ADSP-CM40x Power Supply Transistor Selection Guidelines
Contributed by John Mangino
Rev 1 – September 5, 2013

Introduction
ADSP-CM40x Mixed-Signal Control Processors operate from a single voltage supply (VDD_EXT/VDD_ANA), generating its own internal voltage supply (VDD_INT) using an on-chip voltage regulator and an external pass transistor.

This processor family offers low static power consumption and is produced with a low-power and low-voltage design methodology, delivering world class performance with lower power consumption.

This EE-Note provides the guidelines for selecting an appropriate external transistor for the ADSP-CM40x power supply design. Note, however, that depending on the system resources, a separate voltage regulator may be used, if available.

Overview
The on-chip linear voltage regulator supplies 1.2 Volts to the digital section (core) of the chip (VDD_INT). Its primary purpose is to support the processor’s dynamic current. The regulator’s input voltage is the external I/O supply (VDD_VREG = 3.3V), which is then used to generate the appropriate core domain supply (VDD_INT) of 1.2 Volts.

As mentioned earlier, the user may choose to bypass it at the added expense of an external regulator.

The on-chip voltage regulator provides current to the digital portion of the chip only. It is NOT recommended to connect any other external circuitry to the regulated output voltage of this block.

Implementation
For proper operation, the on-chip voltage regulator requires several external components:

- A PNP bipolar junction transistor. This component will act as an external pass device to bring the higher VDD_VREG voltage down to the lower VDD_INT voltage, thus dissipating power external to the IC package.
- A 1kOhm resistor. This component should be placed between the transistor’s emitter and base to aid in stabilizing the regulator for varying loads. This ensures that current is always flowing into the VREG_BASE pin, even for minimal regulator loads.
- Decoupling capacitors. The capacitor load range is 10 uF – 220 uF. This range may be refined and must have a minimum Equivalent Series Resistance (ESR) of 0.5 Ohm. The ESR is for stability purposes and preventing ringing.
Therefore, a possible implementation would look as follows:

![Figure 1. Voltage Regulator External Circuitry Design](image)

External Regulator

As discussed, using an external 1.2 Volt source to power VDD_INT permits bypassing of the internal voltage regulator, thus omitting the need of an external transistor.

When using an external regulator, VDD_VREG and VREG_BASE must be tied to ground for zero current consumption.

Transistor Selection Criteria

In this section, the main criteria for selecting a proper transistor are discussed:

1. High Beta.
2. Thermal characteristics.
3. Power dissipation.
4. Voltage and current requirements.

The maximum current consumption of the ADSP-CM40x core powered by the on-chip voltage regulator is 400 mA[1]. Based on this requirement, to minimize the current from the base into the VREG_BASE pin, a PNP transistor with a minimum Beta of 150 is recommended.

As an example, for a current requirement of 400 mA and a power requirement of 3.3 Volts, the selected transistor must be able to handle a load of: (3.3 V -1.2 V) * 400 mA = 840 mW.

Therefore, in this case, Vce = 2.1 V, Ic = 400 mA, and power dissipation = 840 mW.

With the above criteria, the DXTP19020DP5 transistor[3], with the following specifications, is selected:

- Power dissipation of 1.3W
- Thermal Resistance, Junction to Ambient Air @ 25ºC, RθJA = 96.1 ºC/W
- Max operating temperature 150 ºC

Operating with 400 mA at 1.2 Volts, the maximum operating ambient temperature can be calculated as follows: 150 - (0.84 * 96.1) = 69 ºC

Furthermore, the DXTP19020DP5 transistor can also operate at higher ambient temperatures by adding copper to the pad area, as described in the device datasheet[3].

From Figure 2, Thermal Resistance, Junction to Ambient Air @ 25ºC, RθJA = 41.7 C/W. Thus: 150 - (0.84 * 41.7) = 115 ºC.
Maximum Ratings @\(T_A = 25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Base Voltage</td>
<td>VCEO</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>VCEO</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Collector Voltage (Reverse Blocking)</td>
<td>VCEO</td>
<td>-4</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>VREO</td>
<td>-7</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Collector Current</td>
<td>IC</td>
<td>-8</td>
<td>A</td>
</tr>
<tr>
<td>Base Current</td>
<td>IB</td>
<td>-1</td>
<td>A</td>
</tr>
<tr>
<td>Peak Pulse Current</td>
<td>ICM</td>
<td>-15</td>
<td>A</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation @ (T_A = 25^\circ C) (Note 4)</td>
<td>(P_0)</td>
<td>1.3</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient Air @ (T_A = 25^\circ C)</td>
<td>(R_{JAB})</td>
<td>98.1</td>
<td>K/W</td>
</tr>
<tr>
<td>Power Dissipation @ (T_A = 25^\circ C) (Note 5)</td>
<td>(P_0)</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient Air</td>
<td>(R_{JAB})</td>
<td>41.7</td>
<td>K/W</td>
</tr>
<tr>
<td>Operating and Storage Temperature Range</td>
<td>(T_J, T_{STG})</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
- 4. Device mounted on FR-4 PCB, 2 oz. copper, minimum recommended pad layout.
- 5. Device mounted on FR-4 PCB, 2 oz. copper, collector pad dimensions 0.42in².

Figure 2. DXTP19020DP5 High Gain PowerDi™5 Transistor Specifications

References

Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
</table>