Estimating Power Dissipation for Industrial Grade ADSP-21262 SHARC® Processors

Contributed by A. Daoudi

Rev I – May 23, 2005

Introduction
This EE-Note discusses power consumption of the ADSP-21262 SHARC® processors based on characterization data measured over power supply voltage, core frequency (CCLK), and ambient operating temperature (T_A). The intent of this document is to assist board designers in estimating their power budget for power supply design and thermal relief designs using ADSP-21262 processor.

ADSP-21262 device is a member of the SIMD SHARC family of processors featuring Analog Devices Super Harvard Architecture. Like other SHARC parts, the ADSP-21262 derivative is a 32-bit processor optimized for high-precision signal processing applications. The part operates at core clock frequencies up to 150 MHz with the core operating at 1.2 V (V_DDINT) and the I/O operating at 3.3 V (V_DDINT).

Total power consumption has two components: internal circuitry (the core and PLL) and switching of external output drivers (the I/O). The following sections detail how to derive both of these components for estimating total power consumption.

Estimating Internal Power Consumption
The internal power consumption (on the V_DDINT supply) is dependent on the instruction execution sequence and the data operands involved. The data sheet\[^1\] provides current consumption figures for discrete activity levels. Mapping system application code to specified values provides a means of estimating internal power consumption for an ADSP-21262 processor in a given application.

Internal Power Vector Definitions and Activity Levels
The following power vector definitions define the levels of activity that apply to the internal power vectors shown in Table 1:

- **IDD-IDLE** V_DDINT supply current for Idle activity. Idle activity is the core executing the IDLE instruction only, without core memory accesses, DMA, or interrupts.
- **IDD-INLOW** V_DDINT supply current for Low activity. Low activity is the core executing a single-function instruction fetched from internal memory with no core memory accesses and no DMA.
- **IDD-INHIGH** V_DDINT supply current for High activity. High activity is the core executing a multifunction instruction fetched from internal memory, with four core memory accesses per CLKIN cycle (DMx64) and DMA through three SPORTs running at 37.5 MHz. The DMA is chained to itself (running continuously) and does not use interrupts. The bit pattern for each core memory access and DMA is random.
- \(\text{IDD-INTYP} \) Same code as High activity, however, operating under nominal power supply conditions \((V_{\text{DDINT}} = 1.2 \text{ V}) \) and \(T_A = +25^\circ\text{C} \).

- \(\text{IDD-INPEAK} \) \(V_{\text{DDINT}} \) supply current for Peak activity. Peak activity is the core executing a multifunction instruction fetched from internal memory and/or cache, with eight core memory accesses per \(\text{CLKIN} \) cycle \((\text{DMx64}, \text{PMx64}) \) and DMA through six SPORTs running at 37.5 MHz. The DMA is chained to itself (running continuously) and does not use interrupts. The bit pattern for each core memory access is random, and the DMA bit pattern is worst case.

Table 1 lists the processor's maximum internal current consumption at different levels of activity. These figures represent the worst case \(\text{IDDINT} \) as measured across process, voltage, temperature, and frequency \((\text{PVTF}) \). From these internal activity levels (and from an understanding of the program flow using profiling or some other method), you can calculate a worst-case weighted-average of power consumption for each ADSP-21262 processor in a system.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Test Conditions (worst case except where noted) (^1)</th>
<th>(\text{IDDINT} (A)) (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IDD-IDLE})</td>
<td>(T_A = +85^\circ\text{C}, V_{\text{DDINT}} = \text{Max}, \text{CCLK} = \text{Max})</td>
<td>0.60</td>
</tr>
<tr>
<td>(\text{IDD-INLOW})</td>
<td>(T_A = +85^\circ\text{C}, V_{\text{DDINT}} = \text{Max}, \text{CCLK} = \text{Max})</td>
<td>0.70</td>
</tr>
<tr>
<td>(\text{IDD-INHIGH})</td>
<td>(T_A = +85^\circ\text{C}, V_{\text{DDINT}} = \text{Max}, \text{CCLK} = \text{Max})</td>
<td>0.77</td>
</tr>
<tr>
<td>(\text{IDD-INTYP})</td>
<td>(T_A = +25^\circ\text{C}, V_{\text{DDINT}} = 1.2 \text{ V}, \text{CCLK} = \text{Max})</td>
<td>0.50</td>
</tr>
<tr>
<td>(\text{IDD-INPEAK})</td>
<td>(T_A = +85^\circ\text{C}, V_{\text{DDINT}} = \text{Max}, \text{CCLK} = \text{Max})</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Table 1. Maximum Internal Current Consumption per Vector Type

\(^1\) Worst-case conditions: \(T_J < +125^\circ\text{C}, V_{\text{DDEXT}} = 3.47 \text{ V}, V_{\text{DDINT}} = 1.26 \text{ V}, \text{CCLK} = 150 \text{ MHz} \); does not apply to \(\text{IDD-INTYP} \)

\(^2\) Worst case across process, voltage, temperature and frequency \((\text{PVTF}) \) for the 136-ball Industrial Grade mBGA package option. See “Estimating Total Power Consumption and Power Budget” for more information pertaining to the power budget and the 136-ball Industrial Grade package option.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Low Activity</th>
<th>High Activity</th>
<th>Peak Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction Type</td>
<td>Single Function</td>
<td>Multifunction</td>
<td>Multifunction</td>
</tr>
<tr>
<td>Instruction Fetch</td>
<td>Internal Memory</td>
<td>Internal Memory</td>
<td>Internal Memory, Cache</td>
</tr>
<tr>
<td>Core Memory Access (^3)</td>
<td>None</td>
<td>4 per (t_{\text{CK}}) cycle (DMx64)</td>
<td>8 per (t_{\text{CK}}) cycle (DMx64, PMx64)</td>
</tr>
<tr>
<td>DMA Transmit Int to Ext</td>
<td>N/A</td>
<td>3 SPORTs running @ 37.5 MHz</td>
<td>6 SPORTs running @ 37.5 MHz</td>
</tr>
<tr>
<td>Data Bit Pattern for core Memory Access and DMA</td>
<td>N/A</td>
<td>Random</td>
<td>Worst case</td>
</tr>
</tbody>
</table>

Table 2. Activity Level Definitions

\(^3\) \(t_{\text{CK}} = \text{CLKIN}; \) Core clock ratio 8:1
Table 2 summarizes low, high, and peak activity levels corresponding to the vectors listed in Table 1.

The average current consumption for an ADSP-21262 device in a specific application is calculated according to the following formula, where “%” is the percentage of the time that the application spends in that state.

\[
\text{Total Current for } V_{DDINT} (I_{DDINT}) = \%	ext{ Peak Activity Level} \times I_{DD-INPEAK} + \%	ext{ High Activity Level} \times I_{DD-INHIGH} + \%	ext{ Low Activity Level} \times I_{DD-INLOW} + \%	ext{ Idle Activity Level} \times I_{DD-IDLE}
\]

Equation 1. Internal Current (I_{DDINT}) Calculation

Estimated average internal power consumption (P_{DDINT}) can then be calculated as follows:

\[
P_{DDINT} = V_{DDINT} \times I_{DDINT}
\]

Equation 2. Internal Power (P_{DDINT}) Calculation

For example, after profiling the application code for a particular system, activity is determined to be proportioned as follows:

- Peak Activity Level 30%
- High Activity Level 30%
- Low Activity Level 20%
- Idle Activity Level 20%

Example 1. Internal System Activity Levels

Using the percentages in this example and the currents provided for each activity level in Table 1, a value for the worst case average internal current consumption of a single processor is estimated as follows:

\[
\begin{align*}
30\% & \times 0.85 \\
30\% & \times 0.77 \\
20\% & \times 0.70 \\
20\% & \times 0.60 \\
\hline
I_{DDINT} = 0.746 \text{ A}
\end{align*}
\]

Example 2. Internal Current Estimation Example

Therefore, an estimate of the average internal power for the processor can be calculated from Example 2 as follows:

\[
P_{DDINT} = 1.20 \text{ V} \times 0.746 \text{ A} = 0.8952 \text{ W}
\]

Example 3. Internal Power Estimation

Estimating External Power Consumption

The external power consumption (on the V_{DDEXT} supply) is dependent on the switching of the output pins. The magnitude of the external power depends on:

- The number of output pins (O) that switch during each cycle
- The maximum frequency (f) at which the output pins can switch
- The voltage swing of the output pins (V_{DDEXT})
- The load capacitance of the output pins (C_L)

In addition to the input capacitance of each device connected to an output, the total load capacitance includes the capacitance (C_{OUT}) of the processor's pin itself which is driving the load. The parallel port address/data pins (AD15-0) can transfer data at 1/3 the processor’s core clock rate. This corresponds to a maximum switching frequency of 25 MHz for AD15-0 and 50 MHz for /WR at a core clock rate of 150 MHz. In addition, the serial ports can operate up to 1/8 the processor's core clock rate. This corresponds to a
maximum switching frequency of 9.375 MHz for SDATA and a maximum switching frequency of 18.75 MHz for SCLK at a core clock rate of 150 MHz.

Equation 3 shows how to calculate the average external current (I\text{DDEXT}) using the above parameters:

\[I_{\text{DDEXT}} = O \times f \times V_{\text{DDEXT}} \times C_L \]

Equation 3. External Current (I_{\text{DDEXT}}) Calculation

Estimated average external power consumption (P_{\text{DDEXT}}) can then be calculated as:

\[P_{\text{DDEXT}} = V_{\text{DDEXT}} \times I_{\text{DDEXT}} \]

Equation 4. External Power (P_{\text{DDEXT}}) Calculation

Using the sample configuration shown in Figure 1, we can estimate the external current and thereby the external power consumption with the following assumptions:

- Processor core running at 150 MHz (CCLK)
- 64 K x 16-bit external memory, C_L = 10 pF
- 16-bit external latch (used to hold the address when accessing external memory), C_L = 10 pF
- AD15-0 can transfer data at a rate of 1/3 * CCLK, with 50% of the pins switching
- External memory write cycles can occur at a rate of 1/6 * CCLK (32-bit transfer to 16-bit memory)
- DAI configured to transmit and receive 32-bit words at 1/8 * CCLK, C_L = 10 pF
- Output capacitance of processor pin, C_{OUT} = 4.7 pF

Using Equation 3, I_{\text{DDEXT}} can then be calculated for each class of pins that can drive as shown in Table 3.

\[^4 \text{Trace capacitance is ignored} \]

Figure 1. ADSP-2126x System Sample Configuration
Summing the individual currents from Table 3, the total external current (I_{DEXT}) for the example configuration shown in Figure 1 is 0.0256 A. Using this current, the estimated average external power can then be calculated as:

$$P_{DEXT} = 3.3 \, V \times 0.0256 \, A = 0.0845 \, W$$

Example 4. External Power (P_{DEXT}) Calculation

At $T_A = +85^\circ C$, the P_{TOTAL} for any ADSP-21262 offered in the 136-ball Industrial Grade mBGA package should not exceed 1.43 W for proper operation. Power consumption greater than this limit, 1.43 W, requires PCB with Thermal vias and/or Air flow to ADSP-21262 processor. See Table 5 for more detail on how to obtain different power budgets at $T_A = +85^\circ C$.

$$T_J = P_{TOTAL} \times \theta_{JA} + T_A$$

Equation 5. Junction Temperature (T_J) Calculation

Table 4 contains examples of power supply currents that satisfy the total power budget for an ADSP-21262 processor operating at $T_A = +85^\circ C$ and offered in the 136-ball Industrial Grade mBGA package. Power is calculated using V_{DDMAX} for each power supply:

<table>
<thead>
<tr>
<th>I_{DINT} (A)</th>
<th>I_{DEXT} (A)</th>
<th>A_{DD} (A)</th>
<th>P_{DINT} (W)</th>
<th>P_{DEXT} (W)</th>
<th>P_{PLL} (W)</th>
<th>P_{TOTAL} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.190</td>
<td>0.01</td>
<td>0.756</td>
<td>0.660</td>
<td>0.0126</td>
<td>1.43</td>
</tr>
<tr>
<td>0.7</td>
<td>0.154</td>
<td>0.01</td>
<td>0.882</td>
<td>0.534</td>
<td>0.0126</td>
<td>1.43</td>
</tr>
<tr>
<td>0.8</td>
<td>0.118</td>
<td>0.01</td>
<td>1.008</td>
<td>0.409</td>
<td>0.0126</td>
<td>1.43</td>
</tr>
<tr>
<td>0.9</td>
<td>0.082</td>
<td>0.01</td>
<td>1.134</td>
<td>0.283</td>
<td>0.0126</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Table 4. Power Supply Currents and Total Power Budget

5 The total power budget (P_{TOTAL}) can be increased by reducing the ambient operating temperature (T_A) or by using thermal vias in PCB or allowing air flow to ADSP-21262. However, ensure that the maximum junction temperature (T_J) as defined by Equation 6 does not exceed $+125^\circ C$.

For additional information regarding the power budget and its relationship to the thermal characteristics of the ADSP-21262 processor, see the Thermal Characteristics section of ADSP-21262 data sheet.
Estimating Total Power Consumption and Power Budget

For a particular system, the total power budget is equal to the sum of the individual components:

\[P_{\text{TOTAL}} = P_{\text{DDINT}} + P_{\text{DDEXT}} + P_{\text{PLL}} \]

Equation 6. Total Power (P_{\text{TOTAL}}) Calculation

where:

- \(P_{\text{DDINT}} \) Average internal power consumption as defined by Equation 2
- \(P_{\text{DDEXT}} \) Average external power consumption as defined by Equation 4
- \(P_{\text{PLL}} \) Power consumption due to the PLL as defined by \((A_{\text{IDD}} \times A_{\text{VDD}})\) where the max value for \(A_{\text{IDD}}\) and \(A_{\text{VDD}}\) is listed in the data sheet

For ADSP-21262 processor in the 136-ball Industrial Grade mBGA package, the total allowable power budget at \(T_A = +85^\circ\text{C}\) ranges from 1.43 W to 1.83 W. This is determined by PCB design and air flow, as shown in Table 5. The power budget is therefore calculated by:

- The package’s thermal resistance \((\theta_{JA})\) which depends on PCB design (ie. Thermal vias) and air flow for the 136-ball Industrial mBGA package
- A maximum operating temperature \((T_A)\) of +85°C
- A maximum junction temperature \((T_J)\) of +125°C

Equation 5 shows the relationship between these three parameters and power.

\(I_{\text{DDINT}}\) versus Voltage, Frequency and Operating Temperature

The following section contains graphs of \(I_{\text{DDINT}}\) for various activity levels versus the specified ranges of processor core voltage \((V_{\text{DDINT}})\), operating frequency \((\text{CCLK})\) and ambient operating temperature \((T_A)\). Each of these curves represents the mean value for \(I_{\text{DDINT}}\) across process, voltage, temperature, and frequency \((\text{PVTF})\). These graphs provide the data showing the effect of core voltage, processor operating frequency, and ambient operating temperature on internal power consumption \((P_{\text{DDINT}})\). With this information, a system can be designed to meet the power budget requirements of an ADSP-21262 processor as discussed in the previous section of this EE-Note.

<table>
<thead>
<tr>
<th>Air Flow (m/s)</th>
<th>Theta-JA (C/W)</th>
<th>PCB Viases</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.9</td>
<td>Yes</td>
<td>1.54</td>
</tr>
<tr>
<td>1.0</td>
<td>23.0</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>2.0</td>
<td>21.9</td>
<td>Yes</td>
<td>1.83</td>
</tr>
<tr>
<td>0</td>
<td>27.9</td>
<td>No</td>
<td>1.43</td>
</tr>
<tr>
<td>1.0</td>
<td>24.8</td>
<td>No</td>
<td>1.61</td>
</tr>
<tr>
<td>2.0</td>
<td>23.7</td>
<td>No</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Table 5. Allowable Power Budgets at \(T_A = +85^\circ\text{C}\) Based on PCB Design (With or Without Thermal Vias) and Air Flow.
Appendix: $I_{DD-INLOW}$ vs. Voltage, Frequency and Operating Temperature

$I_{DD-INLOW}$ vs V_{DDINT}
(CCLK = 150MHz, $V_{DDEXT} = 3.3V$)

$I_{DD-INLOW}$ vs CCLK FREQ
(TA = +85C and $V_{DDEXT} = 3.3V$)

$I_{DD-INLOW}$ vs Ambient Operating Temp (TA)
(CCLK = 150MHz and $V_{DDEXT} = 3.3V$)
Appendix: $I_{DD-INHIGH}$ vs. Voltage, Frequency and Operating Temperature

1. $I_{DD-INHIGH}$ vs V_{DDINT}
 (CCLK = 150MHz, $V_{DDEXT} = 3.3V$)

2. $I_{DD-INHIGH}$ vs CCLK FREQ
 ($T_A = +85C$ and $V_{DDEXT} = 3.3V$)

3. $I_{DD-INHIGH}$ vs Ambient Operating Temp (T_A)
 (CCLK = 150MHz and $V_{DDEXT} = 3.3V$)
Appendix: \(I_{\text{DD-INPEAK}} \) vs. Voltage, Frequency and Operating Temperature

\(I_{\text{DD-INPEAK}} \) vs \(V_{\text{DDINT}} \)
(CCLK = 150MHz, \(V_{\text{DDEXT}} = 3.3V \))

\(I_{\text{DD-INPEAK}} \) vs CCLK FREQ
(TA = +85C and \(V_{\text{DDEXT}} = 3.3V \))

\(I_{\text{DD-INPEAK}} \) vs Ambient Operating Temp (TA)
(CCLK = 150MHz and \(V_{\text{DDEXT}} = 3.3V \))
References

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 1 – May 23, 2005 by A. Daoudi</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>