Introduction

High frequency (1MHz or higher) active lowpass filters are now practical alternatives to passive LC filters mainly due to the availability of very high bandwidth (100MHz or higher) integrated amplifiers. Analog signal filtering applications with bandwidths in the megahertz region can be implemented by a discrete active filter circuit using resistors, capacitors and a 400MHz operational amplifier such as the LT®1819 or the LT6600-10, a fully integrated lowpass filter. The LT6600-10 has a fixed 10MHz frequency response equivalent to a fourth order flat passband Chebyshev function. An LT1819-based active RC lowpass filter can be designed to have a Chebyshev, Butterworth, Bessel or custom frequency response (up to 20MHz).

The LT6600-10 Lowpass Filter

The LT6600-10 is a fully integrated, differential, fourth order lowpass filter in a surface mount SO-8 package (Figure 1). Two external resistors ranging from 1600Ω to 100Ω set the differential gain in the filter’s passband from –12dB to 12dB, respectively. The LT6600-10 passband gain ripple is a maximum of 0.7dB to –0.3dB up to 10MHz and attenuation is typically 28dB at 30MHz and 44dB at 50MHz. The signal to noise ratio (SNR) at the filter’s output is 82dB with a 2VP-P signal for a passband gain equal to one (a SNR suitable for up to 14 bits of resolution). In addition to lowpass filtering, the LT6600-10 can level shift the input common mode signal. For example, with a single 3V supply, if the input common mode voltage is 0.25V, then the output common mode voltage can be set to 1.5V. The LT6600-10 operates with single 3V or 5V or dual 5V power supplies.

An LT1819-Based RC Lowpass Filter

The LT6600-10 greatly simplifies lowpass filter design because it only requires two external resistors to set the differential gain, but the passband is fixed. For more flexibility, the LT1819 400MHz, high slew rate, low noise and low distortion dual operational amplifier is a good choice. Figure 2 shows a differential, 10MHz, 4th order, lowpass filter using two LT1819s. This approach allows for adjustable passband up to 20MHz but at the expense of a large number of passive and active components and high sensitivity to the variation of component values. For example, a component sensitivity analysis of Figure 2 shows that in order to maintain a passband ripple similar to the LT6600-10 (±0.5dB up to 10MHz), the component tolerance must not exceed ±0.5% for the resistors and 1% for the capacitors. Also, the LT1819 gain-bandwidth product should not be less than 300MHz. If a Butterworth, Bessel or custom filter response is desired, ±1% resistors and ±5% capacitors are adequate. These filters have lower sensitivity than a “flat” passband Chebyshev filter. The LT1819-based filter operates with single 5V or dual 5V power supplies (for a single 3V power supply filter circuit use an LT1807, a dual 325MHz, rail-to-rail operational amplifier).

Antialiasing 10MHz Filters for a Differential 50Mps ADC

An LT6600-10 or an LT1819-based 10MHz lowpass filter provides adequate stopband attenuation for reducing aliasing signals at the input of a high speed analog-to-digital converter (ADC) such as the LT1744, a 50Mps, differential input ADC. Figure 3 shows the gain response of the LT6600-10 and the LT1819-based 10MHz filters. The LT1819 filter is designed to have higher attenuation at 20MHz than the LT6600-10 filter in order to achieve
Figure 2. Another 10MHz, Single Supply Lowpass Filter. Similar to Figure 1. This Circuit Features the LT1819 Op Amp and Adjustable Bandwidth Up to 20MHz

Figure 3. The Frequency Response of the Two 10MHz Antialiasing Filters Shown in Figures 1 and 2

Figure 4. Spectral Plot of a 1MHz, 2Vp-p, Differential Sine Wave Input to an LT6600-10 Filter Plus an LT1744 14-Bit ADC (a DC to 10MHz Plot of a 4096-Point Averaged FFT with a 50MHz Sample Rate)

Conclusion
The LT6600-10 offers a high performance, 10MHz differential filter with gain, in a small package (SO-8) while the LT1819 op amp can be used to create a variety of differential filters up to 20MHz.

Data Sheet Download
www.linear.com/LT1819

For applications help,
call (408) 432-1900