EVAL-AD2428WC1BZ A²B Evaluation Board User Guide

Contributed by A²B Applications Team
Rev 1 – October 8, 2019

Features
- Bus-Powered A²B® Slave Transceiver (AD2428W)
- Four Stereo MEMS Microphones
- LED on GPIO

Included Equipment
- 1.8 m Twisted-Pair Cable (CAT5e-Rated, with DuraClik™ Connectors)
- Rubber Feet

Equipment Needed
- EVAL-AD2428WD1BZ A²B Master Node Evaluation Board
- Additional A²B Slave Nodes (Optional)
 - EVAL-AD2428WG1BZ
 - EVAL-AD2428WB1BZ

Documents Needed
- Transceiver Data Sheet[1]
- Transceiver Technical Reference[2]
- EVAL-AD2428WC1BZ Hardware Design Files[3]

Software Needed
- SigmaStudio® Rev. 4.4 or later
- Software Distribution for A²B Rev 19.3.0 or later, DLLs
General Description

This evaluation board provides A²B bus-powered slave node functionality for an A²B network, including support for PDM microphone input. Bus-powered slave nodes derive power from the bias voltage on the A²B wires.

The EVAL-AD2428WC1BZ board’s four digital INMP621 MEMS microphones with PDM output can feed the upstream or downstream slots on the A²B bus. Adding multiple microphone signals increases the acoustic dynamic range. This four microphone array also lends itself well to static or adaptive beamforming techniques used to introduce directionality to the otherwise omnidirectional MEMS microphones.

For the board schematics, assembly/layout files, and bill of materials (BOM), see the EVAL-AD2428WC1BZ Hardware Design Files ZIP archive associated with this EE-note.[3]

Evaluation Board Hardware

Figure 1 identifies the important components and connection points on the EVAL-AD2428WC1BZ evaluation board.

![Figure 1. Board Overview](image)

A²B Bus Connections (J7 and J8)

The 2-pin Molex DuraClik connector (J7) allows a single twisted-pair A²B cable to attach to the A-side of the AD2428W transceiver such that the opposite end of the A²B cable can attach to the B-side of either the master transceiver or the next slave node transceiver closer to the master node.
The 2-pin Molex DuraClik connector (J8) allows a single twisted-pair A²B cable to attach to the B-side of the AD2428W transceiver. The opposite end of the A²B cable can attach to the A-side of the next slave node transceiver, including the last-in-line slave.

PDM Microphones (INMP621)

There are four digital MEMS microphones connected directly to the transceiver through PDM.

LED (D2)

The D2 LED reflects the status of the DTX1/IO3 pin when used as a GPIO pin.

Test Points (TP1 – TP10)

The test points are well-marked on the silkscreen of the PCB, providing access to signals and power supplies, as summarized in Table 1. Refer to the schematics to locate the probe points.

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Provides Access To</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>AD2428W I²C Serial Clock Signal (SCL)</td>
</tr>
<tr>
<td>TP2</td>
<td>AD2428W I²C Serial Data Signal (SDA)</td>
</tr>
<tr>
<td>TP3</td>
<td>EVAL-AD2428WC1BZ Board Ground Potential</td>
</tr>
<tr>
<td>TP4</td>
<td>AD2428W I²S/TDM Primary Data Signal (DTX0/IO3)</td>
</tr>
<tr>
<td>TP5</td>
<td>EVAL-AD2428WC1BZ Board Ground Potential</td>
</tr>
<tr>
<td>TP6</td>
<td>AD2428W IO1 Signal (ADR1/IO1)</td>
</tr>
<tr>
<td>TP7</td>
<td>AD2428W VOUT1 Output Voltage (PLLVDD/DVDD)</td>
</tr>
<tr>
<td>TP8</td>
<td>AD2428W VOUT2 Output Voltage (ATRXVDD/BTRXVDD)</td>
</tr>
<tr>
<td>TP9</td>
<td>AD2428W Next Slave Power Sense (SENSE)</td>
</tr>
<tr>
<td>TP10</td>
<td>AD2428W Return Current for Next Slave (VSSN)</td>
</tr>
</tbody>
</table>

Table 1. EVAL-AD2428WC1BZ Evaluation Board Test Points

I²C Device Addresses in 7-bit Format

The I²C device address in 7-bit format does not include the read-write (R/W) bit. The schematics tab in the SigmaStudio A²B window uses the 7-bit address representation for configuration of and access to the AD2428W A²B transceiver registers.

Evaluation Board Software Quick Start Procedure

The EVAL-AD2428WC1BZ evaluation board is intended to be connected within an existing A²B system, where at least a master node exists for the on-board AD2428W transceiver to be a slave to on the A²B bus. A host processor on the master node interfaces directly with the A²B master transceiver, through which it programs and reads the register spaces of all discovered slave transceivers. This configuration allows a full system initialization at start-up and status monitoring during operation.
The examples furnished with the complementary EVAL-AD2428WD1BZ A²B master evaluation board assume a connection to specific slave boards, as noted in the following sections.

Connection to EVAL-AD2428WD1BZ Master Board

For master board setup instructions, please refer to the *EVAL-AD2428WD1BZ A²B Evaluation Board Manual*. Ensure that the master board jumpers are all installed in their default positions.

Hardware Setup for a 3-Node A²B System

1. Assemble the example A²B system by connecting the indicated A²B evaluation boards as follows:
 - Master (EVAL-AD2428WD1BZ) – Connect the B-side (P2) to the A-side on the slave0 board (J7)
 - Slave0 (EVAL-AD2428WC1BZ) – Connect the B-side (J8) to the A-side on the slave1 board (J7)
 - Slave1 (EVAL-AD2428WB1BZ)

2. Connect the PC over a USB cable and through the EVAL-ADUSB2EBZ USBi I²C programmer to the SigmaStudio header (P1) on the master board.

3. Connect an audio source to the stereo line input of the slave1 board (J2).

4. Connect headphones to the audio output of the master board (J4).

5. Plug the wall-mount 12V power supply (1.5 A) into an outlet and connect it to the power jack on the master board.

Software Setup and Operation

1. Install the SigmaStudio (Rev. 4.4 or later) and A²B Software for Windows/Baremetal (Rev 19.3.0) software from the EVAL-AD2428WC1BZ product page.

2. Copy the *A2B.dll* and *A2Bstack.dll* driver files from the installation directory (default `C:\Analog Devices\ADI_A2B_Software-Rel19.3.0\GUI\x86_x64`) into the SigmaStudio installation (default `C:\Program Files\Analog Devices\SigmaStudio 4.4`). Start SigmaStudio and verify that the *A2B.dll* file is selected under Tools → AddInsBrowser. Save before exiting.

3. Open the *adi_a2b_3NodeSampleDemo.dspproj* example project, which is located in the (default) `C:\Analog Devices\ADI_A2B_Software-Rel19.3.0\Schematics\BF\A2BSchematics` directory. Click the Link-Compile-Download icon, as shown in Figure 2.

4. If a headset is connected to slave1, then the signals from the two slave0 microphones can be heard from the left and right ears, respectively.

5. The AD2428W DRX0/IO5 and DRX1/IO6 pins are multiplexed to support either I²S/TDM receive functionality (default) or PDM input (PDM0 and PDM1, respectively). Ensure that PDM functionality is enabled using the SigmaStudio GUI, as shown in Figure 3.
6. The microphone data from slave0 is played out of the headset connected to slave1. Select the source and destination in the A2B Stream Configuration window to change the routing. The Stream Config tab (right-click on Target Processor→Device Properties→Stream Config) to define audio streams across the nodes, as shown in Figure 4. When the Apply button is clicked, the stream assignments configure the upstream and downstream slots accordingly across the nodes.
Figure 4: Stream Configuration

Refer to the *Quick Start Guide*[^1] from the A²B software distribution for guidance regarding the modification of the software.

[^1]: Page 6 of 7
References

Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 1 – October 17, 2019 by A²B Applications Team</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>