Estimating Power Dissipation for ADSP-21375 SHARC® Processors

Contributed by Gururaj K and Manna Kalakotla

Introduction

This EE-Note discusses power consumption of ADSP-21375 SHARC® processors based on characterization data measured over power supply voltage, core frequency (CCLK), and junction temperature (TJ). The intent of this document is to assist board designers in estimating their power budget for power supply design and relief designs using ADSP-21375 processors.

ADSP-21375 processors are members of the SIMD SHARC family of processors, featuring the Analog Devices Super Harvard architecture. Like other SHARC processors, the ADSP-21375 processor is a 32-bit processor optimized for high-precision signal processing applications.

ADSP-21375 processors are offered in the commercial and industrial temperature ranges at core clock frequencies of 100-266 MHz. The 266 MHz processors operate at a core voltage of 1.2 V (VDDINT), and the I/O operates at 3.3 V (VDDEXT).

The total power consumption of the ADSP-21375 processor is the sum of the power consumed for both of the power supply domains (VDDINT and VDDEXT). The total power consumption has two components: one due to internal circuitry (i.e., the core and the PLL), and the other due to the switching of external output drivers (i.e., the I/O). The following sections detail how to derive both of these components for estimating total power consumption based on different dynamic activity levels, I/O activity, power supply settings, core frequencies, and environmental conditions.

Estimating Internal Power Consumption

The total power consumption due to internal circuitry (on the VDDINT supply) is the sum of the static power component and dynamic power component of the processor’s core logic. The dynamic portion of the internal power is dependent on the instruction execution sequence, the data operands involved, and the instruction rate. The static portion of the internal power is a function of temperature and voltage; it is not related to processor activity.

Analog Devices provides current consumption figures and scaling factors for discrete dynamic activity levels. System application code can be mapped to these discrete numbers to estimate the dynamic portion of the internal power consumption for an ADSP-21375 processor in a given application.

Internal Power Vector Definitions and Activity Levels

The following power vector definitions define the dynamic activity levels that apply to the internal power vectors shown in Table 2.

- $I_{DD-IDLE}$ VDDINT supply current for idle activity. Idle activity is the core executing the IDLE instruction only, with no core...
memory accesses, no DMA, and no interrupts.

- **IDD-INLOW** V_{DDINT} supply current for low activity. Low activity is the core executing a single-function instruction fetched from internal memory, with no core memory accesses, no DMA, and no activity on the external port.

- **IDD-INHIGH** V_{DDINT} supply current for high activity. High activity is the core, executing a multi-function instruction fetched from internal memory and/or cache, with 16 core memory accesses per $CLKIN$ cycle (based on a $CLKCFG1-0$ setting of 16:1 and DMx64, i.e., long word accesses on DM bus) and DMA through three SPORTs running at 33.3 MHz, SDRAM DMA at 133 MHz, and one SPI DMA at 4.16 MHz. The DMAs are chained to themselves (running continuously) and do not use interrupts. The bit pattern for each core memory access and DMA is random.

- **IDD-INPEAK** V_{DDINT} supply current for peak activity. Peak activity is the core, executing a multi-function instruction fetched from internal memory and/or cache, with 32 core memory accesses per $CLKIN$ cycle (DMx64, PMx64), DMA through six SPORTs running at 33.3 MHz, DMA through one SPI running at 665 kHz, and SDRAM accesses through the external port running at 133 MHz. The bit pattern for each core memory access, and DMA and SDRAM access is random. The SDRAM accesses are split between 60% reads and 40% writes.

 The test code used to measure $IDD-INPEAK$ represents worst-case processor operation. This activity level is not sustainable under normal application conditions.

- **IDD-INPEAK-TYP** V_{DDINT} supply current for *typical* peak activity. *Typical* peak activity is the core, executing a multi-function instruction fetched from internal memory and/or cache, with 32 core memory accesses per $CLKIN$ cycle (DMx64, PMx64), DMA through six SPORTs running at 33.3 MHz, DMA through one SPI running at 665 kHz, and SDRAM accesses through the external port running at 133 MHz. The bit pattern for each core memory access, and DMA and SDRAM access is random. The SDRAM accesses are split between 60% reads and 40% writes.

Table 1 summarizes the idle, low, high, peak, and *typical* peak dynamic activity levels corresponding to the internal power vectors listed above and in Table 2.
Table 1. Dynamic activity level definitions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Idle</th>
<th>Low</th>
<th>High (Typical)</th>
<th>Low (Typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction Type</td>
<td>IDLE</td>
<td>Single-function</td>
<td>Multi-function</td>
<td>Multi-function</td>
</tr>
<tr>
<td>Instruction Fetch</td>
<td>Int Memory</td>
<td>Int Memory</td>
<td>Int Memory, Cache</td>
<td>Int Memory, Cache</td>
</tr>
<tr>
<td>Core Memory Access (^1)</td>
<td>None</td>
<td>None</td>
<td>16 per tCK cycle</td>
<td>32 per tCK cycle</td>
</tr>
<tr>
<td>DMA / Switching Frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext Port / SDRAM</td>
<td>SDCLK only</td>
<td>SDCLK only</td>
<td>133 MHz</td>
<td>133 MHz</td>
</tr>
<tr>
<td>SPORTs</td>
<td>N/A</td>
<td>N/A</td>
<td>3 @ 1/8*CCLK</td>
<td>6 @ 1/8*CCLK</td>
</tr>
<tr>
<td>SPI</td>
<td>N/A</td>
<td>N/A</td>
<td>1 @ 1/64*CCLK</td>
<td>2 @ 1/8*CCLK</td>
</tr>
<tr>
<td>UART</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1 @ 1/64*CCLK</td>
</tr>
<tr>
<td>PCG</td>
<td>N/A</td>
<td>N/A</td>
<td>2 @ 1/2*CCLK</td>
<td>N/A</td>
</tr>
<tr>
<td>Data Bit Pattern for Core Memory Access and DMA</td>
<td>N/A</td>
<td>N/A</td>
<td>Random</td>
<td>Random</td>
</tr>
<tr>
<td>Ratio – Continuous Instruction Loop to SDRAM Control Code</td>
<td>N/A</td>
<td>100% Instruction Loop</td>
<td>100% Instruction Loop</td>
<td>50::50</td>
</tr>
</tbody>
</table>

\(^1\) tCK = CLKin; Core clock ratio 16:1
\(^2\) DMx64 Access
\(^3\) DMx64 Access, PMx64 Access

Estimating **I\(_{DDINT}\)** Dynamic Current, **I\(_{DD-DYN}\)**

Two steps are involved in estimating the dynamic power consumption due to the internal circuitry (i.e., on the \(V_{DDINT}\) supply). The first step is to determine the dynamic baseline current, and the second step is to determine the percentage of activity for each discrete power vector with respect to the entire application.

I\(_{DD}\), Baseline Dynamic Current, I\(_{DD-BASELINE-DYN}\)

The ADSP-21375 \(I_{DD,BASELINE,DYN}\) current graph is shown in Figure 1 (Appendix A contains a larger image of this graph). Note that the \(I_{DD,BASELINE,DYN}\) current is derived using the \(I_{DD,INHIGH}\) dynamic activity level vs. core frequency. Each curve in the graph represents a baseline \(I_{DDINT}\) dynamic current for a specified power supply setting. Using the curve specific to the application, the baseline dynamic current \((I_{DD,BASELINE,DYN})\) for the \(V_{DDINT}\) power supply domain can be estimated at the operating frequency of the processor in the application. For example, with the core operating at 1.2 V \((V_{DDINT})\) and a frequency of 266 MHz, the corresponding baseline dynamic current \((I_{DD,BASELINE,DYN})\) for the \(V_{DDINT}\) power supply domain would be approximately 0.444 A.
The ADSP-21375 processor is not specified for operation at all values of \(V_{DDINT} \) shown. These curves are for reference only. Refer to the data sheet for actual specifications.

IDD Dynamic Current Running Your Application

Table 2 lists the scaling factor for each activity level, used to estimate the dynamic current for each specific application. With knowledge of the program flow and an estimate of the percentage of time spent at each activity level, the system developer can use the baseline dynamic current \((I_{DD,BASELINE,DYN}) \) shown in Figure 1 and the corresponding activity scaling factor from Table 2 to determine the dynamic portion of the internal current \((I_{DD,DYN}) \) for each ADSP-21375 processor in a system.

<table>
<thead>
<tr>
<th>Power Vector</th>
<th>Activity Scaling Factor (ASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD,IDLE})</td>
<td>0.22</td>
</tr>
<tr>
<td>(I_{DD,INLOW})</td>
<td>0.42</td>
</tr>
<tr>
<td>(I_{DD,INHIGH})</td>
<td>1.00</td>
</tr>
<tr>
<td>(I_{DD,INEAK})</td>
<td>1.26</td>
</tr>
<tr>
<td>(I_{DD,INEAK-TYP})</td>
<td>(50::50) 0.87</td>
</tr>
<tr>
<td></td>
<td>(60::40) 0.94</td>
</tr>
<tr>
<td></td>
<td>(70::30) 1.02</td>
</tr>
</tbody>
</table>

Table 2. Internal power vectors and dynamic scaling factors

The ADSP-21375 dynamic current consumption in a specific application is calculated according to the following formula, where “%” is the percentage of the overall time that the application spends in that state:

\[
(\% \text{ Peak activity level} \times I_{DD,INEAK-TYP} \times \text{ASF} \times I_{DD,BASELINE,DYN}) \\
(\% \text{ High activity level} \times I_{DD,INEAK} \times \text{ASF} \times I_{DD,BASELINE,DYN}) \\
(\% \text{ Low activity level} \times I_{DD,INLOW} \times \text{ASF} \times I_{DD,BASELINE,DYN}) \\
(\% \text{ Idle activity level} \times I_{DD,IDLE} \times \text{ASF} \times I_{DD,BASELINE,DYN})
\]

\[\times \text{Total Dynamic Current for } V_{DDINT} \ (I_{DD,DYN})\]

Equation 1. Internal dynamic current \((I_{DD,DYN}) \)

For example, after profiling the application code for a particular system, activity is determined to be proportioned as follows.

\((0\% \text{ Peak Typical Activity Level}) \)
\((50\% \text{ Peak Activity Level}) \)
\((40\% \text{ High Activity Level}) \)
\((10\% \text{ Low Activity Level}) \)
\((0\% \text{ Idle Activity Level}) \)

Figure 2. Internal system activity levels

Using the activity scaling factor \((ASF) \) provided for each activity level in Table 2 (and the core operating at 1.2 V \((V_{DDINT}) \) and 266 MHz), a value for the dynamic portion of the internal current consumption of a single processor can be estimated as follows.

\[
(50\% \times 1.26 \times 0.444) \\
(40\% \times 1.00 \times 0.444) \\
(+10\% \times 0.42 \times 0.444)
\]

\[I_{DD,DYN} = 0.476 \text{ A}\]

Figure 3. Internal dynamic current estimation

Therefore, the total estimated dynamic current on the \(V_{DDINT} \) power supply in this example is 0.476 A.

Estimating \(I_{DDINT} \) Static Current, \(I_{DD-STATIC} \)

The ADSP-21375 \(I_{DD-STATIC} \) current graph is shown in Figure 4 (Appendix B contains a larger image of this graph). The static current on the \(V_{DDINT} \) power supply domain is a function of temperature and voltage but is not a function of frequency or activity level. Therefore, unlike the dynamic portion of the internal current, the static current does not need to be calculated for each discrete activity level or power vector. Using the static current curve corresponding to the application (i.e., at the specific \(V_{DDINT} \)), the baseline static current \((I_{DD-STATIC}) \) can be estimated vs. junction temperature \((T_J) \) of the ADSP-21375 processor (see Appendix C for estimating \(T_J \)).
For example, in an application with the core operating at 1.2 V (V_{DDINT}) and the ADSP-21375 processor at a junction temperature (T_J) of +105°C, the corresponding baseline static current ($I_{DD-STATIC}$) for the V_{DDINT} power supply domain would be approximately 0.454 A.

![ADSP-21375 Static Current (I_{DDINT}) Vs Junction Temperature (T_J)](image)

The ADSP-21375 processor is not specified for operation at all values of V_{DDINT} or junction temperatures shown. These curves are for reference only. Refer to the data sheet for actual specifications.

The ADSP-21375 static power is constant for a given voltage and temperature. Therefore, it is simply added to the total estimated dynamic current when calculating the total power consumption due to the ADSP-21375 internal circuitry. Note that the $I_{DD-STATIC}$ current shown in Figure 4 represents the worst-case static current as measured across the wafer fabrication process for the ADSP-21375 device.

Estimating Total I_{DDINT} Current

The total current consumption due to the internal core circuitry (I_{DDINT}) is the sum of the dynamic current component and the static current component as shown in Equation 2.

$$I_{DDINT} = I_{DD-DYN} + I_{DD-STATIC}$$

Equation 2. Internal core current (I_{DDINT}) calculation

Continuing with the example (the processor operating at 1.2 V and 266 MHz, and with the code as profiled), assume that the resulting junction temperature (T_J) is estimated to be +105°C. The total internal current consumed by the processor core under these conditions would then be:

$$I_{DDINT} = 0.476 + 0.454 = 0.930 \text{ A}$$

Equation 3. Total internal core current estimation

Total Estimated Internal Power, P_{DDINT}

The resulting internal power consumption (P_{DDINT}) is given by Equation 4.

$$P_{DDINT} = V_{DDINT} \times I_{DDINT}$$

Equation 4. Internal power (P_{DDINT}) calculation

Using Equation 4, the total estimated internal power consumed by the processor in the application described in this example would be:

$$P_{DDINT} = 1.20 \text{ V} \times 0.930 \text{ A} = 1.116 \text{ W}$$

Equation 5. Total internal power (P_{DDINT}) estimation

Estimating External Power Consumption

The external power consumption (on the V_{DDEXT} supply) is dependent on the switching of the output pins. The magnitude of the external power depends on:

- The number of output pins that switch during each cycle, O
- The maximum frequency at which the output pins can switch, f
- The voltage swing of the output pins, V_{DDEXT}
- The load capacitance of the output pins, C_L

In addition to the input capacitance of each device connected to an output, the total load capacitance should include the capacitance...
(C\text{OUT}) of the processor pin itself, which is driving the load.

The SDRAM controller is capable of running up to 133 MHz and can run at various frequencies, depending on the programmed SDRAM clock (SDCLK) to core clock (CCLK) ratio.

The maximum read/write throughput of the asynchronous memory interface (AMI) is one 16-bit word per 3 SDCLK cycles (wait state of 2). This corresponds to a maximum switching frequency of 22.2 MHz for ADDR23-0 and DATA15-0 during SDRAM writes and writes to external asynchronous memories.

In addition, the serial ports (SPORTs) and serial peripheral interface (SPI) can operate up to one-eighth (1/8) the processor core clock rate (CCLK). With a core clock of 266 MHz, this corresponds to a maximum switching frequency of 16.6 MHz for SDATA and MOSI/MISO, and maximum switching frequency of 33.3 MHz for SCLK and SPICLK.

Equation 6 shows how to calculate the average external current (I\text{DDEXT}) using the above parameters:

\[I_{\text{DDEXT}} = O \times f \times V_{\text{DDEXT}} \times C_L \]

\textit{Equation 6. External current (I_{\text{DDEXT}}) calculation}

The estimated average external power consumption (P_{\text{DDEXT}}) can be calculated as follows.

\[P_{\text{DDEXT}} = V_{\text{DDEXT}} \times I_{\text{DDEXT}} \]

\textit{Equation 7. External power (P_{\text{DDEXT}}) calculation}

For an example configuration shown in Figure 5, we can estimate the external current and thereby the external power consumption with the following assumptions:

- Processor core running at 266 MHz (CCLK)
- 64K x 32-bit external SRAM, C_L = 10 pF (trace capacitance ignored)
- Writes to external memory occur with WS=2
 During external memory writes, 50% of the ADDR23-0 and DATA15-0 pins are switching
- DAI configured as SPORT transmitting and receiving 32-bit words at 1/8*CCLK, C_L = 10 pF (trace capacitance ignored)
- DPI configured as SPI master transmitting and receiving 32-bit words at 1/8*CCLK, C_L = 10 pF (trace capacitance ignored)
- Output capacitance of processor pin, C\text{OUT} = 4.7 pF

The external current (I_{\text{DDEXT}}) (Equation 6) can be calculated for each class of pins that can drive and is shown in Table 3.

Summing the individual currents from Table 3, the total external current (I_{\text{DDEXT}}) for the sample configuration would be 0.048 A.

Using this current, the estimated average external power is calculated as:

\[P_{\text{DDEXT}} = 3.3 \text{ V} \times 0.048 \text{ A} = 0.158 \text{ W} \]

\textit{Equation 8. External power (P_{\text{DDEXT}}) calculation}
Figure 5. ADSP-21375 system example configuration

<table>
<thead>
<tr>
<th>Pin Type</th>
<th>No. of Pins</th>
<th>% Switching</th>
<th>xf</th>
<th>VDDEXT</th>
<th>C</th>
<th>IDDEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDR[23:0]</td>
<td>24</td>
<td>50</td>
<td>22.2 MHz</td>
<td>3.3V</td>
<td>4.7pF + 2*10pF</td>
<td>0.021714</td>
</tr>
<tr>
<td>DATA[15:0]</td>
<td>16</td>
<td>50</td>
<td>22.2 MHz</td>
<td>3.3V</td>
<td>4.7pF + 2*10pF</td>
<td>0.014476</td>
</tr>
<tr>
<td>RD</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000000</td>
</tr>
<tr>
<td>WR</td>
<td>1</td>
<td>100</td>
<td>44.4 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.002154</td>
</tr>
<tr>
<td>MS[1:0]</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000000</td>
</tr>
<tr>
<td>SCLK</td>
<td>1</td>
<td>100</td>
<td>133 MHz</td>
<td>3.3V</td>
<td>4.7pF</td>
<td>0.002063</td>
</tr>
<tr>
<td>DAI_P1 (SDATA)</td>
<td>1</td>
<td>100</td>
<td>16.6 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000805</td>
</tr>
<tr>
<td>DAI_P2 (SCLK)</td>
<td>1</td>
<td>100</td>
<td>33.3 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.001615</td>
</tr>
<tr>
<td>DAI_P3 (FS)</td>
<td>1</td>
<td>100</td>
<td>1.0 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.00049</td>
</tr>
<tr>
<td>DAI_P4 (SDATA)</td>
<td>1</td>
<td>100</td>
<td>16.6 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000805</td>
</tr>
<tr>
<td>DAI_P5 (SCLK)</td>
<td>1</td>
<td>100</td>
<td>33.3 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.001615</td>
</tr>
<tr>
<td>DAI_P6 (FS)</td>
<td>1</td>
<td>100</td>
<td>1.0 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.00049</td>
</tr>
<tr>
<td>DPI_P1 (SPICLK)</td>
<td>1</td>
<td>100</td>
<td>33.3 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.001615</td>
</tr>
<tr>
<td>DPI_P2 (SPIDS)</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000000</td>
</tr>
<tr>
<td>DPI_P3 (MOSI)</td>
<td>1</td>
<td>100</td>
<td>16.6 MHz</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000805</td>
</tr>
<tr>
<td>DPI_P4 (MISO)</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>3.3V</td>
<td>4.7pF + 10pF</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Table 3. External current (IDDEXT) summary for Figure 5.
Total Power Consumption

For a particular system, the total power consumption becomes the sum of its individual components, the power consumed by the internal circuitry, and the power consumed due to the switching of the I/O pins, as follows:

\[P_{\text{TOTAL}} = P_{\text{DDINT}} + P_{\text{DDEXT}} \]

Equation 9. Total power \(P_{\text{TOTAL}} \) calculation

Where:

- \(P_{\text{DDINT}} \) = Internal power consumption as defined by *Equation 5*
- \(P_{\text{DDEXT}} \) = External power consumption as defined by *Equation 8*

For example, assuming that the processor in the previous example is operating at 1.2 V, 266 MHz, and code as profiled in *Figure 2*, and also assuming the resulting junction temperature \(T_J \) has been estimated to be +105°C (see *Appendix B* for estimating \(T_J \)), the total estimated power consumed would be:

\[P_{\text{TOTAL}} = 1.116 \text{ W} + 0.158 \text{ W} = 1.274 \text{ W} \]

Equation 10. Total power \(P_{\text{TOTAL}} \) calculation for the example configuration in Figure 5 and running the code in the example
Appendix A

The ADSP-21375 $I_{DD_BASELINE_DYN}$ current graph is shown in Figure 6 (also in Figure 1). The $I_{DD_BASELINE_DYN}$ current is derived using the I_{DD_INHIGH} dynamic activity level vs. core frequency. Each curve in the graph represents a baseline I_{DD_INT} dynamic current for a specified power supply setting.

![ADSP-21375 Dynamic I_{DD} High Activity (I_{DD_INHIGH}) Vs Core Frequency](image)

Figure 6. $I_{DD_BASELINE_DYN}$ graph

The ADSP-21375 processor is *not* specified for operation at all values of V_{DD_INT} shown. These curves are for reference only. Refer to the data sheet for actual specifications.
Appendix B

The ADSP-21375 $I_{DD-STATIC}$ current graph is shown in Figure 7 (also in Figure 2). The static current on the V_{DDINT} power supply domain is a function of temperature and voltage and is not a function of frequency or activity level. Each curve in the graph represents a baseline I_{DDINT} static current for a specified power supply measured at various junction temperatures (T_J). The $I_{DD-STATIC}$ current graph (Figure 7) represents the worst-case static currents as measured across the wafer fabrication process for the ADSP-21375 processor.

![ADSP-21375 Static Current ($I_{DD-STATIC}$) Vs Junction Temperature (T_J)](image)

Figure 7. $I_{DD-STATIC}$ graph

The ADSP-21375 processor is not specified for operation at all values of V_{DDINT} or T_J shown. These curves are for reference only. Refer to the data sheet for actual specifications.
Appendix C

Correct functional operation of the ADSP-21375 processor is guaranteed when the junction temperature of the device does not exceed the allowed junction temperature (T_J) as specified in the data sheet. For the ADSP-21375 processor, the total power budget is limited by the maximum allowed junction temperature (T_J) as specified in the data sheet.

The ABSOLUTE MAXIMUM RATINGS table in the ADSP-21375 processor data sheet states that exposure to junction temperatures greater than $+125^\circ$C for extended periods of time may affect device reliability.

To determine the junction temperature of the device while on the application printed circuit board (PCB), use the following equation found in the THERMAL CHARACTERISTICS section of the data sheet:

$$T_J = T_T + (P_{TOTAL} \times \psi_{JT})$$

Equation 10. Junction temperature (T_J) calculation

Where:

- T_T = Package temperature ($^\circ$C) measured at the top center of the package
- P_{TOTAL} = Total power consumption (Watts) as defined in Equation 9
- ψ_{JT} = Junction-to-top (of package) characterization parameter ($^\circ$C/W)

Under natural convection, ψ_{JT} for a thin plastic package is relatively low. This means that under natural convection conditions, the junction temperature (T_J) is typically just a little higher than the temperature at the top-center of the package (T_T). The die is physically separated from the surface of the package by only a thin region of plastic mold compound. Unless the top of the package is forcibly cooled by significant airflow, there will be very little difference between T_T and T_J. However, note that ψ_{JT} is affected by airflow, and the values for ψ_{JT} under various airflow conditions are listed in the THERMAL CHARACTERISTICS section of the ADSP-21375 processor data sheet for the 208-lead MQFP package.

The THERMAL CHARACTERISTICS section of the data sheet also provides thermal resistance (θ_{JA}) values for the 208-lead MQFP package. Data sheet values for θ_{JA} are provided for package comparison and PCB design considerations only and are not recommended for verifying T_J on an actual application PCB.
References

Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
</table>
by Manna Kalakotla and Gururaj K | Initial release |