Analog Devices Provides Amplifiers for Every Application

Why are there so many different types of operational amplifiers (op amps)?
Here at Analog Devices our engineers continue the pursuit of the illusive ideal op amp. And while we’re extremely close to its realization, unfortunately it still exists only in textbooks. That is why we are committed to offering such a broad portfolio of op amps to meet the many and varied needs of our customers.

Selecting an op amp is no trivial task: with so many different types of amplifiers, categories, architectures, and parameters to choose from, the process can be difficult. Each customer and application requires slightly different performance. It doesn’t matter whether you’re designing a coffee maker (yes, op amps can be found in coffee makers) or the next generation medical imaging system, Analog Devices has the right amplifier to meet your needs.

This document will help you quickly and easily identify the right op amp(s) for your application. Inside you’ll find a list of op amp terminology and processes used to fabricate the ICs, a variety of selection tables, application guides, design tools, and a handy detachable op amp reference wall chart. We hope you’ll refer to this selection guide often and that it provides you with a better understanding and appreciation of op amps and their many applications.

Contents

Op Amp Glossary .. 4
Amplifier Design Technology .. 5
Amplifier Process and Trimming Technology 6
Quick Selection Guide—High Speed Amplifiers 7–8
Quick Selection Guide—Precision Amplifiers 9–11
Amplifier Selection Guide by Specifications
Precision Amplifiers (BW < 50 MHz)
Zero-Drift ... 15
Zero Input Crossover Distortion (ZCO) 16
Overvoltage Protection (OVP) .. 17
Ultralow Offset Voltage ($V_{\text{os}} \leq 250 \mu\text{V}$ Max) 18–19
Low Offset Voltage ($V_{\text{os}} \leq 1 \text{mV}$) 20
Low Power ($I_{\text{in}} / \text{Amp} \leq 1 \text{mA}$) 21–22
Low Noise ($V_{\text{n}} \leq 10 \text{nV} / \sqrt{\text{Hz}}$) 23–24
Low Input Bias Current ($I_{\text{b}} \leq 50 \text{pA}$) 25–26
Single Supply ... 27–28
Rail-to-Rail Output .. 29–31
Rail-to-Rail Input/Output ... 32–33
Low Cost .. 34–35
High Speed Amplifiers (BW > 50 MHz)
Differential ... 36
Low Noise/Low Distortion .. 37
Low Cost ... 38
Rail-to-Rail Input/Output .. 39
FastFET (FET Input) .. 40
Current Feedback .. 41
High Output Current .. 42
High Supply Voltage ... 43
Clamp .. 44
Amplifier Selection Guide by Applications
Energy ... 45
Process Control and Industrial Automation 46
Instrumentation and Measurement 47
Motor and Power Control 48
Healthcare .. 49–50
Communications ... 51
Consumer Audio .. 52
Automotive ... 53
Defense and Aerospace ... 54–57
Tools, Evaluation Boards, and Other Design Resources 58–62
Design Equations—Commonly Used Amplifier Configurations .. 63–68
Packaging .. 69–70
Op Amp Glossary

Common-Mode Voltage Range (CMVR)
Also known as input voltage range, CMVR is the allowable input voltage range at both inputs before clipping or excessive nonlinearity is seen at the output.

Common-Mode Rejection Ratio (CMRR)
The ratio of the common-mode voltage range (CMVR) to the change in the input offset voltage ($\Delta V_{o\,os}$) over this range. The result is expressed in dB. CMRR (dB) = $20\log (\text{CMVR}/\Delta V_{o\,os})$

Full Power Bandwidth
The maximum frequency measured at unity gain for which the rated output voltage can be obtained for a sinusoidal signal at rated load without distortion due to slew rate limiting.

Gain Bandwidth Product (GBW)
The product of open-loop gain and bandwidth at a specific frequency.

Input Bias Current (I_b)
The current at the input terminals.

Input Bias Current Drift
The proportional change in input bias current vs. temperature over a specified range of temperature.

Input Offset Current
The difference between the two input currents.

Input Offset Current Drift
The ratio of input offset current change over a specified temperature range, with the output held a constant voltage.

Input Offset Voltage Drift ($I_b V_{os}$)
The ratio of change in input offset voltage to a change in temperature.

Offset Voltage (V_{os})
The differential voltage needed across the op amp input terminals to obtain zero output voltage. Offset voltage values range varies by process and design technology:
- Auto-Zero Op Amps: $<1\ \mu V$
- Precision Op Amps: 50 μV to 500 μV
- Best Bipolar Op Amps: 10 μV to 25 μV
- Best JFET Input Op Amps: 100 μV to 1000 μV
- Best Bipolar High Speed Op Amps: 100 μV to 2000 μV
- Untrimmed CMOS Op Amps: $>2\ \text{mV}$
- DigiTrim® CMOS Op Amps: $<100\ \mu V$ to 1000 μV

Open-Loop Gain (A_{ol})
The ratio of the output voltage to the input offset voltage between the two input pins. The result is expressed in dB. Gain is usually specified only at dc (A_{ol}), but for many applications, such as high speed amplifiers for video and RF, the frequency dependence of gain is also important. For this reason the open loop gain and phase response is published for each amplifier.

Operating Supply Voltage Range
The supply voltage range that can be applied to an amplifier for which it operates within specifications. Many applications implement op amp circuits with balanced dual supplies, while other applications for energy conservation or other reasons, use single-supply. For example, battery power in automotive and marine equipment provides only a single polarity. Even line-powered equipment, such as computers, may have only a single-polarity built-in supply, furnishing +5 V or +12 V dc for the system, or often as low as 1.8 V, with newer applications going even lower.

Power Supply Rejection Ratio (PSRR)
The ratio of the change in power supply voltage to the change in input offset voltage. The result is expressed in dB. PSRR = $20\log (\Delta V_{ps}/\Delta V_{o\,os})$

Settling Time
The amount of time required for an amplifier to settle to some predetermined level of accuracy or percentage of output voltage after the application of a step input.

Slew Rate
The maximum rate of change of output voltage under large signal condition. The result is usually expressed in V/µs.

Supply Current
The current required from the supply voltage to operate the amplifier with no load.

Small Signal Unity Gain Frequency
The frequency at which the open-loop gain is unity or 0 dB. This applies only to signals under 200 mV. Due to slew rate limiting, it is not possible to obtain large output voltage swings at high frequencies.
Amplifier Design Technology

Clamp Amplifiers
Clamp amplifiers allow the designer to specify a high (VCH) and low (VCL) output clamp voltage so the output signal will clamp at the specified levels. Analog Devices’ unique CLAMPIN™ input clamp architecture offers significant improvement in clamp performance compared to traditional output clamping devices, minimizing clamp error and distortion in the clamp region.

Common-Mode Linearized Amplifiers
Increasing the linear input range of the input stage optimizes operational amplifier large signal distortion. This can be accomplished through the use of architectures such as degenerated differential structures and class AB input stages, both of which increase noise and lower precision. An alternate method is to linearize using a common-mode structure whose noise is rejected by the inherent differential nature of the input stage while also maintaining such precision metrics as CMRR, PSRR, and VOS. Analog Devices has numerous new amplifiers that now feature this new technology and has patented the common-mode linearized input architecture.

Current Feedback Amplifiers
Current feedback amplifiers are primarily used in applications that require very high speed operation, large slew rates, and low distortion. The fundamental concept is based on the fact that, in bipolar transistor circuits, currents can be switched faster than voltages, all other things being equal. Unlike voltage feedback amplifiers (VFB), CFB amplifiers do not have balanced inputs. Instead, the noninverting input is high impedance, and the inverting input is low impedance. The open-loop gain of the CFB is measured in units of Ω (transimpedance gain) rather than V/V as for VFB amplifiers. Also, the value of the feedback resistor plays a direct role in the CFB’s stability. Therefore, adhering to the recommended feedback resistor suggested in the data sheet is highly recommended.

Differential Amplifiers
Differential amplifiers allow the process of single-ended input to complementary differential outputs or differential inputs to differential outputs. These amplifiers feature two separate feedback loops to control the differential and common-mode output voltages. Analog Devices’ differential amplifiers are configured with a V_{os} pin, which can be easily adjusted for setting output common-mode voltage. This provides a convenient solution when interfacing with analog-to-digital converters (ADCs). ADI also offers a series of differential receiver products that convert differential input signals to single-ended output.

Quad Core (H Bridge)
Analog Devices has patented the quad core architecture, which supplies current on-demand to charge and discharge the internal dominant pole capacitor, while allowing the quiescent current to be small. This patented architecture enables amplifiers to provide high slew rates with low distortion at low supply currents.

Overvoltage Protection (OVP) Amplifiers
An OVP amplifier is the most robust solution to protect the amplifier and entire circuitry from outside the rail input voltages due to manufacturing shorts, power supply timing, or human error. OVP is able to protect real estate from various unexpected errors, which in turns save time and money. OVP amplifiers require no external circuitry to provide protection.

Zero-Drift Amplifiers
Zero-drift amplifiers dynamically correct the offset voltage to achieve nanovolt-level offsets and extremely low offset drifts due to time and temperature. The $1/f$ noise, seen as a dc error, is also removed. Zero-drift amplifiers provide many benefits to designers, as temperature drift and $1/f$ noise, always nuisances in the system, are otherwise very difficult to eliminate. In addition, zero-drift amplifiers have higher open-loop gain, power supply rejection, and common-mode rejection as compared to standard amplifiers; and their overall output error is less than that obtained by a standard precision amplifier in the same configuration.

Zero Input Crossover Distortion (ZCO) Amplifiers
Traditional rail-to-rail input amplifiers have an input stage that comprises two differential pairs, a p-type and an n-type. During the transition of the input common-mode voltage from the lower to the higher supply voltage, one of the differential pairs turns off and the other turns on. This transition causes crossover distortion. Zero input crossover distortion (ZCO) amplifiers solve this problem by integrating an on-chip charge pump. The charge pump increases the internal supply voltage, thus providing more headroom to the input stage. This allows the input stage to handle a wider range of input voltages (rail to rail) without using a second differential pair. As a result, crossover distortion is avoided.
JFET Input Amplifiers

JFET input amplifiers have the advantage over bipolar devices by having an extremely high input impedance along with low noise performance, making them very useful in amplifier circuits using very small signals such as high source impedance sensors and photodiodes. A typical JFET has a voltage noise slightly larger than a BJT, but its current noise is significantly lower.

Trimming Technology

Laser Trim

When extremely fine adjustment is required, laser trimming is most effective. By controlling the path and speed of the laser beam, the resistor’s value can be adjusted to very precise values. Analog Devices pioneered the use of thin film resistors and laser trimming and uses this technology extensively in precision amplifiers, references, and converters.

Zener Zapping

With each zap removing a predefined resistance value, the nature of the trims is discrete. It is most cost-effective for fairly large geometry processes. Analog Devices pioneered the use of Zener-zap trimming and created the industry standard OP07 precision amplifier.

DigiTrim

Analog Devices’ DigiTrim™ is a patented in-package trimming process that delivers guaranteed high accuracy. This in-package process technology eliminates the need for laser trimming during manufacturing and minimizes the input offset of operational amplifiers.