Introduction

Precision high-side measurement of microamp currents requires a small value sense resistor and a low offset voltage amplifier. The LTC2063 zero-drift amplifier has a maximum input offset voltage of just 5 µV and draws just 1.4 µA, making it a great choice for building a complete ultra low power, precision high-side current sense circuit, as shown in Figure 1.

This circuit uses only 2.3 µA to 280 µA of supply current to sense currents over a wide 100 µA to 250 mA dynamic range. The exceptionally low offset of the LTC2063 allows this circuit to work with only 100 mΩ of shunt resistance, limiting the maximum shunt voltage to only 25 mV. This minimizes power loss on the shunt resistor and maximizes power available to the load. The LTC2063’s rail-to-rail input allows this circuit to operate with very small load current where input common mode is almost at the rail. The integrated EMI filter of the LTC2063 protects it from RF interference in noisy conditions.

The voltage output of this circuit for a given sense current is:

\[V_{\text{OUT}} = \frac{R_{\text{OUT}} \times R_{\text{SENSE}}}{R_{\text{IN}}} \times I_{\text{SENSE}} = 10 \times I_{\text{SENSE}} \]

Zero Point

A critical specification for a current sense solution is the zero point, or equivalent error current, at the input for the output produced when no sense current is present. The zero point is generally determined by the input offset voltage of the amplifier divided by \(R_{\text{SENSE}} \). The LTC2063's low input offset voltage of typical 1 µV, maximum 5 µV, and low typical input bias and offset currents of 1 pA to 3 pA, allow for a zero point input-referred error current of only 10 µA (1 µV/0.1 Ω) typically, or 50 µA (5 µV/0.1 Ω) maximum. This low error allows the sense circuit to maintain its linearity down to the lowest current in its specified range (100 µA), without plateauing due to loss of resolution, as seen in Figure 2. The resulting input current to output voltage plot is linear over the entire current sense range.

Another source of zero-point error is the output PMOS's zero-gate voltage drain current, or \(I_{\text{DSS}} \), a parasitic current that is present for nonzero \(V_{\text{DS}} \). When the PMOS is nominally turned off \((|V_{\text{GS}}| = 0) \), a MOSFET with high \(I_{\text{DSS}} \) leakage will produce a nonzero positive \(V_{\text{OUT}} \) with no \(I_{\text{SENSE}} \).

The transistor used in this design, Infineon’s BSP322P, has an upper-bound \(I_{\text{DSS}} \) of 1 µA at \(|V_{\text{DS}}| = 100 \) V. As a good estimate for the typical \(I_{\text{DSS}} \) of the BSP322P in this application, at room temperature, with \(V_{\text{DS}} = –7.6 \) V, \(I_{\text{DSS}} \) is only 0.2 nA, resulting in just 1 µV error output, or equivalent 100 nA input current error, when measuring 0 A input current.
Architecture

The LT1389-4.096 reference, along with the bootstrap circuit composed of M2, R2, and D1, establishes a very low power isolated 3 V rail (4.096 V + VTH of M2, typically –1 V) that protects the LTC2063 from seeing its absolute maximum supply voltage of 5.5 V. Although a series resistance could suffice for establishing bias current, using transistor M2 allows for much higher overall supply voltages while also limiting current consumption to a mere 280 µA at the high end of the supply range.

Precision

The LTC2063’s input offset voltage contributes a fixed input-referred current error of 10 µA typical. Out of 250 mA full-scale input, the offset results in only 0.004% error. At the low end, 10 µA out of 100 µA is 10% error. Since the offset is constant, it can be calibrated out. Figure 3 shows that total offset from LTC2063, unmatched parasitic thermocouples, and any parasitic series input resistances is only 2 µV.

Supply Current

The minimum supply current required by the LT1389-4.096 and LTC2063 is 2.3 µA at the minimum V_SUPPLY and I_SENSE (4.5 V and 100 µA), up to 280 µA at maximum V_SUPPLY and I_SENSE (90 V and 250 mA), as shown in Figure 5. In addition to the current consumed by the active components, an output current I_DRIVE through M1 also supplied by V_SUPPLY is required, proportional to the output voltage, ranging from 200 nA for a 1.0 mV output (for 100 µA I_SENSE) to 500 µA for a 2.5 V output (for 250 mA I_SENSE). Thus, the total supply current in addition to I_SENSE ranges from 2.5 µA to 780 µA. R_OUT is set at 5 kΩ for a reasonable ADC drive value.

Input Voltage Range

In this architecture, the maximum supply is set by the maximum |V_DS| that the PMOS output can withstand. The BSP322P is rated for 100 V, so 90 V is an appropriate operating limit.

Output Range

This design can drive a 5 kΩ load, which makes it a suitable stage for driving many ADCs. The output voltage range is 0 V to 2.5 V. Since the LTC2063 has rail-to-rail output, the maximum gate drive is only limited by the LTC2063’s headroom. It is 3 V typically in this design, set by the LT1389-4.096’s 4.096 V plus the –1 V typical V_TH of M2.
Since the output of this circuit is a current, not a voltage, ground or lead offset does not affect accuracy. Thus, long leads can be used between the output PMOS M1 and R_{OUT}, allowing R_{SENSE} to be located near the current being sensed while R_{SENSE} is near an ADC and other subsequent signal chain stages. The drawback of long leads is increased EMI susceptibility. 100 nF C3 across R_{SENSE} shunts away harmful EMI before it reaches the next stage’s input.

Speed Limits

Since the LTC2063’s gain-bandwidth product is 20 kHz, it is recommended to use this circuit to measure signals 20 Hz or slower. The 22 µF C2, in parallel with the load, filters the output noise to 1.5 Hz for improved accuracy and protects the subsequent stage from sudden current surges. The trade-off of this filtering is longer settling time, especially at the lowest end of the input current range.

Conclusion

The LTC2063’s ultralow input offset voltage, low I_{OFFSET} and I_{IBIAS}, and rail-to-rail input, provide precise current measurements over the entire range of 100 µA to 250 mA. Its 2 µA maximum supply current enables the circuit to run on far less than 280 µA supply current for most of its operating range. Along with LTC2063’s low supply voltage requirements, the low supply current allows it to be powered from a voltage reference with headroom to spare.

About the Author

Catherine Chang is an applications engineer in the Linear Products and Solutions Group in Milpitas, CA. She has been with Analog Devices since 2016. She is responsible for zero-drift amplifiers, current sense amplifiers, and other precision op amps in sensor signal conditioning chains. She holds a B.S.E.E. and an M.S.E.E. from Stanford University. She can be reached at catherine.chang@analog.com.