Using the **AD5755** and Similar Dynamic Power Control DACs in Applications Without Dynamic Power Control

by David Rice

INTRODUCTION

This application note describes using the AD5755 and other similar industrial DACs in applications that do not require the dynamic power control (DPC) feature.

This group of products consists of five industrial DACs, which have multiple options to suit various applications. Table 1 lists and highlights the features of each DAC.

DPC operates by sensing the load on the current output pin and supplying only the power that is required. To achieve this, the AD5755, for example, controls a dc-to-dc converter to step up a 5 V supply to between 7.4 V and 29.5 V.

DPC is particularly useful in systems with wide load ranges including a short-circuit condition (0 Ω load to ground) where all power generated by the supply is dissipated on chip. In non-DPC systems, this results in higher IC temperatures that increase overall system temperatures.

There are low power applications that may not require dynamic power control. In these cases, the dc-to-dc converter can be excluded from the design. This reduces the number of external components and is useful for applications with space-constraints that require the AD5755 quad-channel feature.

This application note describes two alternatives to using the dc-to-dc converter. The first method uses an external PMOS to limit on-chip power dissipation. The second method involves powering the DAC directly with all power dissipated directly on chip. Each method describes the setup and calculates total power dissipation both on and off chip.

Table 1. AD5755 and Similar Dynamic Power Control DACs

<table>
<thead>
<tr>
<th>ADC</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD5755</td>
<td>16-Bit, Quad Channel, Current and Voltage Output DAC</td>
</tr>
<tr>
<td>AD5755-1</td>
<td>16-Bit, Quad Channel, Current and Voltage Output DAC with HART Connectivity</td>
</tr>
<tr>
<td>AD5735</td>
<td>12-Bit, Quad Channel, Current and Voltage Output DAC</td>
</tr>
<tr>
<td>AD5757</td>
<td>16-Bit, Quad Channel, Current Output DAC with HART Connectivity</td>
</tr>
<tr>
<td>AD5737</td>
<td>12-Bit, Quad Channel, Current Output DAC with HART Connectivity</td>
</tr>
</tbody>
</table>

![Figure 1. AD5755 with Dynamic Power Control](image_url)
TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
Method 1—Using External PMOS..3
Method 2—Connecting \(V_{\text{BOOST}} \) to \(AV_{\text{DD}} \)6

REVISION HISTORY
3/14—Revision 0: Initial Version
METHOD 1—USING EXTERNAL PMOS

As an alternative to the dc-to-dc converter, an external PMOS transistor can be used to limit the on-chip power dissipation, though this does not reduce the power dissipation of the total system. On the AD5755, AD5735, and AD5755-1, the PMOS circuit is set up as shown in Figure 2.

\(V_{\text{BOOST}} \) must be powered for both voltage and current output ranges. \(V_{\text{BOOST}} \) can be tied to AVDD as long as sufficient headroom is maintained between \(V_{\text{BOOST}} \) and the output per the formula shown in Table 2.

Leave the SWx and COMP\(_{\text{DCDC_A}}\) pins open circuit. Tie AVCC to DVDD. This maintains the voltage on the AVCC pin above the most negative supply, AVSS or 0 V (this applies only to the AD5755-1, AD5737, and AD5757). If the voltage on the AVCC pin is equal to or below the most negative voltage, it can result in latch-up. See Table 2 for recommended supplies for the AVCC and V_{\text{BOOST}} rails. All other pins are set up in the same manner as when the dynamic power control function is used. Details are outlined in the Pin Configuration section and Layout Guidelines section of the product datasheet.

\(V_{\text{BOOST}} \) is powered externally and the Zener diode holds the gate of the external PMOS at \(V_{\text{BOOST}} - \) Zener voltage. This means that the majority of the power dissipation of the channel takes place in the external PMOS transistor.

\[
\begin{align*}
\text{V}_{\text{BOOST}} &= 33 \text{ V} \\
\text{Zener Voltage} &= 5 \text{ V} \\
R_{\text{LOAD}} &= 0 \Omega \\
I_{\text{OUT}} &= 24 \text{ mA}
\end{align*}
\]

One Channel

On-chip power
\[
5 \text{ V} \times 0.024 \text{ A} = 0.12 \text{ W}
\]

Off-chip power
\[
28 \text{ V} \times 0.024 \text{ A} = 0.672 \text{ W}
\]

Four Channels

On-chip power
\[
0.12 \text{ W} \times 4 = 0.48 \text{ W}
\]

Off-chip power
\[
0.672 \text{ W} \times 4 = 2.688 \text{ W}
\]

The calculations in this section do not factor in the quiescent currents of the AD5755; Table 3 includes these currents to calculate the maximum power and allowed ambient temperature for the AD5755. From the calculations, \(V_{\text{BOOST}} \) is 5 V in the equation. The remainder of the power is dissipated off chip on the PMOS.
When selecting R1, it is important that the power is kept low. In this example, R1 = 1 MΩ and 33 V is the voltage supplied. There is a 5 V drop across the Zener diode. This means that there is 28 µA flowing through the 1 MΩ resistor (0.784 mW dissipated). The PMOS chosen must be able to tolerate a V\textsubscript{DS} voltage of –V\textsubscript{BOOST} and handle the power dissipation required. The PMOS typically has minimal effect on current output performance.

Figure 2. Configuration of a Channel using an External Zener Diode on the AD5755-1
Figure 3 shows the AD5757/AD5737 which have pins (IGATEx) dedicated to controlling an external PMOS. Therefore, a Zener diode is not required. The IGATEx pins are only used when the dynamic power control feature is not being used. It holds the gate of the external PMOS at \(V_{\text{BOOST}} - 5 \text{ V} \) causing the majority of the power dissipation to take place on the external PMOS.

The PMOS chosen must be able to tolerate a \(V_{\text{DS}} \) voltage of \(-V_{\text{BOOST}}\) and handle the power dissipation required. The PMOS typically has minimal effect on current output performance.

The setup and calculations are the same as in the PMOS/Zener diode configuration.

![Figure 3. Configuration of a Channel using IGATE (AD5757 or AD5737)](chart4_igate.png)
METHOD 2—CONNECTING V_{BOOST} TO AV_{DD}

With Method 2, although no extra components are required, all power is dissipated on chip. Users must be aware of the maximum allowed power dissipation and ambient temperatures if this method is used. Exceeding the absolute maximum ratings specified in the data sheet can damage components.

V_{BOOST} must be powered for both voltage and current output ranges. V_{BOOST} can be tied to AV_{DD} as long as sufficient headroom is maintained between V_{BOOST} and the output per the formula in Table 2.

Leave the SWx and COMP$_{DCDC_A}$ pins open circuit. Tie AVCC to DVDD. This maintains the voltage on the AVCC pin above the most negative supply, AVSS or 0 V (this applies only to the AD5755-1, AD5737, and AD5757). If the voltage on the AVCC pin is equal to or below the most negative voltage, it can result in latch-up. See Table 2 for recommended supplies for the AVCC and V_{BOOST} rails. All other pins are set up in the same manner as when the dynamic power control function is used. Details are outlined in the Pin Configuration section and Layout Guidelines section of the AD5755 data sheet.

Note that if dynamic power control is not used, then it is of even greater importance to understand the effects of power dissipation.

The AD5755 is packaged in a 64-lead, 9 mm × 9 mm LFCSP. The thermal impedance, θ_{ja}, is 28°C/W. It is important that the device is not operated under conditions that exceed the junction temperature limit (125°C).

Worst-case conditions occur when the AD5755 is at maximum V_{BOOST} (33 V) and driving the maximum current (24 mA) to ground ($R_{LOAD} = 0\Omega$). The quiescent current of the AD5755 must also be taken into account.

The calculations in Table 3 estimate maximum power dissipation under these worst-case conditions, and determine maximum ambient temperature based on this information. These figures assume that proper layout and grounding techniques are followed to minimize power dissipation as outlined in the Layout Guidelines section of the AD5755 data sheet. It also refers to the operating currents as specified in the AD5755 data sheet.
Table 2. Changes in Power Supplies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recommended Minimum/Maximum Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV<sub>CC</sub></td>
<td>DV<sub>DD</sub> to 5.5 V</td>
</tr>
<tr>
<td><sup>1</sup>V<sub>BOOST</sub></td>
<td>7.4 V (minimum) to 33 V (maximum)</td>
</tr>
<tr>
<td>Current output</td>
<td>(I<sub>OUT</sub> × R<sub>LOAD</sub>) + Headroom</td>
</tr>
<tr>
<td>Typically 2.4 V headroom, maximum 2.7 V headroom</td>
<td></td>
</tr>
<tr>
<td>Voltage output</td>
<td>Typically 15 V, maximum V<sub>OUT</sub> + headroom</td>
</tr>
<tr>
<td>Maximum 2.2 V headroom</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Thermal and Supply Conditions (Assuming AV_{SS} = −15 V, AV_{CC} = 5 V, and AV_{DD}/V_{BOOST} = 33 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Allowable Power Dissipation when Operating at an Ambient Temperature of 85°C</td>
<td>[\frac{T_{\text{MAX}} - T_A}{\theta_{JA}} = \frac{125 - 85}{28} = 1.42 , \text{W}]</td>
</tr>
<tr>
<td>Maximum Allowable Ambient Temperature—One Channel</td>
<td>\begin{align*} &AV_{\text{DD}} \ &33 , \text{V} \times 0.0075 , \text{A} = 0.2475 , \text{W} \ &AV_{\text{SS}} \ &-15 , \text{V} \times 0.0017 , \text{A} = 0.0255 , \text{W} \ &AV_{\text{CC}} \ &5 , \text{V} \times 0.001 , \text{A} = 0.005 , \text{W} \ &V_{\text{BOOST}} (1 , \text{channel}) \ &33 , \text{V} \times 0.025 , \text{A} = 0.825 , \text{W} \ &\text{Total (1 channel)} \ &1.103 , \text{W} \ &\text{Temperature increase} \ &1.103 \times 28 = 30.9^\circ \text{C} \ &\text{Maximum ambient temperature} \ &125^\circ \text{C} - 30.9^\circ \text{C} = 94.1^\circ \text{C} \ &\text{Maximum Allowable Ambient Temperature—Four Channels} \ &AV_{\text{DD}} \ &33 , \text{V} \times 0.0075 , \text{A} = 0.2475 , \text{W} \ &AV_{\text{SS}} \ &-15 , \text{V} \times 0.0017 , \text{A} = 0.0255 , \text{W} \ &AV_{\text{CC}} \ &5 , \text{V} \times 0.001 , \text{A} = 0.005 , \text{W} \ &V_{\text{BOOST}} (4 , \text{channels}) \ &(33 , \text{V} \times 0.025 , \text{A}) \times 4 = 3.3 , \text{W} \ &\text{Total (4 channels)} \ &3.578 , \text{W} \ &\text{Temperature increase} \ &3.578 , \text{W} \times 28 = 100.18^\circ \text{C} \ &\text{Maximum ambient temperature} \ &125^\circ \text{C} - 100.18^\circ \text{C} = 24.816^\circ \text{C} \</td>
</tr>
</tbody>
</table>