Quad HDMI Input, Fast Switching Multiplexer
Using the ADV7612 Receiver with Extended Temperature Range

CIRCUIT FUNCTION AND BENEFITS

The ADV7612 is a dual port Xpressview™ 225 MHz HDMI® receiver that allows fast switching between two inputs. The circuit shown in Figure 1 shows the use of two ADV7612’s as a quad-input fast switching HDMI receiver.

Figure 1. Dual ADV7612 Circuit (Simplified Schematic: Decoupling, Terminations, Resets, and All Connections Not Shown)
This circuit shows the expandability of the ADV7612 in applications requiring four multiplexed HDMI inputs of up to 225 MHz TMDS (1080p60, 12 bits per channel; 148.5 MHz LLC pixel clock) or UXGA (1600 × 1200, 10 bits per channel; 162 MHz LLC pixel clock). The circuit offers a cost effective solution to this application and operates over the extended industrial temperature range of −40°C to +85°C.

CIRCUIT DESCRIPTION

The ADV7612 provides a receiving solution for two HDMI inputs. Figure 1 shows how to connect two ADV7612’s in parallel on a common shared video and audio bus, thereby providing multiplexing of four HDMI inputs. How to set up the I²C communications without bus conflicts and how to switch between the sources will be shown. A software package is available showing how to handle communication and authentication in an HDMI repeater application (see http://ez.analog.com/community/video).

In order for multiple ADV7612 devices to share the same bus, we need to consider the output state of the devices, capabilities of tri-stating buses, and the electrical parameters of the load on the bus. Additionally, the devices must be controlled from an I²C bus in a non-conflicting manner. The board layout of this circuit is critical and should follow a straight line using controlled impedances to reduce risk of reflections and cross-coupling. Complete PCB layouts are contained in the design support package downloadable at www.analog.com/CN0224-DesignSupport. An ADV7511 HDMI transmitter was used as a backend device.

Bus Output States

After resetting, the ADV7612 tri-states pins P0-P35, HS, VS/FIELD/ALSB, DE, LLC, AP0…AP5, SCLK/INT2, and MCLK/INT2. These pins can be set to the active state using registers TRI_PIX, TRI_SYNCS, TRI_LLCT, TRI_AUDIO as described in the UG-216 Hardware User Guide, available at http://ez.analog.com/docs/DOC-1751.

Video and Audio Bus Loading

Only one ADV7612 can access the AV buses at a time; the second must remain tri-stated. Assuming an output driver resistance (P0…P35) of 10 Ω to 20 Ω (highest drive strength) and a trace characteristic impedance of 75 Ω, a series resistor of 55 Ω to 65 Ω is required to match the characteristic impedance of the trace. The maximum capacitance of a tri-stated output bus driver on the ADV7612 is 20 pF (refer to Electrical Specifications in the ADV7612 data sheet).

Layout and Termination Considerations

For pixel lines (P0…P35), video synchronization (VS/FIELD/ALSB, HS, DE), and audio lines (AP0, AP1/I2S_TDM, AP2…AP5, MCLK/INT2, SCLK/INT2)—other than LLC—it is suggested to use series termination resistors of 51 Ω at the ADV7612 driver side, and tracks having a characteristic impedance of 75 Ω.

The line locked clock (LLC) line has the same characteristic impedance of 75 Ω and should have no series resistor, but should be terminated at the far end with a symmetrical termination (150 Ω to +3.3 V and to 150 Ω to GND), as shown in Figure 2.

Even though theory suggests a best termination value between 50 Ω and 60 Ω, it was observed during tests that a symmetrical 75 Ω (2 ×150 Ω) termination increases the swing and centers the signal around mid-supply (1.65 V), which is desirable. The ADV7511 HDMI transmitter is included on the board and is used to transmit the multiplexed output of the two ADV7612’s.

Figure 3 to Figure 6 show waveforms for various terminations. In each case, a symmetrical LLC termination was placed at the far end (close to the ADV7511), and series termination resistors as close as possible to the two ADV7612 devices, as shown in Figure 2.

Measurements were taken on the ADV7511 pins with Tektronix P6243 FET probes (1 MΩ resistance, 1 GHz bandwidth, less than 1 pF capacitance) and a Tektronix TDS5104B scope.

From the waveforms we can see that using 2 × 150 Ω terminations on the LLC line ensures a maximum swing of 3.3 V. Using 75 Ω on the data lines slows the edges too much. 33 Ω and 15 Ω on data lines caused undershoots on falling edges (Figure 5 and Figure 6) and overshoots on rising edges (not illustrated). Therefore, 2 × 150 Ω was chosen for LLC, and 51 Ω was used on data lines, which is illustrated in the eye diagrams shown in Figure 9 and Figure 10.
I²C Access

After power up, both ADV7612 devices will have the same I²C address on the main map, which may lead to conflicts.

A CS pin is provided on both parts, which allows selecting one of the two devices. When the CS line is pulled low, I²C communication is enabled.

When the CS line is pulled high, I²C communication is disabled.

A simple inverter reduces the resources required on the microcontroller side, as shown in Figure 7.
CEC

CEC implementation is not mandatory on the board, and it is up to the end user to implement it. If CEC is not desired, CEC pins should be left floating (as described in UG-216, Appendix B: Recommended Unused Pin Configuration). This user guide is included at http://ez.analog.com/docs/DOC-1751.

In the other case, separate engines should be used to handle CEC commands.

XTAL_N, XTAL_P

There are two ways of driving the ADV7612 clock. Both parts may have separate crystals connected to XTAL_N and XTAL_P pins, or they can share the same signal clock. In the circuit, the 1.8 V signal clock from the oscillator is provided to pins XTAL_P of both parts. In this configuration, XTAL_N must be left floating. It is critical to ensure proper layout routing and grounding to eliminate coupling between sensitive lines. The length of each trace of the bus should be kept equal.

Interrupts

Interrupts from both devices must be considered. The ADV7612 has two possible interrupts: INT1 (INT1 pin) and INT2 (available through SCLK/INT2, MCLK/INT2 or HPA_A/INT2).

It is advised not to use INT2 via pins MCLK/INT2 or SCLK/INT2, as tri-stating the audio bus with the TRI_AUDIO register will also tri-state these pins.

Figure 8. Dual ADV7612 Board Solution with ADV7511
Figure 9. Screenshot from Scope. Signal Driven from ADV7612-U43. LLC Line (162 MHz) Measured at ADV7511’s Input and Pixel Line P35. Red Rectangle Shows Eye Mask for ADV7511, 2 × 150 Ω Symmetrical Termination on LLC and 51 Ω Series Resistors on Data Lines. Vertical Scale: 1 V/div, Horizontal Scale: 2 ns/div

Figure 10. Screenshot from Scope. Signal Driven from ADV7612-U1. LLC Line (162 MHz) Measured at ADV7511’s Input and Pixel Line P35. Red rectangle Shows Eye Mask for ADV7511. 2 × 150 Ω Symmetrical Termination on LLC and 51 Ω Series Resistors on Data Lines. Vertical Scale: 1 V/div, Horizontal Scale: 2 ns/div

Layout Considerations

Layout should consist of very short traces. In the ideal case, traces connecting two pins of the same function between the two ADV7612s should be as short as possible and should share a common series termination resistor placed as close as possible to both devices and then connected to the bus. In practice, this is not possible due to layout constraints; therefore, each device requires its own series termination resistor (see Figure 2). The video traces should be kept as close to the same length as possible for delay matching.

Evaluation and Test

The circuit was evaluated using two video generators (Quantum Data 882) to generate UXGA 1600 × 1200 pixels, 30-bits, and 1080p60, 36 bits (Samsung2 and MoirèX patterns). As an HDMI sink (output from ADV7511), an Astro VA-1831 video analyzer was used. Additionally, video signals from the ADV7612 (LLC and P35) were observed on the ADV7511 pins with a P6243 (1 pF, 1 MΩ, 1 GHz) probe attached to a Tektronix TDS5104B oscilloscope. The resulting waveforms are presented as eye diagrams with ADV7511 eye masks and are shown in Figure 9 and Figure 10 for UXGA (162 MHz, 30 bits) with the Samsung2 pattern. The MoirèX pattern used during tests also showed a similar safety margin.

Video timing measured by the Astro VA-1831 showed no anomalies. Even and odd vertical lines of MoirèX were analyzed (1080p60 36-bit and UXGA 30-bit), and it showed that all bits toggle properly at the same time without any leakage between lines (MoirèX pattern). The Astro VA-183 also showed stable HDMI synchronization signals and packets having correct CRC checksum. This indicates properly received clock and synchronization information by the backend ADV7511.

Test Steps

1. Prepare test configuration as shown in Figure 11.
2. Power up board and measuring equipment; start DVP Evaluation Software.
4. Run INIT_PARTS_AND_SET_PORT_A_ver4.py script in DVP Evaluation Software (refer to design resources).
5. Press Init button. Once board is initialized, click one of the buttons: Port A, Port B, Port C, or Port D to select desired input (see Figure 12).
LEARN MORE

CN-0224 Design Support Package:
www.analog.com/CN0224-DesignSupport

ADV7612 Design Support Files on Engineer Zone:
http://ez.analog.com/docs/DOC-1751

MT-031 Tutorial, Grounding Data Converters and Solving the Mystery of “AGND” and “DGND”, Analog Devices.

MT-101 Tutorial, Decoupling Techniques, Analog Devices.

Data Sheets and Evaluation Boards

ADV7612 Data Sheet.
ADTV7511 Data Sheet.

UG-216, ADV7612 Hardware User Guide:
http://ez.analog.com/docs/DOC-1751

REVISION HISTORY

12/11—Revision 0: Initial Release

©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.