The RapID Platform Network Interface Is a Complete, Pretested Solution that Manages the Industrial Protocol and Network Traffic for a Host Processor

The network interface module or embedded design contains everything needed to participate in star, line, or ring network topologies, including the communications controller, protocol stacks, Flash, RAM, Ethernet switch, and PHYs. A host processor connects to the network interface via a UART or 16-bit parallel interface. At the software layer, the host connects to a unified interface so other protocols can be used without changing the host software. The network interface has passed EtherNet/IP® CT12 certification for beacon-based DLR devices and has been net load tested by Analog Devices. This means that your field device will operate problem-free on any EtherNet/IP network and will never disconnect from the network.

Easy Hardware and Software Integration

The network interface can be integrated into a design as either a module or an embedded design. As a module, the network interface plugs into a board using standard 2.54 mm pitch through-hole pins. When designing-in the module, hardware integration is as easy as connecting power/ground/reset and interfacing the host to the UART or 16-bit parallel interface.

As an embedded design, the network interface hardware design can be integrated directly using the schematics provided. Also provided are the bill of materials and example layouts to minimize the hardware design effort. Software for the embedded design is provided as firmware that is downloaded to the flash. Whether using the network interface as a module or an embedded design, no software development is required and there are no license fees or royalties.

Software integration with a host is also easy. Messages passed between the host and network interface follow a unified interface definition. A simple to use, Analog Devices supplied, PC-based tool configures the network interface, so the host only passes parameters between it and the network interface. From this tool, it is also easy to specify how parameters will be passed to the EtherNet/IP scanner using the EDS file. Since the host is only passing parameters, the host software does not have to change if EtherNet/IP network parameters change or if another industrial Ethernet protocol is used. There is also a sockets interface that supports direct Ethernet communication. Example C-code is provided to minimize the software effort for the host/network interface communication.
Reliable, Flexible Network Integration

The RapID platform network interface provides reliable EtherNet/IP communication with PriorityChannel—a revolutionary technology that eliminates the effects of network traffic and ensures reliable, real-time network performance. It gives your device a significant competitive advantage, extremely low jitter, and a reliable connection that will not disconnect even with >95% network loading.

EtherNet/IP support includes dynamic host configuration protocol (DHCP) and address conflict detection (ACD). Together, these two protocols ensure seamless integration that allows devices to be easily added or removed from the network. DLR protocol operation is transparent to the host processor, and beacon-based ring participation is supported with beacon intervals down to 200 µs. The platform supports all EtherNet/IP message types—implicit, explicit, and unconnected—and allows up to 8 encapsulation sessions, 16 Class 1 connections, and 16 Class 3 connections.

Large forward open and configuration assemblies are also supported, and the example EDS file provided can be tailored and uploaded to an EtherNet/IP scanner. To assist with commissioning, a webserver is provided so the field device’s network information can be displayed on a standard browser.

Fast Evaluation and Development

The RapID platform network interface evaluation kit provides a quick assessment for interfacing a host to the module. An application example is provided in order to demonstrate end-to-end, host-to-network, and interface-to-controller communication. Simply connect the host development board to the network interface evaluation board via the UART or 16-bit parallel interface. Once host-side communication is established, EtherNet/IP communication can be evaluated using a PLC or controller simulator. The communication path between host and EtherNet/IP scanner can be completely verified before integrating the module into your field device hardware.