure 10 illustrates XSPI measured read throughput for both MSIZE 4 and MSIZE 32 using MDMA0, with XSPI
configured to its maximum frequency of 166 MHz. The throughput trends remain consistent across MSIZE and buffer
size variations, showing an increase as transfer size increases.

Data is transferred from XSPI HyperRAM to L1 memory, where for a 64-byte transfer, the throughput is 13.55 MB/s
for MSIZE 4, rising to 81.84 MB/s for MSIZE 32. The XSPI_MINICTL_DEV_DLY.CSDA_MIN_DLY bit field defines the
Minimum Chip Select (CSDA_MIN) de-assertion timing, impacting throughput performance. The throughput values
presented were obtained by setting CSDA_MIN_DLY to 10.

64 256 1024 4096 16384
MSIZE-4 13.55 13.59 13.6 13.6 13.6
MSIZE-32 81.84 83.93 84.48 84.61 84.64

0

10

20

30

40

50

60

70

80

90

XSPI Read Throughput

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 16 of 22

XSPI Write Throughput
Figure 11: XSPI Write Throughput

Figure 11 illustrates XSPI write throughput for MSIZE 4 and MSIZE 32 using MDMA0, with XSPI configured to its
maximum frequency of 166 MHz. As the transfer size increases, throughput decreases, following a consistent trend
across different MSIZE and buffer size configurations. Data is transferred from L1 memory to XSPI HyperRAM, where for
a 64-byte transfer, throughput is 16.35 MB/s for MSIZE 4, increasing to 97.11 MB/s for MSIZE 32. The
XSPI_MINICTL_DEV_DLY.CSDA_MIN_DLY bit field defines the Minimum Chip Select (CSDA_MIN) de-assertion timing,
which influences throughput performance. The throughput values shown were obtained by setting CSDA_MIN_DLY to
10. For a transfer size of 64 bytes, data is moved in 32-byte bursts, meaning the transfer occurs in two bursts with a
delay between them. Similarly, for a 256-byte transfer, the data is split into eight bursts, with seven delays occurring
between them. In general, for a transfer size of (N × 32) bytes, there will be N bursts and (N - 1) delays. Since these
delays are included in the throughput calculation, the overall throughput decreases as the transfer size increases.

64 256 1024 4096 16384
MSIZE-4 16.35 16.28 16.266 16.261 16.26
MSIZE-32 97.11 94.49 93.79 93.62 93.58

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 in

 M
B/

s

Bytes

XSPI Write Throughput

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 17 of 22

XSPI Prefetch Buffer
The throughput for read can be further improved by using Prefetch buffer(PFB). Write throughput will not have
effect with PFB. PFB reduces latency and improves throughput. It optimizes memory accesses by prefetching
additional data assuming that same data may be accessed in future. Whenever controller access additional data
later, if it is already in the prefetch buffer, it is sent to the controller without having to access from the memory
device thereby improving the effective throughput and reducing latencies.
Figure 12: XSPI Read Throughput for 4Bytes MSIZE

Figure 12 shows the read throughput for XSPI. XSPI is configured to a max frequency of 166MHz. The data is
transferred between XSPI HyperRAM to L1memory using MDMA0 with MSIZE4 for various transfer sizes. As transfer
size increases, the throughput increases. With prefetch buffer enabled, throughput for a 16,384-byte transfer
significantly improves, rising from 13.6 MB/s to 192.09 MB/s.

32 64 1024 2048 4096 8192 16384
PFB disabled 13.49 13.55 13.6 13.6 13.6 13.6 13.6
PFB enabled 63.49 126.98 190.65 191.408 191.805 191.99 192.09

0

50

100

150

200

250

Th
ro

ug
hp

ut
 in

 M
B/

s

MSIZE = 4bytes

PFB disabled PFB enabled

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 18 of 22

Figure 13: XSPI Read Throughput for 4Bytes MSIZE

Figure 13 shows the read throughput for XSPI. XSPI is configured to a max frequency of 166MHz. The data is
transferred between XSPI HyperRAM to L1memory using MDMA0 with MSIZE32 for various transfer sizes. As
transfer size increases, the throughput increases. With prefetch buffer enabled, throughput for a 16,384-byte
transfer significantly improves, rising from 84.64 MB/s to 192.12 MB/s. With the prefetch buffer enabled,
throughput remains approximately similar across different MSIZE settings for a given transfer size, ensuring stable
performance regardless of memory segment configuration.

32 64 1024 2048 4096 8192 16384
PFB disabled 62.25 81.84 84.48 84.56 84.61 84.63 84.64
PFB enabled 63.49 126.98 191.08 191.63 191.904 192.04 192.12

0

50

100

150

200

250

Th
ro

ug
hp

ut
 in

 M
B/

s

MSIZE = 32bytes

PFB disabled PFB enabled

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 19 of 22

 System MMR Latencies
Table 5 shows the measured MMR latency in core cycles for different peripherals on the ADSP-21568 processor.
The measurement was taken with CCLK = 1000 MHz, SYSCLK = 500 MHz, and SCLK = 125 MHz. These numbers can
be used to approximate the MMR access latency of the SHARC+ core for different peripherals.

Table 5: MMR Access Latency Processors in Approximate CCLK Cycles

S. No.

Register

Peripheral

Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

1 FIR0_INIDX FIR 40 39

2 IIR0_INIDX IIR 94 96

3 MEC0_PERR_IMASK0 MEC 56 56

4 CRC0_DCNT
CRC

56 56

5 CRC1_DCNT 40 39

6 EMDMA0_INDX1
EMDMA

56 56

7 EMDMA1_INDX1 56 54

8 TAPC_SDBGKEY0 TAPC 64 64

9 L2CTL0_RPCR L2CTL 58 58

10 SEC0_RAISE SEC 57 58

11 TRU0_SSR0 TRU 58 58

12 SPU0_SECUREP10 SPU 58 56

13 RCU0_MSG RCU 58 56

14 CDU0_CLKINSEL CDU 58 56

15 DPM0_PER_DIS0 DPM 56 54

16 PKTE0_SA_ADDR PKTE 64 64

17 TRNG0_OUTPUT0 TRNG 64 64

18 PKA0_APTR PKA 56 56

19 PKIC0_ACK PKIC 128 136

20 SPORT1_DIV_A SPORT 88 88

21 PINT1_ASSIGN PINT 58 56

22 OTPC_PMC_MODE0 OTPC 92 96

23 DMA0_XCNT DMA 92 88

24 PORTB_DATA_SET PORT 88 88

25 WDOG1_WIN WDOG 86 88

26 DMA1_XCNT DMA 90 88

27 SPORT0_DIV_A SPORT 92 96

28 UART0_CLK UART 86 88

29 UART1_CLK UART 90 88

30 PINT0_ASSIGN PINT 92 88

31 WDOG0_WIN WDOG 92 88

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 20 of 22

S. No.

Register

Peripheral

Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

32 SPI1_CLK SPI 58 56

33 PORTA_DATA_SET PORTA 86 88

34 PADS0_PORTA_PDE PADS 79 80

35 CNT0_CNTR CNT 182 184

36 TIMER0_TMR0_WID TIMER 94 96

37 SPI0_CLK SPI 90 96

38 PCG0_PW1 PCG 92 96

39 SPDIF0_TX_UBUFF_A0 SPDIF 94 96

40 ASRC1_MUTE ASRC 60 60

41 DAI1_IMSK_FE DAI 92 96

42 SPDIF1_TX_UBUFF_A0 SPDIF 92 96

43 DAI0_IMSK_FE DAI 94 96

44 ASRC0_MUTE ASRC 100 96

45 SMPU2_RADDR0 SMPU 88 88

46 TWI0_CLKDIV TWI 126 136

47 TWI1_CLKDIV TWI 130 136

Note: The MMR latency numbers are measured with the sync instruction after the write. This

ensures that the write has taken affect. The SHARC+ core supports posted writes, which
means that the core does not necessarily wait until the actual write is complete. This helps in
avoiding unnecessary core stalls.

The MMR access latencies can vary based on the following factors:
• Clock ratios–all MMR accesses are through SCB0, which is in the SYSCLK domain, while peripherals are in

the SCLK0/1, SYSCLK, and DCLK domains.
• Number of concurrent system MMR accesses–although a single write incurs half the system latency when

compared to back-to-back writes, the latency observed on the core will be shorter. Similarly, the system
latency incurred by a read followed by a write, or vice versa, will be different than a latency observed on
the core.

• Memory type (L1/L2)–where the code is executed.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 21 of 22

System Optimization Techniques
Table 6 summarizes the optimization techniques discussed in this application note, while also listing a few
additional tips for bandwidth optimization.

Table 6: System Optimization Techniques Checklist

 Optimization Tip Description
 Analyze the overall bandwidth requirements and use the bandwidth limit feature for memory pipe DMA channels

to regulate the overall DMA traffic.

 Program the DMA channel MSIZE parameters to optimal values to maximize throughput and avoid any potential
underflow/overflow conditions.

 When required/possible, split single MDMA of a smaller MSIZE value into multiple descriptor-based MDMA
transfers to maximize the usage of a larger MSIZE values for better performance.

 Use MDMA instead of EMDMA for sequential data transfers to improve performance. When possible, emulate
EMDMA non-sequential transfer modes with MDMA.

 Program the SCB RQOS and WQOS registers to allocate priorities to various controllers as per system
requirements.

 Use optimization techniques at the SCB target end, such as:
• Multiple L2/L1 sub-banks to avoid access conflicts
• Instruction/data caches

 Maintain the optimum clock ratios across different clock domains.

 Because MMR latencies affect the interrupt service latency, ADSP-21568 processors offer the Trigger Routing
Unit (TRU) for bandwidth optimization and system synchronization. The TRU allows synchronizing system events
without processor core intervention. It maps the trigger controllers (trigger generators) to trigger targets
(triggers receivers), thereby offloading processing from the core.

Note: For a detailed discussion on this topic, refer to application note Utilizing the Trigger Routing

Unit for System Level Synchronization (EE-360)[5].

Although the EE-360 note was written for the ADSP-215xx processor, the concepts can also be
used for the ADSP-21568 processor.

Processors: ADSP-2156x SHARC+ Processor Family: ADSP-21568 August 2025

 SHARC+ Processor System Optimization

Page 22 of 22

References
[1] ADSP-21568 SHARC+ Processor Hardware Reference. Revision 0.3, May 2024. Analog Devices, Inc.

https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-21560-21561-21564-21568-hrm.pdf

[2] ADSP-21568 SHARC+ Single Core High Performance DSP Data Sheet. Rev. 0, August 2025. Analog Devices, Inc.
https://www.analog.com/media/en/technical-documentation/data-sheets/adsp-21560-21561-21564-21568.pdf

[3] Source Files for EE-412: ADSP-2156x SHARC+ Processor System Optimization Techniques. Rev 2, September 2020.
Analog Devices, Inc.
https://www.analog.com/media/en/technical-documentation/application-notes/ee412v02.zip

[4] Source Files for EE-461: SHARC+ Processor System Optimization. Rev 3.0, August 2025. Analog Devices, Inc.
https://www.analog.com/media/en/technical-documentation/application-notes/ee461v03.zip

[5] Utilizing the Trigger Routing Unit for System Level Synchronization (EE-360). Rev 1, October 2013. Analog Devices, Inc.
https://www.analog.com/media/en/technical-documentation/application-notes/EE360v01.pdf

[6] ADSP-SC5xx/215xx SHARC+ Processor System Optimization Techniques (EE-401). Rev 1, February 2018. Analog Devices,
Inc. https://www.analog.com/media/en/technical-documentation/application-notes/ee-401.pdf

Document History
Date Author(s) Description of EE-Note Changes
June 2024 Tejaswi Chitneedi Initial Release

June 2024 Tejaswi Chitneedi Corrected frequency typo, replacing 933.6 GHz with 933.6 MHz

August 2025 Tejaswi Chitneedi Addition of XSPI Throughput

https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-21560-21561-21564-21568-hrm.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adsp-21560-21561-21564-21568.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/ee412v02.zip
https://www.analog.com/media/en/technical-documentation/application-notes/ee461v03.zip
https://www.analog.com/media/en/technical-documentation/application-notes/EE360v01.pdf
https://www.analog.com/media/en/technical-documentation/app-notes/ee-401.pdf

	SHARC+ Processor System Optimization
	Summary
	Applicable Processors
	Customer Takeaways

	ADSP-21568 Processor Architecture
	System Bus Targets
	System Bus Controllers
	System Crossbars

	System Latencies, Throughput, and Optimization Techniques
	Understanding the System Controllers
	DMA Parameters
	Memory to Memory DMA (MDMA)

	Optimizing Non-32-Byte-Aligned MDMA Transfers
	Bandwidth Limiting and Monitoring
	Extended Memory DMA (EMDMA)

	Optimizing Non-Sequential EMDMA Transfers with MDMA
	Understanding the System Crossbars
	Arbitration
	Clock Domain Conversion

	Understanding the System Targets
	Memory Hierarchy
	L1 Memory Throughput
	L2 Memory Throughput
	XSPI Throughput
	The XSPI flash controller provides access to serial flash devices that support JESD216 and JESD251 standards. The XSPI module is comprised of Main command sequencer, PHY block, Internal transmit/receive FIFOs, DAC/STIG controller and Register interfac...
	XSPI Read Throughput
	XSPI Write Throughput
	XSPI Prefetch Buffer

	System MMR Latencies

	System Optimization Techniques
	References

