Sensing Low-g Acceleration Using the **ADXL345** Digital Accelerometer Connected to the **ADuC7024** Precision Analog Microcontroller

CIRCUIT FUNCTION AND BENEFITS

The **ADXL345** is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit) measurement up to ±16 g. Digital output data is formatted as 16-bit two's complement and is accessible through either a serial peripheral interface (SPI), 3-wire or 4-wire, or an I2C digital interface.

The **ADXL345** is well suited for mobile device applications. The **ADXL345** measures the static acceleration of gravity in tilt sensing applications, as well as dynamic acceleration resulting from motion or shock. The high resolution of the **ADXL345** (4 mg/LSB) enables measurement of inclination changes of about 0.25°. Using a digital output accelerometer such as the **ADXL345** eliminates the need for analog-to-digital conversion, reducing system cost and real estate. Additionally, the **ADXL345** includes a variety of built-in features. Activity detection or inactivity detection, tap detection or double tap detection, and free fall detection are all done internally with no need for the host processor to perform any calculations. A built-in, 32-stage first in, first out (FIFO) memory buffer reduces the burden on the host processor, allowing algorithm simplification and power savings. Additional system level power savings can be implemented using the built-in activity or inactivity detection and by using the **ADXL345** as a motion switch to turn the whole system off when no activity is felt and on when activity is sensed again.

The **ADXL345** communicates via an I2C interface or an SPI interface. The circuits described in this application note demonstrate how to implement communication via these protocols.

![Figure 1. ADXL345 and ADuC7024 in 4-Wire SPI Configuration (Simplified Schematic: Decoupling and All Connections Not Shown)](image-url)
TABLE OF CONTENTS
Circuit Function and Benefits ... 1
Revision History ... 2
Circuit Description ... 3
Common Variations .. 3

REVISION HISTORY
10/2018—Rev. 0 to Rev. A
Document Title Changed from CN0133 to AN-1588...Universal
Changes to Figure 1 ... 1
Moved Revision History Section ... 2
Changes to Figure 3 and Common Variations Section 3
Deleted Data Sheets and Evaluation Boards Section 3
Deleted Learn More Section .. 4
Changes to Figure 4 ... 4
Added Figure 5; Renumbered Sequentially 4

10/2009—Revision 0: Initial Version
CIRCUIT DESCRIPTION

This circuit uses an ADuC7024 precision analog microcontroller in conjunction with the ADXL345 digital accelerometer. Both are I2C ready and SPI ready. Figure 1 shows the ADXL345 and ADuC7024 in an SPI configuration, and Figure 3 shows the same devices in an I2C configuration. The CS pin (Pin 7 on the ADXL345) is used to select the desired interface. I2C mode is enabled if the CS pin is tied high to VDD I/O (Pin 1 on the ADXL345). In SPI mode, CS is toggled to signify the beginning and end of each transmission. Pulling CS high indicates that no SPI transmission is occurring or that an I2C transmission may occur.

Both schematics are simplified but required connections (for example, supplies and ground connections) are shown. In these schematics, the ADuC7024 is programmed via a universal asynchronous receiver-transmitter (UART) that connects to Pin 49 and Pin 50 of the ADuC7024. SW2 and SW3 are reset and download buttons, respectively, for programming the microcontroller. SW1 is an on or off power switch.

COMMON VARIATIONS

Figure 1 shows the ADXL345 in a 4-wire SPI configuration, and Figure 2 shows that the ADXL345 can also communicate via a 3-wire SPI.

The circuit described in Figure 1 and Figure 3 use the ADuC7024 microcontroller. The same configuration can be applied with any SPI capable or I2C capable microcontroller, as outlined in Figure 4 and Figure 5. The standard I2C connection and SPI connection are used. Pin functions for the two protocols are listed in Table 1.

For information on ADXL345 operation and register functions, refer to the ADXL345 data sheet.

For information on programming the ADuC7024, see the ADuC7024 data sheet.
Table 1. ADXL345 Pin Functionality in SPI and I\(^2\)C Communication Modes

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>I(^2)C</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CS</td>
<td>Connect to (V_{DD/IO}) for I(^2)C</td>
<td>Chip select</td>
</tr>
<tr>
<td>12</td>
<td>SDO/ALT ADDRESS</td>
<td>Alternate address select</td>
<td>Serial data output</td>
</tr>
<tr>
<td>13</td>
<td>SDA/SDI/SDIO</td>
<td>Serial data</td>
<td>Serial data input (SPI 4-wire)/serial data input and output (SPI 2-wire)</td>
</tr>
<tr>
<td>14</td>
<td>SCL/SCLK</td>
<td>Serial communications clock</td>
<td>Serial communications clock</td>
</tr>
</tbody>
</table>

I\(^2\)C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).