
Engineer-to-Engineer Note EE-336

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Putting ADSP-BF54x Blackfin® Processor Booting into Practice
Contributed by Andreas Pellkofer Rev 1 – June 25, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
ADSP-BF54x Blackfin® processors provide multiple ways to boot the processor. Some are known from
older Blackfin derivatives, some have updated features, and some are completely new.

For conceptual information and descriptions of booting modes, refer to the Booting chapter in the
processor’s Hardware Reference [1]. This document provides the following references and helps you get
started:

 Slave boot modes like SPI slave, TWI slave, and UART slave

 A software example for the host device (which is another ADSP-BF548 processor for the purpose of
this demonstration), including loader files

 Records of the booting process in ala format. See [4] for the required software.

 Description of special functions in the initialization code examples [5]

Figure 1. VisualDSP++ project options (Project -> Project Options -> Load -> Options)

 a

Putting ADSP-BF54x Blackfin® Processor Booting into Practice (EE-336) Page 2 of 6

Boot Host Wait (HWAIT) Signal
The boot host wait (HWAIT) signal is asserted by the boot kernel when the processor is not ready to
receive data. It is available in all boot modes, by default. This signal is a GPIO, which is handled very
conservatively by the boot code without encountering the receive fill status of a peripheral buffers. This
means that even if there is free space in the peripheral’s buffer to receive data, this signal is asserted when
the boot kernel is busy.

The HWAIT GPIO signal must be pulled to its active state by a resistor to prevent the host device from
starting the boot process while the Blackfin processor is still held in reset. The resistor also defines the
polarity of the signal.

If a Blackfin processor is the host device, the transfer should be done by the core only as the Blackfin
DMA architecture does not enable the core to pause a running DMA transfer. The HWAIT signal can be
evaluated every single word or an interrupt can be triggered if the signal is asserted. Once asserted, the
host must pause immediately after having sent the current word.

With the new hardware flow control mechanism introduced with the ADSP-BF54x UART module,
evaluating the HWAIT signal is optional when the host device properly deals with the RTS/CTS handshake.
Refer to the Booting chapter in [1] for more information.

SPI Slave Boot Mode (BMODE = 0100)
For SPI slave mode boot, the Blackfin processor receives boot data from an external host device
connected over SPI. Refer to [1] for more details on the general setup and configuration.

Figure 2 shows the start of a booting sequence using the SPI interface. After the first bytes, some
calculations on the Blackfin SPI slave device hold up the device from receiving more data. That’s why the
HWAIT signal is asserted. The SPI master device does not stop sending data immediately, but finishes the
current data word. After HWAIT is de-asserted, the booting process continues (for demonstration purposes,
a delay loop implemented in the initialization code is executed during the booting process).

Figure 2. Beginning of SPI slave booting

TWI Slave Boot Mode (BMODE = 0110)
For TWI slave mode boot, the Blackfin processor receives boot data from an external host device
connected over TWI. Refer to [1] for more details on the general setup and configuration.

The Blackfin TWI slave device behaves similarly to the SPI device. Figure 3 shows the beginning of the
TWI slave booting sequence, whereas Figure 4 shows how the TWI slave device can stop the host to send

 a

Putting ADSP-BF54x Blackfin® Processor Booting into Practice (EE-336) Page 3 of 6

more data (for demonstration purposes, a delay loop is implemented in the initialization code executed
during the booting process).

Figure 3. Beginning of TWI slave booting

Figure 4. Initialization code execution with delay

UART Slave Boot Mode (BMODE = 0111)
For UART slave mode boot, the Blackfin processor receives boot data from an external host device
connected over UART. Refer to [1] for more details on the general setup and configuration. During the
booting UART host booting process, a few critical moments must be handled properly.

Bit Rate: Handling System Clock Changes

The initial action taken is the autobaud sequence that sets the UART bit rate in relation to the system
clock speed. Unlike other slave boot modes (e.g., SPI or TWI), the slave device requires the correct
setting for the UART bit rate. Figure 5 shows the autobaud detection sequence at the very beginning of a
transfer. Once the @ (0x40) autobaud detection byte has been received, the boot kernel returns a 0xBF, DLL,
DLH, 0x00 sequence on its transmit output. Finally, HWAIT is released.

Figure 5. UART: Autobaud detection

Flow Control

The UART slave can signal the host to pause any on-going transfer in two different ways: HWAIT and
UART hardware flow control (UART RTS).

Figure 6 shows the behavior when initialization code delays the boot process by transmitting status words
back to the host device, which, in this case, relies on the HWAIT signal. Once HWAIT asserts, the host
finishes the current data word and then waits before sending more data (see UART1_TX). That is similar
to the other slave boot modes described here. Figure 5 also shows some activity on the transmit line
before HWAIT releases and the host processor resumes operation.

 a

Putting ADSP-BF54x Blackfin® Processor Booting into Practice (EE-336) Page 4 of 6

Figure 6. UART: HWAIT signalling

Another way to pause an on-going transfer is via the UART hardware flow control mechanism. This
feature is implemented on the ADSP-BF54x UART for the first time and is not available on other
Blackfin derivatives at this time. It uses the UART RTS signal. If the host device supports this feature, no
additional signal need be connected. The behavior on the host side is similar; if RTS is asserted, again the
host transmits the current word only and pauses immediately after the transmission has been completed.
Figure 7 shows the behavior: the host stops to send (see UART1_TX) more data after UART1_RTS has
been de-asserted (RTS is active-low logic). This occurs when a specific fill status in the buffer has been
reached.

Figure 7. UART: RTS signalling

Figure 6 and Figure 7 show that the slave device is sending data words to the host. For full-duplex
connections, the time overlap is not an issue. For half-duplex connections, where the data line is shared,
the programmer must take care of this (see VisualDSP++® initcode Examples).

To properly resolve a reset situation, a pull-up resistor on the RTS output is recommended.

VisualDSP++® initcode Examples

The initcode examples that ship with the VisualDSP++ 5.0 (Update 3) [5] installation changes the PLL
frequency on the fly and pays close attention to the following two challenges:

 Updating the UART bit rate divider when the system clock has changed during booting process

 Half-duplex transfer requirements by taking control of UART RTS signaling

If the PLL is changed during the booting process (e.g., initialization code), special care must be taken by
the programmer; otherwise, the boot process may fail. The UART controller requires that the correct bit
rate be set in the UARTx_DLL and UARTx_DLL registers to interpret the incoming data properly. If the
system clock changes, the bit rate dividers must be adjusted. The initcode examples that ship with
VisualDSP++ 5.0 (Update 3) development tools and later take care of this with two functions. The
functions, which are called u32 uart1_get_bitrate(void) and void uart1_set_bitrate(u32), are
executed before and after the PLL change sequence, respectively. They are called automatically if
BMODE=0111 is detected. These functions save (u32 uart1_get_bitrate(void)) the current UART bit
rate, calculate the new UART divider value that fit the saved bit rate, and store it in the UARTx_DLL and
UARTx_DLH registers (void uart1_set_bitrate(u32)).

Function void uart1_set_bitrate(u32) provides feedback to the host by sending back some bytes
(like the boot kernel does after autobaud detection):

 a

Putting ADSP-BF54x Blackfin® Processor Booting into Practice (EE-336) Page 5 of 6

 0xAD

 UART1_DLL

 UART1_DLH

 0x00

You can see this on the UART1_TX signal in Figure 6 to Figure 9.

Additionally, a critical moment is the PLL reprogramming sequence. There is a time delay between the
PLL change and the renewing of the UART divisor. You must ensure that during this reprogramming
phase the UART host does not send any more data.

The function u16 uart1_check_buffer(u32) forces the UART to assert the RTS signal by disabling
hardware flow control and setting RTS manually. This is done in the UARTx_MCR register. After this,
the host may send the very last byte, for which you must wait. As this function is sending out a 4-byte
feedback sequence, there is a quite safe time slot:

 0xAA

 UART1_MSR

 UART1_LSR

 0x00

After this the PLL reprogramming sequence is running and after setting the new UART divisor value, the
control for the RTS signal is passed back to the UART controller (re-enable hardware flow control). The
original settings of the UARTx_MCR are restored. You can also see that HWAIT is de-asserted at the same
time.

Figure 8. Manipulation of hardware flow control

For a half-duplex connection, there might still be an overlap. Therefore, you can insert a delay (e.g.,
a length of one data word). This should ensure that there will be no conflict on the line. Figure 9 shows
the same sequence as Figure 8 but with the included delay.

Figure 9. Manipulation of hardware flow control with additional delay

If the host sends the last word delayed, you must manipulate your booting process to fit all
possible conditions.

 a

Putting ADSP-BF54x Blackfin® Processor Booting into Practice (EE-336) Page 6 of 6

Appendix A
A ZIP file is associated with this document. It contains a project with code examples for an ADSP-BF548
EZ-KIT Lite® board and supports the following boot modes as a host device:

 SPI slave boot

 TWI slave boot

 UART slave boot

The project is programmed and tested with VisualDSP++ 5.0 (Update 3) development tools. The basic
configurations are set in configurations.h. Refer to README.txt for additional information.

Appendix B
A ZIP file is associated with this document. It contains some recordings of the specific booting processes.
The files are for Agilent Technologies logic analyzer application software [4]. The code examples from
Appendix A have been used. Refer to README.txt for more information.

References
[1] ADSP-BF548 Blackfin Processor Hardware Reference. Rev 0.3, May 2008. Analog Devices, Inc.

[2] ADSP-BF548 Blackfin Processor Peripheral Hardware Reference Manual. Rev 0.1, March 2007. Analog Devices, Inc.

[3] ADSP-BF548 Blackfin Processor Evaluation System Manual. Rev 1.2, April 2008. Analog Devices, Inc.

[4] Agilent Technologies 16900, 16800, and 1680/90 Series Application Software.

[5] VisualDSP++ 5.0 (Update 3): Initialization code examples (<install_path>\Blackfin\ldr\init_code\)

Readings
[6] ADSP-BF53x/ADSP-BF56x Programming Reference. Rev 1.2. February 2007. Analog Devices, Inc.

[7] EE-240: ADSP-BF533 Blackfin® Booting Process. Rev 3, January 2005. Analog Devices, Inc.

[8] EE-331: UART Enhancements on ADSP-BF54x Blackfin® Processors. Rev 1, November 2007. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – June 25, 2008
by Andreas Pellkofer

Initial release.

http://www.home.agilent.com/agilent/editorial.jspx?cc=US&lc=eng&ckey=1000000953:epsg:sud&nid=-536902501.536881140&id=1000000953:epsg:sud

	Introduction
	Boot Host Wait (HWAIT) Signal
	SPI Slave Boot Mode (BMODE = 0100)
	TWI Slave Boot Mode (BMODE = 0110)
	UART Slave Boot Mode (BMODE = 0111)
	Bit Rate: Handling System Clock Changes
	Flow Control
	VisualDSP++® initcode Examples

	Appendix A
	Appendix B
	References
	Readings
	Document History

