Optimized DC/DC Converter Loop Compensation Minimizes Number of Large Output Capacitors – Design Note 186

John Seago

There is a trade-off between the cost of a few extra passive components and the flexibility that external loop compensation provides. Internal loop compensation is fixed, so it uses fewer passive parts but it also limits the designer’s choice of output capacitors. The output capacitor should be chosen to meet the load requirements, not the regulator requirements. The external loop compensation provided by the LTC®1435 family of parts allows the control loop to be optimized for the output capacitance required by the load.

External Loop Compensation Can Save Money

By changing two or three passive component values, the LTC1435 allows the loop to be compensated for the output capacitor that meets the load requirements. External loop compensation allows the designer to optimize both the buck inductor and output capacitor for each application.

Although some loads have stringent transient requirements, many do not. The function of the output capacitor is to smooth the output voltage ripple and to source or sink output current until the regulator can respond to changes in load current. If the regulator can respond as quickly as the load current changes, very little output capacitance is required.

Figure 1 shows an LTC1435 configured for a 3.3V output with less than 50mV of output ripple and a 100mV transient response. The values for the primary loop-compensation components, C3 and R1, were selected by means of dynamic load testing, using the pulsed-load circuit shown in Figure 2. The load-pulser resistor values were selected to switch the load current between 1.5A and 3A at a 60mA/μs rate, to simulate actual load conditions. Figure 3 shows the output voltage transient waveform.

Briefly, the values of C3, C4 and R1 determine the voltage gain and phase of the internal error amplifier at different frequencies. The value of C3 determines the low frequency gain, R1 determines the midband gain.
and C4 reduces gain at high frequencies. Generally, the values of C3 and C4 should be as small as possible and the value of R1 should be as large as possible.

Loop Compensation Using a Dynamic Load

Although many engineers consider control-loop theory difficult, most of the work is already done when optimizing a circuit for a particular load. The component values shown in the data sheet will provide stable operation under all static load conditions and most dynamic load conditions. The process of optimizing component values is not difficult. Using a dynamic load, or the pulsed-load circuit shown in Figure 2, select the appropriate output capacitor and adjust the values of C3, C4 and R1 in Figure 1 to minimize the overshoot and ringing on the output voltage waveform. Now, verify that the output voltage transient waveform is correct over the entire input voltage range.

It is also important to verify that the control loop is stable over the required operating temperature range. It is common to use a heat gun and freeze spray to test temperature extremes but it is important to monitor the actual temperature to avoid overtesting the circuit. It is best to use a temperature-controlled chamber for all temperature testing.

The advantage of adjustable loop compensation is simple: optimizing loop compensation components allows the lowest cost output capacitor to be used for a given load requirement. Adjustable loop compensation is available on all of the LTC1435 family of parts. As shown in Table 1, both single and dual versions are available with a variety of additional features.

![Figure 2. Pulsed-Load Circuit](image1)

![Figure 3. Transient Waveforms](image2)

Table 1. LTC1435 Related Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC1436/LTC1436-PLL/LTC1437</td>
<td>High Efficiency, Low Noise, Synchronous Step-Down Switching Regulator Controllers</td>
<td>Full-Featured Single Controllers</td>
</tr>
<tr>
<td>LTC1438</td>
<td>Dual Synchronous Controller with Power-On Reset and an Extra Comparator</td>
<td>Shutdown Current <30μA</td>
</tr>
<tr>
<td>LTC1439</td>
<td>Dual Synchronous Controller with Power-On Reset, Extra Linear Controller, Adaptive Power, Synchronization, Auxiliary Regulator and an Extra Uncommitted Comparator</td>
<td>Shutdown Current <30μA</td>
</tr>
<tr>
<td>LTC1538-AUX</td>
<td>Dual Synchronous Controller with AUX Regulator</td>
<td>5V Standby in Shutdown</td>
</tr>
<tr>
<td>LTC1539</td>
<td>Dual Synchronous Controller with the Same Features as the LTC1439</td>
<td>5V Standby in Shutdown</td>
</tr>
</tbody>
</table>

Data Sheet Download

www.linear.com

For applications help, call (408) 432-1900