Interfacing the ADSP-BF535 Blackfin® Processor to Single-CHIP CIF Digital Camera "OV6630" over the External Memory Bus

Contributed by Thorsten Lorenzen
April 17, 2003

1 Introduction
The purpose of this note is to describe how to hook up video devices like a CIF (Common Interface Format) Single–Chip Digital Camera to the external bus of the ADSP-BF535 Blackfin® Processor. Because of its architecture and video processing capabilities, Blackfin Processors will interface with video devices. The ADSP-BF535 as the first part of the Blackfin family is not equipped with a standard interface that glueless interact with video devices. This note is dedicated to show how the Asynchronous Interface can be used to receive video in CIF sizes.

2 Output Format of the OV6630
The OV6630 is a CMOS Image sensor provided as a single chip video/imaging camera device designed to provide a high level functionality in a single, small-footprint package. For more details about the functionality it is referred to the internet address below. In order to explain the way been accessed by the ADSP-BF535 Processor see the schematic of the required output pins in figure 2.1. The datasheet for the OV6630 can be found at www.ovt.com

As it can be seen in figure 2.1 the pins Y[7:0] and UV[7:0] are required to transfer data. The PCLK represents the clock aligned to the data. Each raising edge of the PCLK will indicate valid data on the bus. These pins are necessary and must be linked to the ADSP-BF535 for data transfers. Additionally, some pins are required for device control and configuration purposes. The pin HREF asserted (polarity can be chosen) indicates active video pixels (image data).

Figure 2.1
Because of the programmable sensor size as it is discussed below HREF provides a way to distinguish between active video pixels and blank data. The blank data of the modified sensor field will also be transferred and is represented by hex “10” on Y[7:0] and hex “80” UV[7:0]. Figure 2.2 shows a transfer of one pixel, blanking and HREF indicating an active pixel. Due to the configuration the sensor is set to output over a 16-bit bus in this note. One pixel exists of one byte of luminance and one byte of
chrominance information that can be transferred the same time.

Figure 2.2
The windowing feature of the OV6630 image sensors allows user-definable window sizing as required by the application. Window size setting (in pixels) ranges from 2 x 2 to 356 x 292, and can be positioned anywhere inside the 356 x 292 boundary.

Note that modifying window size and/or position does not change frame or data rate. The OV6630 imager alters the assertion of the HREF signal to be consistent with the programmed horizontal and vertical region. The default output window is 352 x 288. Figure 2.3 shows it graphically.

Figure 2.3
In order to detect the first line of each frame the signal VSYNC asserts before. Figure 2.4 shows the VSYNC pin on channel 1 and the HREF pin on channel 4. It can be seen if the sensor is set to transfer e.g. 200 lines the HREF will be asserted 200 times also. Each start of frame will be indicated by VSYNC around 2 ms before HREF asserts.

Figure 2.4
The video output port of the OV6630 image sensor provides a number of output format / standard options to suit many different application requirements. These formats are user programmable through Omnivision’s SCCB two wire control interface.

The OV6630 imager supports both ITU-601 and ITU-656 output formats in different configurations.

In this note the sensor is set to provide differential video signals (YUV) 4:2:2, 16-bit wide and clocked at 8.867MHz (PCLK).

3 Asynchronize Interface of the ADSP-BF535 Blackfin Processor
The Processors asynchronous interface is used to receive the video data. 32-bit data can be fetched in a manner it is shown in figure 3.1.
As mentioned in the ADSP-BF535 Blackfin Hardware Reference Manual after a read cycle is initiated the Async Memory Select line (/AMS), Async Ouput Enable line (/AOE) and the Async Read Enable line (/ARE) become asserted. After a multicycle “Read Access” delay (Configured by the Async Interface Bank Control Register), the /ARE pin normally de-assert to complete the read operation. But if the interface is configured to extend the access, the /ARE pin remains low until the ARDY pin has been sampled high. The data will be fetched one cycle after this happened.

Due to the architecture of the ADSP-BF535, a DMA-controlled data download is somewhat non-intuitive. Each data transfer is split into bursts of eight accesses (in this configuration, four bursts per DMA execution). Understanding this behavior is crucial for developing a proper DMA interface. Figure 3.3 zooms into one of these burst patterns to analyze how many cycles are taken for each access.

As shown in the figure, the first DMA is set up to read 32 data words (shown as Channel 2, the /ARE signal). The large gap before the next DMA is required for loading the next DMA descriptor.
4 Interface the ADSP-BF535 Processor into the OV6630

The ADSP-BF535 is configured to make full use of its 32-bit external memory interface, in order to gain maximum throughput. Two 16-bit words from the camera will be packed into one 32-bit word before being read by the Blackfin Processor.

To interface to the single-chip camera, LVT16374 latches are used. These parts are able to fetch the data received from the video device and latch it until the Asynchronous Interface has been read.

The 8.867 MHz PCLK of the OV6630 clocks a 74HC74 configured as a /2 divider. The 4.43 MHz output then clocks an LVT16374 to fetch the data transmitted by Y[7:0] and UV[7:0] at the rising edge. The data will be held in the LVT16374 until the next rising edge of the CLOCK “CK” appears.

When /OE asserts, the Processor reads the data latched by the LVT16374.

The ARDY pin is used to synchronize the video data with the ADSP-BF535. As long as the ARDY pin is low, the access is held off? This way, the camera is able to control the asynchronous memory interface.

By routing a GPIO pin to the PWDN pin of the OV6630, the sensor can be turned off without the lose of configurations done during setup time by the SCCB bus.

By routing a GPIO pin to the PWDN pin of the OV6630, the sensor can be turned off without the lose of configurations done during setup time by the SCCB bus.

5 Data Structure and Improvements

As mentioned in section 2, the camera sends active data plus blanking data sequentially. Blanking data does fill the internal memory but doesn’t contain any useful information.
Figure 4.1
Interfacing the ADSP-BF535 Blackfin® Processor to Single-CHIP CIF Digital Camera "OV6630" over the External Memory Bus (EE-181)

Each rising edge of 74HC74s Q & /Q will fetch data to the certain latch.

At the raising edge of PCLCK video data can be taken.

To half the frequency each raising edge of PCLCK will change the state of the FlipFlops output “74HC74”.

 OV6630
PCLCK = 8.867 MHz

 OV6630 Data Port
 Y[7:0]

74HC74 [Q0] to
Top LVT16374 [CK]

74HC74 [Q0/] to
Bottom LVT16374 [CK]

ARDY

AOE/

Top LVT16374 Q[15:0]
To DSP D[15:0]

Each rising edge of 74HC74s Q & /Q will put data to the output.

/AOE remains low until ARDY is sampled high.

Each rising edge of /AOE will fetch 32 bits of data into the DSP.

After each read burst one access takes longer. That does not affect the transfer.

Figure 5.1

Memory Bus (EE-181) Page 6 of 10
Figure 5.2

Interfacing the ADSP-BF535 Blackfin® Processor to Single-Chip CIF Digital Camera "OV6630" over the External Memory Bus (EE-181)
Conclusion:

The goal of this project is to show how video sources can be connected to the ADSP-BF535 with less glue logic as possible. In fact, the maximum resolution that can be achieved is video in formats up to CIF (352 x 288). The actual resolution is limited due to the limitation of Blackfins external port timing, the DMA structure and the internal memory.

The external port halts during the I/O processor loads the next DMA descriptor when it has been expired. That causes a large gap in the timing (mentioned in chapter 3) and would not meet the requirement set by the camera. A way out of this problem is to set up the DMA downloading each frame separately. So a DMA expires after receiving each frame and will be reloaded during the camera send blank data anyway (The camera sends blank data between each line and each frame).

The DMA Word Count Register is limited to the maximum of 65,536 (2^16). A frame of CIF format video in 4:2:2 standard is represented by 202,752 bytes (352*288 pixels * 2 bytes). The Processor accesses over a 32-bit interface results in 50,688 words (202,752bytes /4 (bytes/word)). That fits in the DMAs Word Count Register. Resolutions higher than CIF could probably not be served by the DMA on a frame by frame basis. That causes the DMA to become reloaded during active video pixel transfers and results in data misses.

Building an interface like it is done in this note the access to SDRAM or SRAM is not supported anymore. Except the use of the PCI, SPORT, SPI and USB data can just be stored in L1 or L2 memory. The ADSP-BF535 provides 52k of L1 memory and 256k bytes of L2 memory. L2 memory is be able to keep one frame of video in CIF consisting of 202,752 bytes. Higher resolutions does not fit in it.

A picture of the system is shown in figure C1.

Video transfers with higher resolutions than CIF it is revered to the Note:

“Interfacing the ADSP-BF535 to ADV7185/3 NTSC/PAL video decoder over the External Memory Bus”.

This Note is available soon.
References:
- www.ovt.com
- OV6630 Datasheet
- OV7610MD Eva Board
- ADSP-BF535 Datasheet
- ADSP-BF535 Blackfin DSP Hardware Reference
- VisualDSP++™ 3.0
Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 17, 2003</td>
<td>Ported code example to VisualDSP++ 3.1 Changed according to new Blackfin naming convention.</td>
</tr>
<tr>
<td>January 23, 2003</td>
<td>Typos. Schematics, Gerber files and PDFs are attached to the web site</td>
</tr>
<tr>
<td>January 09, 2003</td>
<td>Initial release</td>
</tr>
<tr>
<td>August 06, 2002</td>
<td>Rev. 0.2</td>
</tr>
</tbody>
</table>