Control the Voltage of a Remote Load Over Any Length of Copper Wire – Design Note 529

Philip Karantzalis

Introduction

A common problem in power distribution systems is loss of regulation due to the cable/wire voltage drop between the regulator and the load. Any increase in wire resistance, cable length or load current increases the voltage drop over the distribution wire, increasing the difference between actual voltage at the load and the voltage perceived by the regulator. One way to improve regulation over long cable runs is to measure voltage directly at the load via a 4-wire Kelvin connection between the regulator and the load. Unfortunately, this solution requires routing additional wires to the load as well as a Kelvin resistor placed near the load, impractical when the load is inaccessible for modification. Another method minimizes the voltage drop by employing large diameter wire, lowering the resistance from the regulator to the load. This is electrically simple, but can be mechanically complicated. Increasing the size of cable conductors can significantly increase space requirements and cost.

An alternative to additional wiring is to compensate for the voltage drop at the regulator with the LT®6110 cable/wire drop compensator without additional cabling/wiring between the regulator and load. This article shows how the LT6110 can improve regulation by compensating for a wide range of regulator-to-load voltage drops.

The LT6110 Cable/Wire Compensator

Figure 1 shows a 1-wire compensation block diagram. If the remote load circuit does not share the regulator’s ground, two wires are required, one to the load and one ground return wire. The LT6110 high side amplifier senses the load current by measuring the voltage, \(V_{\text{SENSE}} \), across the sense resistor, \(R_{\text{SENSE}} \), and outputs a current, \(I_{\text{OUT}} \), proportional to the load current, \(I_{\text{LOAD}} \). \(I_{\text{OUT}} \) is programmable with the \(R_{\text{IN}} \) resistor from 10µA to 1mA. Cable/wire voltage drop, \(V_{\text{DROP}} \), compensation is accomplished by sinking \(I_{\text{OUT}} \) through the \(R_{\text{FA}} \) feedback resistor to increase the regulator’s output by an amount equal to \(V_{\text{DROP}} \). An LT6110 cable/wire voltage drop compensation design is simple: set the \(I_{\text{OUT}} \times R_{\text{FA}} \) product equal to the maximum cable/wire voltage drop.

The LT6110 includes an internal 20mΩ \(R_{\text{SENSE}} \), suitable for load currents up to 3A; an external \(R_{\text{SENSE}} \) is required for \(I_{\text{LOAD}} \) greater than 3A. The external \(R_{\text{SENSE}} \) can be a sense resistor, the DC resistance of an inductor or a PCB trace resistor. In addition to the \(I_{\text{OUT}} \) sink current, the LT6110 \(I_{\text{MON}} \) pin provides a sourcing current, \(I_{\text{MON}} \), to compensate current-referenced linear regulators such as the LT3080.
Compensating Cable Voltage Drops for a Buck Regulator

Figure 2 shows a complete cable/wire voltage drop compensation system consisting of a 3.3V, 5A buck regulator and an LT6110, which regulates the voltage of a remote load connected through 20 feet of 18 AWG copper wire. The buck regulator’s 5A output requires the use of an external RSENSE.

The maximum 5A ILOAD through the 140mΩ wire resistance and 25mΩ RSENSE creates an 825mV voltage drop. To regulate the load voltage, VLOAD, for 0A ≤ ILOAD ≤ 5A, IOUT • RFA must equal 825mV. There are two design options: select IOUT and calculate the RFA resistor, or design the regulator’s feedback resistors for very low current and calculate the RIN resistor to set IOUT. Typically IOUT is set to 100µA (the IOUT error is ±1% from 30µA to 300µA). In the Figure 2 circuit the feedback path current is 6µA (VFB/200k), the RFA resistor is 10k and the RIN resistor must be calculated to set IOUT • RFA = 825mV.

IIOUT = VSENSE/RIN, IIOUT • RFA = VDROP and

\[
RIN = \frac{RSENSE \cdot RWIRE}{RFA}
\]

and

for RFA = 10k, RSENSE = 25mΩ and RWIRE = 140mΩ, RIN = 1.5k.

Without cable/wire drop compensation the maximum change in load voltage, ∆VLOAD, is 700mV (5 • 140mΩ), or an error of 21.2% for a 3.3V output. The LT6110 reduces ∆VLOAD to only 50mV at 25°C, or an error of 1.5%. This is an order of magnitude improvement in load regulation.

Precision Load Regulation

A modest improvement in load regulation with the LT6110 does not require accurate RWIRE estimation. The load regulation error is the product of two errors: error due to the wire/cable resistance and error due to the LT6110 compensation circuit. For example, using the Figure 2 circuit, even if the RSENSE and RWIRE calculation error is 25%, the LT6110 still reduces VLOAD error to 6.25%.

For precise load regulation, an accurate estimate of the resistance between the power source and load is required. If RWIRE, RSENSE and the resistance of the cable connectors and PCB traces in series with the wire is accurately estimated, then the LT6110 can compensate for a wide range of voltage drops to a high degree of precision.

Using the LT6110, an accurate RWIRE estimation and a precision RSENSE, the ∆VLOAD compensation error can be reduced to match the regulator’s voltage error over any length of wire.

Conclusion

The LT6110 cable/wire voltage drop compensator improves the voltage regulation of remote loads, where high current, long cable runs and resistance would otherwise significantly affect regulation. Accurate regulation can be achieved without adding sense wires, buying Kelvin resistors, using more copper or implementing point-of-load regulators—common drawbacks of other solutions. In contrast, compensator solutions require little space while minimizing design complexity and component costs.