Single-Supply Wien Bridge Oscillator

by James Wong

Wien bridge oscillators have the advantage of requiring only one op amp, and this advantage is particularly important for battery-operated applications. This oscillator circuit operates from a single 9V battery.

The conditions for Wien bridge oscillation are

\[1 - R_1 R_2 C_1 C_2 \omega_0^2 = 0 \]

and

\[\frac{R_2 C_1}{R_1 C_1 + R_2 C_2 + R_2 C_1} = \beta \]

where \(\beta \) is the ratio of output voltage feedback to the inverting input. If \(R_1 = R_2 \) and \(C_1 = C_2 \), then \(\omega_0 \) is \(1/RC \) and \(\beta \) is \(1/3 \).

This oscillator should be set to just diverge in amplitude. Diodes are used to obtain a nonlinear feedback characteristic which will limit the divergence without causing too much distortion. The condition for oscillation is

\[\frac{R_3}{R_3 + 2(R_0 + R_4')} = \frac{1}{3} \]

\(R_4' \) = Parallel combination of \(R_4 \) and diodes

As a design example, consider

\[C_1 = C_2 = 0.01\mu F \]

\[R_1 = 15.8k\Omega \]

\[2R_2 = 31.8 \]

\[R_3 = 50k\Omega \]

Diodes = 1N914 or 1N4148

\[R_5 = 1M\Omega \]

Using these component values, \(f_0 \) will be 1004Hz. Resistor \(R_5 \) must be adjusted for best amplitude stability. If \(R_5 \) is too low, the oscillation might converge; if too large, then the oscillation will diverge until the output clips. An oscillation output of 6V peak-to-peak when operating from a 9V battery is recommended. Resistor \(R_5 \) needs to be a nominal 40k\(\Omega \) with a \(\pm2.5k\Omega \) adjustment range.

The OP-22 is operated with a 1M\(\Omega \) set resistor for a set current of 7.8\(\mu A \) which corresponds to a supply current of approximately 100\(\mu A \). Gain-bandwidth product and slew-rate vary directly with the set current, so \(R_5 \) should be optimized for the specific oscillation frequency. Supply drain can be reduced for lower frequencies. The OP-22 works well for frequencies in the range of 100Hz to 1kHz; the OP-27 is recommended for higher frequencies.