Half-Duplex, Isolated RS-485 Interface

CIRCUIT FUNCTION AND BENEFITS

This circuit provides a half-duplex, isolated RS-485 interface using the ADM2485 high speed, isolated RS-485 transceiver and the ADP3330 high accuracy linear regulator. This circuit achieves signal and power isolation and at the same time decreases board space and power consumption.

![Diagram of Half-Duplex Isolated RS-485 Interface Using ADM2485 and ADP3330 (Simplified Schematic)](image)

Figure 1. Half-Duplex Isolated RS-485 Interface Using ADM2485 and ADP3330 (Simplified Schematic)
TABLE OF CONTENTS

Circuit Function and Benefits ... 1
Revision History ... 2
Circuit Description ... 3
Common Variations ..3
References ...3

REVISION HISTORY

Document Title changed from CN0031 to AN-1493 Universal
Change to Figure 1 ... 1
Changes to Table 1 .. 3

6/2009—Rev. 0 to Rev. A
Updated Format .. Universal

10/2008—Revision 0: Initial Version
CIRCUIT DESCRIPTION

The **ADM2485** is a half-duplex RS-485 transceiver that can achieve a fully isolated RS-485 PROFIBUS®-compliant node. The **ADM2485** integrates a transformer driver that, when used with an external transformer and low dropout (LDO) regulator, generates an isolated 5 V power supply to be supplied between VDD2 and GND2.

The D1 and D2 oscillator outputs of the **ADM2485** drive the center tapped transformer, T1. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The **ADP3330** linear voltage regulator provides a regulated 5 V power supply to the **ADM2485** bus side circuitry (VDD2), as shown in Figure 1.

COMMON VARIATIONS

When the **ADM2485** is powered by 3.3 V on the logic side, a 1CT:2.2CT transformer, T1, is required to step up the 3.3 V to 6 V supply voltage, thereby ensuring enough headroom for the **ADP3330** LDO to output a regulated 5 V output.

If the **ADM2485** is powered by 5 V on the logic side, a 1CT:1.5CT transformer, T1, is required to ensure enough headroom for the **ADP3330** LDO to output a regulated 5 V output.

The external transformer used with the **ADM2485** must have a center tapped winding. The turns ratio of the transformer must be set to provide the minimum required output voltage at the maximum anticipated load current with the minimum input voltage. Table 1 shows suitable transformers for the **ADM2485** circuit of Figure 1.

Table 1. Transformer Suppliers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Primary Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3 V</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>DA2304-AL</td>
</tr>
<tr>
<td>C&D Technologies</td>
<td>782482/35C</td>
</tr>
</tbody>
</table>

REFERENCES
